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ABSTRACT

Complexity measures are important to understand and analyze systems with one dimensional data.
However, extension of these methods to images (two dimensional data) are much less usual. Bidimen-
sional multiscale sample entropy (MS E2D) has recently been proposed as a new complexity measure
for texture evaluation. However, MS E2D leads to undefined or unreliable values for small-sized tex-
tures and requires a long computation time. This is why we herein propose the bidimensional multi-
scale permutation entropy (MPE2D) to evaluate the complexity of 2D patterns. MPE2D is applied to
different synthesized textures, to softwood samples, and to study the texture of breast histopathology
images. The results show that MPE2D is a valuable tool for texture analysis and that it is computa-
tionally noticeably faster than MS E2D.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of signal processing, the analysis of time series’
irregularity through entropy measures is now well established.
The corresponding work has led to many papers in several kinds
of applications, including biomedical time series (Costa et al.,
2005) (Humeau-Heurtier et al., 2011) (Humeau-Heurtier et al.,
2012), vibrations of rotary machines (Wu et al., 2012), elec-
troseismic time series (Guzman-Vargas et al., 2008), and fi-
nancial time series (Niu and Wang, 2015). This has become
possible since the 1990’s when Pincus introduced the approxi-
mate entropy measure (Pincus, 1991). Later, in 2000, Richman
and Moorman proposed the sample entropy to overcome some
of the approximate entropy limitations (Richman and Moor-
man, 2000). Another widely used entropy method is fuzzy en-
tropy (Chen et al., 2009). Although sample entropy is slightly
faster than fuzzy entropy, the latter is more consistent and less
dependent on the data length. In 2002, Bandt and Pompe pro-
posed the permutation entropy (PerEn1D) to study time series
complexity (Bandt and Pompe, 2002). PerEn1D relies on the
comparison of neighboring values and has the advantage, over
sample entropy, of being very fast (low computation time).
Later, in 2005, the multiscale permutation entropy (MPE1D)
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has been introduced to study the permutation entropy over dif-
ferent time scales (Aziz and Arif, 2005). More recently, ex-
tensions to the 2D case of some of these measures have been
developed to analyze image texture (Yeh et al., 2011), (Ribeiro
et al., 2012), (Moore, 2016), (Silva et al., 2016), (Azami et al.,
2017), (dos Santos et al., 2018), (Humeau-Heurtier et al.,
2018), (Silva et al., 2018), (Azami et al., 2019), (Hilal et al.,
2020). Thus, the bidimensional version of the sample entropy
(S ampEn2D) and its spatial multiscale approach (MS E2D) have
been developed (Silva et al., 2018), (Humeau-Heurtier et al.,
2018). The bidimensional version of the permutation en-
tropy (PerEn2D) has also been proposed (Ribeiro et al., 2012).
In the latter work, the authors used the complexity-entropy
causality plane and showed it can be useful to, among others,
distinguish between two-dimensional patterns (Ribeiro et al.,
2012), (Sigaki et al., 2018). This plane has also been used with
a multiscale approach to discriminate image textures (Zunino
and Ribeiro, 2016).

Our goal herein is to study the multiscale PerEn2D (MPE2D)
and to evaluate how it is able to differentiate textures. Our work
is therefore different from the above-mentioned studies as no
complexity-entropy causality plane is used. We rely only on
PerEn2D and MPE2D for texture analysis. Moreover, we com-
pare our results with the ones obtained with S ampEn2D and
MS E2D. For this, we first present PerEn2D and MPE2D in
Section 2. Section 3 presents the dataset we used: periodic
and synthesized textures, vision textures, softwood images, and

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167865521002373
Manuscript_44002d6125b88765b130bbd011c0ddca

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167865521002373
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167865521002373


2

medical textures. Then, in Section 4, the results are detailed
and discussed. We end with a Conclusion in Section 5.

