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This paper presents an inverse problem in heat conduction, namely the determi-
nation of thicknesses of three materials of known heat capacities and thermal
conductivities inside a rod of given length subjected to periodic heat flows from
measurements of temperatures at both ends. The unknowns are, therefore, the
positions of the two interior frontiers between the three materials. Classically, they
can be obtained by minimizing the least-squares, non-linear criterion, between
the measured and calculated temperatures. Nevertheless, we show that the global
minimum providing the solution is close to three local minima that act as traps
for a descent algorithm. After providing theoretical justification of the complex
temperature method, a method based in this case on the periodicity of boundary
fluxes, we suggest a new criterion allowing the global characterization or not of
an a priori local minimizer to be tested. It is a criterion of topological nature
based on the identification of a singularity.

Keywords: heat equation; inverse geometry problem; complex temperatures;
identification; global optimization

AMS Subject Classifications: 49K15; 49M30; 49M05

1. Introduction

A composite rod made of three materials is considered. This can also be a three-layer plate,
modelled in one dimension due to its symmetry. The question that arises is how to determine
thicknesses b1, b2, b3, given that the total thickness is b; in other words, how to determine
the position of the two interior border points. For this, we chose a non-invasive thermal
process.

Both ends of the rod are subjected to heat flows. These are chosen to be periodic with
frequency ω, obtained, for example, from laser sources. We make the assumption that the
thermal model is linear, this being realistic for a controlled experiment. We also assume
a state of thermal continuity without any thermal contact resistance. These assumptions
allow the method of complex temperatures to be applied in order to eliminate time factors
in the equations [1,2]. Some temperature measurements are performed with frequency ω at

∗Corresponding author. Email: jean-claude.jolly@univ-angers.fr
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2 J.-C. Jolly et al.

both ends. Depending on the real or complex point of view, this defines a non-linear inverse
problem for two or four equations and two unknowns.

The problem investigated is one of inverse geometry. This type of problem, often
ill-posed, consists of identifying a sub-domain – and its eventual physical characteristics
– starting from a direct problem of elliptic or parabolic type in general. This is the case
for the direct problem of heat conduction that interests us: it is parabolic in general, but
elliptic when stationary. Concerning theoretical aspects, we can cite, for example, the
inequalities of global Carleman-type estimations for stability,[3,4] derivation techniques
borrowed from shape optimization [5,6] and regularization techniques [7]. Concerning
numerical aspects, we can cite, without wanting to be exhaustive, the Galerking methods
with mesh generation (FEM),[8] the method of representation with radial basis functions
(RBFs),[9] the method of fundamental solutions (MFS),[10] the boundary element method
(BEM),[11] the use of genetic algorithms,[12] etc. A few applications are, for example,
obstacle problems,[13] the determination of corrosion zones,[14] Spephan phase-change
problems,[15] etc.

In comparison to the previous works which are mostly in multi-dimensional domains,
the direct and inverse problems that we have defined for the one-dimensional domain
are simpler. The periodic flux-type excitation at the rod ends allows us to deal with a
direct, elliptic-type problem, but with complex temperatures. This problem has an explicit
solution and alternative, stable numerical methods of resolution. As far as the inverse
problem of two unknown frontiers is concerned, and, therefore, of finite dimension –
only two, questions of existence, unicity and stability, without being trivial, are in practice
positively solved. To find the solution, a classical least-squares method is used and applied to
complex temperature criterion J. More precisely, J is modulus quadratic deviation between
measured complex temperatures and calculated complex temperatures. This deviation is
a non-linear function of the unknown positions of the two interior frontiers. It is a min-
imization with constraints on the frontiers order. It is at this stage where our results are
most important. It is here where the general complexity of inverse geometry problems
leads us to be pleased with a local minimizer for the criterion as given by a descent
algorithm, numerically showing the presence of several local minimizers for J. Moreover,
their values are nearer to the global minimum which is equal to zero in principle, but
not in practice. This is due to inevitable rounding errors and method errors. We then
exploit the introduction of complex temperatures to better determine the global character
or not for such a minimizer, the ultimate step of complete resolution. This determination
is made by introducing the functionals K, L and M, providing new optimization criteria.
These criteria are topological in nature because they are based on the identification of
singularity.

The paper is organized as follows. A standard thermal model of the direct problem
is established. It transfers the geometric unknowns b1, b2, b3 to the parametric unknowns
s1, s2 in the coefficients of the differential equations. Theoretical considerations of existence,
uniqueness and stability are discussed. A presentation of the resolution obtained by criterion
J is given. The issues of global optimization are detailed. A functional K and the two
discontinuity lines of its representative surface are studied. The point at which these lines
cross is a singularity point for K. An identification criterion L of this K singularity is
introduced and compared to J. This is followed by the presentation and evaluation of a
globality criterion M of an ‘all or nothing’type. Some remarks and perspectives are presented
in the conclusion.
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Inverse Problems in Science and Engineering 3

Figure 1. Composite rod.