2. Bi-dimensional multiscale permutation entropy

As mentioned above, the bidimensional multiscale sample
entropy (MS E2D) has been proposed as a new texture algo-
rithm (Silva et al., 2018) (Humeau-Heurtier et al., 2018). It
relies on a coarse-graining procedure and has shown interesting
results for texture classification. The permutation entropy, ini-
tially proposed for one dimensional data (PerEn1D) (Bandt and
Pompe, 2002), has recently been generalized to two or higher-
dimensional structures such as images: PerEn2D (Ribeiro
et al., 2012) (Sigaki et al., 2018). Based on this, Zunino
et al. proposed the multiscale two-dimensional complexity-
entropy causality plane for image texture discrimination; their
multiscale approach relies on embedding delays (Zunino and
Ribeiro, 2012, 2016). However, no extension to several scales
of the bidimensional permutation entropy MPE2D using a mul-
tiscale coarse-graining-based approach exists. We therefore
present herein a new bidimensional multiscale approach for tex-
ture analysis, MPE2D. The computational steps for MPE2D

are detailed below. MPE2D can be calculated for any image x
represented by a matrix. The multiscale procedure decreases
the two-dimensional array x with scale factor τ to a new two-
dimensional reduced array y. Following the encoding scheme
introduced by Bandt and Pompe (Bandt and Pompe, 2002), the
MPE2D algorithm is defined with the following two steps:

• The coarse-graining procedure: the coarse-graining 2D
procedure of an arbitrary image x with W width and H
height, is defined by:

y(τ)
i, j =

1
τ2

k=iτ
l= jτ∑

k=(i−1)τ+1
l=( j−1)τ+1

xk,l, (1)

where 1 ≤ i ≤ bH/τc, 1 ≤ j ≤ bW/τc and τ is the scale fac-
tor. The coarse-grained image has the width nw = bW/τc
and the height nh = bH/τc. If the scale factor τ is equal
to one, the coarse-grained image y(1) corresponds to the
original image x.

• Application of PerEn2D on each coarse-grained image:
this second step will be introduced by an example. Let
us assume that the coarse-grained image is:

A =


2 4 9
1 5 3
7 8 6

 . (2)

This second step relies on four parameters: the embedding
dimensions dx and dy (dx, dy ∈ N), which split the initial
matrix A into sub-matrices of size dx × dy, and the em-
bedding delays τx and τy (τx, τy ∈ N), which define the

spatial separation in horizontal and vertical directions, re-
spectively. For instance, choosing dx = dy = 2 leads to the
first partition dx × dy of the initial matrix A:

A1 =

(
2 4
1 5

)
=

(
a0 a1

a2 a3

)
, (3)

which is, after a reshaping step, (2415). It is clear
that this 2D partition or the sub-matrix A1 becomes a
one-dimensional data. The smaller element of this one-
dimensional data is 1, which corresponds to the element
a2. We hold the index 2. The next element larger than a2 is
2, giving the element a0, so the index is 0. For 4 and 5, the
elements are a1 and a3, so the indices 1 and 3 are obtained.
This sub-matrix leads to the elements a2 ≤ a0 ≤ a1 ≤ a3 in
ascending order after sort. Then, the indices of the terms
ai, (0 ≤ i ≤ 3), determine the state (2013). The second
partition is defined as a matrix dx × dy, offset by τx = 1, in
the horizontal direction. This partition:

A2 =

(
4 9
5 3

)
→ ( 4 9 5 3 )︸     ︷︷     ︸

reshape

(4)

is composed of the elements (4953), after a reshaping step.
Putting the matrix elements a0, a1, a2, a3, in ascending or-
der a3 ≤ a0 ≤ a2 ≤ a1, gives the index of the matrix
elements are mapped to the ordinal pattern (3021). The
third sub-matrix

A3 =

(
1 5
7 8

)
(5)

leads to the state (0123) due to the offset by τy = 1, on
the vertical direction. With τx = 1 and τy = 1, the last
remaining sub-matrix

A4 =

(
5 3
8 6

)
, (6)

leads to the ordinal pattern (1032). However, by changing
the embedding delays τx = 2 on the horizontal direction
and τy = 1 on the vertical direction, the elements in the
original matrix are non-consecutive. In this case, two par-
titions with their permutations are obtained from the array
A:

A5 =

(
2 9
1 3

)
→ ( 2 9 1 3 )︸     ︷︷     ︸

reshape

(7)

leads to (2031) and

A6 =

(
1 3
7 6

)
→ ( 1 3 7 6 )︸     ︷︷     ︸

reshape

(8)

leads to (0132). The parameters dx and dy determine
the number of accessible states: they play an important
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 1. Six examples of texture synthesis: (a) to (f) are periodic textures and
(g) to (l) are the corresponding synthetic textures (in the same order).

role in the estimation of the permutation probability dis-
tribution P. It is usual to choose dx! � W for the one-
dimensional case (Bandt and Pompe, 2002); for the two-
dimensional case, a similar relationship is recommended,
i.e. (dx × dy)! � W × H.

The probability distribution P = {pi; i = 1, . . . , (dx × dy)!}
is obtained by computing the frequencies of the possible
patterns relative to (dx × dy)!. Having the probability dis-
tribution, the normalized Shannon entropy is calculated as

H(p) = − 1
ln((dx × dy)!)

(dx×dy)!∑

i=0

pi × ln pi. (9)

Therefore, if the pixels of an image represented by a matrix
are highly disordered, the value of the normalized Shan-
non entropy is near to one; on the contrary, the normalized
Shannon entropy is near to zero if they always appear in
the same order. It is important to note that the coarse-
graining approach is performed before the computation of
PerEn2D. This means that for an original image of size
50×50 pixels at scale factor τ = 5, we obtain first a coarse-
grained image of 10× 10 pixels, which then leads to a 100
samples time series.

3. Datasets

In this section, we briefly describe the different synthesized
and real-life textures used to study MPE2D behavior.

3.1. Artificial periodic and synthesized textures

We first studied MPE2D behavior for six periodic textures
and their corresponding synthesized textures. These images
are from the database https://graphics.stanford.edu/

projects/texture/demo/synthesis_eero.html. The
original textures, sized 256×256 pixels, are depicted in Fig. 1(a)
to (f). The corresponding synthesized textures are shown in
Fig. 1(g) to (l). The synthesis algorithm is based on Markov
random field texture models. It generates textures through a de-
terministic search process (Wei and Levoy, 2000). Each local
region of the synthesized texture based on this algorithm is sim-
ilar to another region from the input (original periodic) texture.

(a) (b) (c) (d) (e) (f)

Fig. 2. Vision textures ordered from the least irregular (a) to the most ir-
regular (f).

(a) (b) (c)

(d) (e) (f)

Fig. 3. Softwood cross section: (a) Cupressus lindleyi, (b) Podocarpus lam-
bertii, (c) Pinus caribaea, (d) Pseudotsuga macrolepsis, (e) Tsuga sp, (f)
Larix lariciana.

3.2. Vision textures

To study MPE2D for different irregular tex-
tures, we processed six vision textures from https:

//multibandtexture.recherche.usherbrooke.ca/

normalized_brodatz.html. The textures, sized 640 × 640
pixels, are shown in Fig. 2(a) to (f), ordered from the least
irregular to the most irregular.

3.3. Softwood textures

We evaluated MPE2D to measure the com-
plexity of some softwood species. The database
(http://web.inf.ufpr.br/vri/databases/
forest-species-database-microscopic/) contains
112 different forest species which were cataloged by the Labo-
ratory of Wood Anatomy at the Federal University of Parana in
Curitiba, Brazil. The microscopic images have been acquired
and carefully labeled by experts in wood anatomy. Fourteen
softwood species were collected at random from the database
(Abies religiosa, Cedrus atlantica and sp (Aussenac, 1984),
Cupressus arizonica, Cupressus lindleyi (Richter et al., 2004),
Larix lariciana, Pinus caribaea, Pinus maximinoi (Martins
et al., 2013), Podocarpus lambertii, Pseudotsuga macrolep-
sis, Sequoia sempervirens (Martins et al., 2013), Taxodium
distichum, Torreya nucifera, Tsuga sp (Martins et al., 2013)).
Figure 3 presents some softwood species. There are 280
samples used in the experiment, 20 images for each of the
14 species, with a resolution of 1024 × 768 pixels. All these
images can be divided into two groups (uniform transitions and
gradual transitions), as described below.

Softwoods (coniferous trees) produce a single cell type, the
tracheid. The conifers growing under tropical (Chattaway,
1934) conditions are characterized by a relatively uniform
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cross-sectional structure composed of tracheids with similar
diameters and thicknesses of walls, such as Cupressus lind-
leyi (Fig. 3 (a)), Podocarpus lambertii (Fig. 3 (b)), and Pinus
caribaea (Fig. 3 (c)). This kind of conifer has a uniform tran-
sition from the earlywood (faster-growing wood) to the late-
wood (slower-growing wood). Because of the wet climate
where growing conditions are similar year round, distinct an-
nual growth rings boundaries may be absent or indistinct, as for
example Podocarpus lambertii or Taxodium distichum.

In regions of the world where climate is distinctly seasonal,
with long cold periods that halt tree growth, there can be a
gradual increase in wall thickening near the end of the growth
ring. The conifers develop thin-walled tracheids in the early-
wood and smaller-diameter tracheids with thick-walled in the
latewood. This transition from the earlywood to the latewood
can be very gradual for Pseudotsuga macrolepsis (Fig. 3 (d)),
Tsuga sp (Fig. 3 (e)), Larix lariciana (Fig. 3 (f)) or very abrupt
for Sequoia sempervirens.

3.4. Medical images
We also evaluated MPE2D on medical images. We thus

studied pathological and healthy tissues in breast medical
images. We used the database (https://www.kaggle.com/
paultimothymooney/breast-histopathology-images).
In this database, the patients are diagnosed clinically having a
breast cancer disease. Breast cancer is the most common form
of cancer for women, and invasive ductal carcinoma is the most
common form of breast cancer. Accurately, identifying and
categorizing breast cancer types is an important clinical task,
to save time and reduce error. This database consists of images
of breast cancer scanned at 40x, issued from 279 subjects.
From that, 277524 patches of 50×50 pixels were extracted,
with 198738 benign tissue patches (negative) and 78786
malignant tissue patches (positive to presence of invasive
ductal carcinoma cancer). For our experiment, we selected 50
subjects and 270 patches for each subject (i.e. 13500 patches),
with a resolution of 50×50 pixels.

4. Results and discussion

For the all the results presented below, dx and dy were set to
2, and τx and τy were set to 1.

4.1. Artificial periodic and synthesized textures
In order to study the multiscale approach on PerEn2D, we

used different values of the scale factor τ: 1 to 10. Moreover,
based on (Costa and Goldberger, 2015) and (Zhang, 1991), we
computed a complexity index computed as the mean of the
PerEn2D values over scale factors 1 to 10. Figures 4(a) to (f)
show MPE2D of the periodic textures represented on Figs. 1(a)
to (f) and of the corresponding synthetic textures represented
on Figs. 1(g) to (l) (in the same order). For all six images of
Figs. 1(a) to (f), MPE2D of the periodic texture is lower over all
the scales τ than the one of the synthesized texture, as shown in
Figs. 4(a) to (f). This is also shown in Tables 1 and 2.

The same results are obtained for the mean of MS E2D: the
mean of MS E2D of all periodic textures is lower than for syn-
thesized textures, see Tables 1 and 2. This shows that both

(a) (b)

(c) (d)

(e) (f)

Fig. 4. MPE2D computed for texture synthesis examples: periodic textures
and the corresponding synthesized textures; see Fig. 1 for details.

Table 1. The mean of MPE2D and the mean of MS E2D of the periodic tex-
tures, see Fig. 1, over all scale factors τ from 1 at 10 and their computation
time in seconds.

(a) (g) (b) (h) (c) (i)

MPE2D 0.57 0.69 0.52 0.63 0.76 0.79
Duration 0.88 0.74 0.88 0.75 0.87 0.73
MS E2D 0.28 2.81 1.44 2.06 2.58 2.95

Duration 47.62 45.91 55.78 58.08 44.69 46.53

Table 2. The mean of MPE2D and the mean of MS E2D of the synthetic tex-
tures, see Fig. 1, over all scale factors τ from 1 at 10 and their computation
time in seconds.

(d) ( j) (e) (k) ( f ) (l)

MPE2D 0.69 0.76 0.89 0.93 0.80 0.82
Duration 0.83 0.81 0.88 0.75 0.89 0.79
MS E2D 2.4 2.98 2.73 4.38 1.85 2.37

Duration 58.82 56.78 48.31 50.54 68.25 70.01

MPE2D and MS E2D may be of interest to properly discriminate
periodic from synthesized textures by assigning lower entropy
values for periodic textures (highly ordered textures).

The computation times for MPE2D and MS E2D are shown
in Tables 1 and 2. The simulations have been carried out us-
ing a PC with Intel (R) Core(T M) i5 − 7200U CPU, 2.5 GHz
and 8GB RAM by Matlab R2018b. MPE2D is about 100 times
faster than MS E2D for this image size.
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Fig. 5. Mean and standard deviation of MPE2D for scale factors τ = 1 to 10
for vision textures ordered from the least irregular (a) to the most irregular
(f); see Fig. 2.

Table 3. The mean of MPE2D and the mean of MS E2D of the vision tex-
tures, see Fig. 2, over all scale factors τ from 1 at 10 and their computation
time in seconds.

(a) (b) (c) (d) (e) ( f )

MPE2D 0.59 0.69 0.78 0.79 0.86 0.93
Duration 0.51 0.47 0.46 0.47 0.48 0.51
MS E2D 2.04 3.08 3.34 3.88 3.89 4.11

Duration 2345 2230 2282 2041 2224 2196

Table 4. The mean of MPE2D of the softwood species over all scale factors
τ from 1 at 10. TkW refers to thick-walled tracheids and TnW refers to
thin-walled tracheids.

Species MPE2D Tracheids

Abies religiosa 0.84 TnW and TkW

Cedrus atlantica 0.85 TnW and TkW

Cedrus sp. 0.86 TnW and TkW

Cupressus arizonica 0.77 similar diameters

Cupressus lindleyi 0.77 similar diameters

Larix lariciana 0.87 TnW and TkW

Pinus caribaea 0.74 similar diameters

Pinus maximinoi 0.84 TnW and TkW

Podocarpus lambertii 0.78 similar diameters

Pseudotsuga macrolepsis 0.84 TnW and TkW

Sequoia sempervirens 0.66 similar diameters

Taxodium distichum 0.77 similar diameters

Torreya nucifera 0.77 similar diameters

Tsuga sp. 0.85 TnW and TkW

4.2. Vision textures

The mean of MPE2D over all scales (scale factors τ from 1 to
10) is in increasing order for the vision textures represented in
Fig. 2, from the least irregular to the most irregular, see Fig. 5.
As for the previous example, the comparison of the mean of
MPE2D and the mean of MS E2D is presented in Table 3. We
observe that the values increase as the irregularity of the texture
increases.

At the same time, the MS E2D method simulation time is
around 4000 times larger than the one of MPE2D.

4.3. Softwood textures

Recently, computer vision has been used to classify forest
species. Tou et al. (Tou et al., 2007), proposed a computer

Fig. 6. Mean and standard deviation of MPE2D computed for 280 softwood
samples images: uniform transition, tracheids with similar diameters and
thicknesses of the walls, specific to the tropical forests, and gradual transi-
tion for temperate regions, with thin and thick-walled tracheids.

vision-based wood recognition system using Gray Level Co-
occurrence Matrix (GLCM) to extract texture features and neu-
ral network. Khalid et al. (Khalid et al., 2008) have devel-
oped an automatic Tropical Wood Species Recognition System
for the classification of 20 different tropical Malaysian wood
species using Multilayer Perceptron Backpropagation Artificial
Neural Network as classifier. Yusof et al. (Yusof et al., 2010)
offered a recognition system approach for the tropical wood
species using Gabor filter, GLCM with multilayer perceptron
back-propagation. Wang et al. (Wang et al., 2010) presented
a wood recognition approach using Gabor wavelet coefficients.
Cavalin et al. (Cavalin et al., 2013) proposed a system to clas-
sify 112 Brazilian forest species using multiple feature vectors
based on Local binary patterns, GLCM and Linear phase quan-
tization. Khairuddin et al. (Khairuddin et al., 2011) used feature
selection based on genetic algorithm to improve the accuracy of
wood species recognition.

Due to the large variations of features among the species of
the tropical wood, and the problems related to variations in the
wood samples, it is important to improve the methodology of
the wood recognition system. Therefore, in this paper, we pro-
pose to compute MPE2D over all scale factors τ = 1 to 10,
for the 14 softwood species, each one including 20 images per
species. Table 4 presents the mean of MPE2D for each softwood
species and theirs tracheids. Figure 6 presents the mean and the
standard deviation of MPE2D for the softwood. For all conifers
growing under wet conditions, see Table 4 (Cupressus arizon-
ica, Cupressus lindleyi, Pinus caribaea, Podocarpus lambertii,
Sequoia sempervirens, Taxodium distichum, Torreya nucifera),
the value of the mean of MPE2D is 0.76 and the standard de-
viation is lower than 0.04. In temperate regions of the world,
these conifers develop different diameter tracheids with differ-
ent walled tracheids leading to a higher complexity. The mean
of MPE2D for Abies religiosa, Cedrus atlantica, Cedrus sp, Pi-
nus maximinoi, Pseudotsuga macrolepsis (Fig. 3 (d)), Tsuga sp
(Fig. 3 (e)) and Larix lariciana (Fig. 3 (f)) is 0.83 and the stan-
dard deviation is lower than 0.02.

It is well know that the thinner walls are found in more humid
environments, and the thicker walls are associated with drier
environments (Ramagea et al., 2017), (Alves and Angyalossy-
Alfonso, 2002). Rapid or constant growing wood in the tropics
leads to large cells with thinner walls allowing for efficient wa-
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Table 5. p-values obtained with the Mann-Whitney test on Haralick fea-
tures for the two following groups: 1) uniform transition, tracheids with
similar diameters and thicknesses of the walls, specific to the tropical
forests (7 wood species; mean features computed from 20 images for each
species); 2) gradual transition for temperate regions, with thin and thick-
walled tracheids (7 wood species; mean features computed from 20 im-
ages for each species). d represents the interpixel distances for the co-
occurrence matrices.

Softwood textures d = 1 d = 2 d = 3 d = 4

Contrast 1 1 0.9015 0.8048

Variance 0.1282 0.0973 0.1282 0.1282

Entropy 0.6200 0.6200 0.3829 1

Homogeneity 0.0728 0.0262 0.0530 0.1282

Correlation 0.2593 0.4557 0.3829 0.2086

ter transport to support intense photosynthesis. In temperate
regions of the world, the slower or stoping growing wood in
winter is characterized by more dense and smaller cells. So,
the tropical species developed uniform cross-sectional struc-
ture with a repetitive appearance which leads to lower MPE2D,
whereas the temperate species develop a gradual cross-sectional
structure with much more complex appearance leading to larger
values of MPE2D.

The Mann-Whitney test used to compare the values of the
two groups of wood (the thick and the thin-walled fibres of
the cross-sectional structure of the softwood) returns p < 0.05
(p = 2.33 × 10−3). This shows that MPE2D values of the
two groups of wood are statistically significantly different. We
also compared our results with Haralick features from 2D co-
occcurrence matrices. The p-values obtained with the Mann-
Whitney test are shown in Table 5. We observe that MPE2D

surpasses the results given by Haralick features as the p-value
given by the former method is lower than those given by the
latter method.

4.4. Medical images

The database used in this work contains different patches.
Each patch’s file name includes the identity number of the pa-
tient, the x and y coordinates of the point where the patch was
cropped from and the pathological and the healthy group. Ac-
cording to the x and y coordinates of the patch with 50×50 pix-
els resolution, the patches were put one after the other and one
under the other, generating an image with a 150×150 pixels res-
olution (see Fig. 7). This has been performed because, choosing
images as small as 50×50 pixels and using scale factors going
from 1 to 10 would have lead to so short vectors that the permu-
tation entropy values would have been erroneous. For images
with a 50×50 pixels resolution, after a reshaping step, the time
series would have had 2500 samples (τ =1). For τ = 10, the
time series would have been reduced to 25 samples. Tests on
white noise images have shown that for images sizes larger than
150×150 pixels and for scale factors between 1 and 10, no such
errors are observed (data not shown here). The database used in
this experiment consists of 13500 patches of 50×50 pixels res-
olution to generate 1500 images of 150×150 pixels resolution.

From the database we selected randomly 50 subjects with
the following identities: 8863, 8864, 8917, 8956, 8974, 8975,
9077, 9126, 9173, 9176, 9177, 9226, 9250, 9255, 9256, 9320,

Fig. 7. Example of patch images used in the experiment for the subject id
10260: 9 normal tissue patches without cancer.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8. Twelve examples of patch images of size 150×150 pixels obtained
from subject id. 10260: (a) to (f) benign tissues and (g) to (l) malignant
tissues.

Fig. 9. Mean and standard deviation of MPE2D computed from scale fac-
tors τ = 1 to 10 for subject id. 10260. The results have been computed
from 15 images of benign tissues and 15 images of malignant tissues (size
of each image: 150×150 pixels).

9323, 9324, 9345, 9346, 9382, 10260, 10264, 10273, 10292,
10299, 10303, 10308, 12242, 12749, 12751, 12752, 12818,
12867, 12880, 12895, 12900, 12907, 13693, 14079, 14154,
14157, 14191, 14211, 15473, 15510, 15902, 16165, 16166,
16568. For each subject, we computed 15 images of size
150×150 pixels with benign tissues and 15 images of size
150×150 pixels with malignant tissues (see Fig. 8).

Figure 9 shows the mean and standard deviation for MPE2D

computed for scale factors τ = 1 to 10 for subject id. 10260.
For this subject, the mean of MPE2D of the benign tissues is
0.856, with 0.036 for the standard deviation. For the malignant
tissues, the mean of the MPE2D is 0.912, with a standard de-
viation of 0.016. The results show that the mean of MPE2D of
all 15 benign tissues is lower to the mean of MPE2D of all 15
malignant tissues.

Let us now use images from another subject (subject id.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 10. Twelve examples of patch images of size 150×150 pixels obtained
from subject id. 9320: (a) to (f) benign tissues and (g) to (l) malignant
tissues.

Fig. 11. Mean and standard deviation of MPE2D computed from scale fac-
tors τ = 1 to 10 for subject id. 9320. The results have been computed from
15 images of benign tissues and 15 images of malignant tissues (size of each
image : 150×150 pixels).

9320). Figure 10 presents 6 of the 15 benign and 6 of the 15
malignant tissue images. Each set of images is homogeneous,
but the two sets have different structures. The mean of MPE2D

of the benign tissues is 0.883, with 0.029 for the standard devi-
ation. For the malignant tissues, the mean of MPE2D is 0.941,
with a standard deviation of 0.0065, see Fig. 11. As for the case
above, the mean of MPE2D of all 15 benign tissues is lower
than the mean of MPE2D of all 15 malignant tissues.

On the same way, MPE2D has been computed for the 50 sub-
jects to categorize benign and the malignant tissues. The mean
and the standard deviation for these 50 subjects (leading to 750
benign tests and 750 malignant tests) are represented in Fig. 12.
As shown in this figure, the benign tissues have a mean MPE2D

of 0.9380 while the malignant tissues have a mean MPE2D of
0.9695.

A Wilcoxon signed rank test between the two groups of tis-
sues returns a p-value of p = 7.79 × 10−10, suggesting that the
difference between the two groups is significant. We also com-
pared our results with Haralick features from 2D co-occurrence
matrices. The p-values obtained with the Wilcoxon signed rank
test are shown in Table 6. We observe that MPE2D surpasses the
results given by Haralick features as the p-value given by the
former method is lower than those given by the latter method.

4.5. Advantages and limitations

Entropy measures allow the quantification of irregularity, un-
predictability or uncertainty. Considering that the repeatability
of pixel patterns is related to the texture properties of images,

Fig. 12. Mean and standard deviation of MPE2D computed from scale fac-
tors τ = 1 to 10 for 50 subjects. The results have been computed from 750
images of benign tissues and 750 images of malignant tissues (size of each
image : 150×150 pixels).

Table 6. p-values obtained with the Wilcoxon signed rank test on Haralick
features for two group: benign tissues (50 subjects, mean features com-
puted from 15 images for each subject) and malignant tissues (50 subjects,
mean features computed from 15 images for each subject). d represents
the interpixel distances for the co-occurrence matrices.

Medical images d = 1 d = 2 d = 3 d = 4

Contrast 1.645 × 10−1 4.675 × 10−2 1.069 × 10−1 8.752 × 10−2

Variance 8.435 × 10−8 1.044 × 10−7 1.160 × 10−7 1.223 × 10−7

Entropy 2.536 × 10−4 3.757 × 10−5 4.260 × 10−4 7.563 × 10−5

Homogeneity 2.257 × 10−5 6.250 × 10−6 6.250 × 10−6 5.972 × 10−6

Correlation 1.143 × 10−6 9.397 × 10−7 1.457 × 10−6 1.089 × 10−6

PerEn2D can be considered as a meaningful feature extraction
technique, representing characteristics related to the texture of
images. The multiscale approach – that comes before the per-
mutation entropy computation – allows to study the image at
different spatial scale factors, which is an important step as
images are often complex structures with different textures at
small and large spatial scales.

Image irregularity and complexity can be useful for image
characterization, and for any application using texture analysis
such as remote sensing, assisted medical diagnosis, automatic
target recognition, and for classification.

The advantage of MPE2D, compared to other entropy meth-
ods, is its simplicity and extremely fast calculation. However,
for time series, it has been shown that equal or repeated val-
ues can introduce a bias in the estimation of the ordinal pattern
probability distribution when computing PerEn1D (Cuesta-Frau
et al., 2018). Several attempts have been proposed to overcome
this drawback for time series (Chen et al., 2019; Azami and Es-
cudero, 2016; Bian et al., 2012; Bandt, 2005). This problem of
equal values for permutation entropy applied to images has not
been studied yet, from the best of our knowledge. If it really
leads to errors in image classification, we could think of max-
imising the embedding dimension (Cuesta-Frau et al., 2018) or
extending the above-mentioned studies dedicated to signals for
images. However, as Cuesta-Frau et al. mentioned (Cuesta-
Frau et al., 2018), the problem of ties in permutation entropy
has been probably overrated when using permutation entropy
for signal classification. This might be the same for images.
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5. Conclusion

We introduced MPE2D to quantify the complexity of im-
age textures. The results show the ability of MPE2D to dis-
tinguish periodic textures from synthesized textures, different
types of softwood textured surfaces, and different textures of
breast histopathologic images. MPE2D is a valuable tool for
texture analysis and is computationally noticeably faster than
MS E2D.
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