2. Thermal model

The rod (or plate) of fixed length (or thickness) b consists of a stack of three materials
Figure 1. The position along the rod is given by a coordinate ξ ∈ [0, b]. The experimental
method used is that of complex temperatures.[1,2] This requires, for example, at the left
end ξ = 0 of the rod, two successive sinusoidal heat fluxes with equal magnitudes and
with the same temporal frequency ω, but phase-shifted by π

2 , that is to say v1 cos (ωt) and
v1 sin (ωt). The combination of these two fluxes in C gives the periodic and complex heat
flux

φ1 (t) = ν1 cos (ωt)+ jν1 sin (ωt) = ν1 exp ( jωt) ,

where j2 = −1. In the same way, a heat flux φ2 (t) = ν2 exp ( jωt)with the same frequency
ω is applied on the right end ξ = b of the rod. Thermal continuity without any thermal
contact resistance is assumed at interior border points. The linear thermal model gives a
temperature response θ (ξ, t) ∈ C solution of

Ci
∂θ

∂t
(ξ, t)− ∂

∂ξ

(
λi
∂θ

∂ξ
(ξ, t)

)
= 0, i = 1, 2, 3, ξ ∈ [0, b] , b = b1 + b2 + b3,

(1)
where Ci , λi > 0 are the volumic heat capacities and the conductivities, plus the following
relations:

boundary and transition conditions (BC/TC):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1θ (0, t)− λ1
∂θ

∂ξ
(0, t) = φ1 (t) , φ1 (t) = v1 exp ( jωt)

θ (b1−, t) = θ (b1+, t) , λ1
∂θ

∂ξ
(b1−, t) = λ2

∂θ

∂ξ
(b1+, t)

θ (b1 + b2−, t) = θ (b1 + b2+, t) , λ2
∂θ

∂ξ
(b1 + b2−, t) = λ3

∂θ

∂ξ
(b1 + b2+, t)

h2θ (b, t)+ λ3
∂θ

∂ξ
(b, t) = φ2 (t) , φ2 (t) = v2 exp ( jωt) .

(2)
where h1, h2 > 0 are given heat transfer coefficients.
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4 J.-C. Jolly et al.

Note that we have not given any initial conditions; we will return to this in the next sec-
tion. Instead of this, we make the following hypothesis: the expression exp (− jωt) θ (ξ, t)
is a function y of ξ only, that is to say

θ (ξ, t) = y (ξ) exp ( jωt) . (3)

We call (1), (2) and (3) the direct problem.
The assumption (3) allows the factor exp ( jωt) to be eliminated in the equations. Thus,

a formulation based on partial differential equations for θ in the space-time variables (ξ, t)
becomes a formulation based on ordinary differential equations for y only in the space
variable ξ . Thereby, in detail, we make the change of variables:

y (ξ) =

⎧⎪⎨
⎪⎩

y (b1ζ ) = x1 (ζ ) , if ξ ∈ [0, b1]

y (b1 + b2ζ ) = x2 (ζ ) , if ξ ∈ [b1, b1 + b2] , where ζ ∈ [0, 1] .

y (b1 + b2 + b3ζ ) = x3 (ζ ) , if ξ ∈ [b1 + b2, b] .

Denoting by ci = jωCi , i = 1, 2, 3, the elimination of factor exp ( jωt) in (1) and (2) gives
the ODE system

ci b
2
i xi (ζ )− λi x ′′

i (ζ ) = 0, i = 1, 2, 3, (4)

subject to

BC/T C :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1h1x1 (0)− λ1x ′
1 (0) = b1v1

x1 (1) = x2 (0) , b2λ1x ′
1 (1) = b1λ2x ′

2 (0)

x2 (1) = x3 (0) , b3λ2x ′
2 (1) = b2λ3x ′

3 (0)

b3h2x3 (1)+ λ3x ′
3 (1) = b3v2.

We choose to substitute the three positive variables b1, b2, b3 by the two variables s1, s2
defined by b1 = s1b, b1 + b2 = s2b. Thus, we have

b1 = bs1, b2 = b (s2 − s1) , b3 = b (1 − s2) . (5)

Contrary to b1, b2, b3 that are linked together by b1 + b2 + b3 = b, the variables s1, s2 are
affinely free, but must satisfy the following constraint given for s = (s1, s2):

s ∈ S = {(s1, s2) ; 0 < s1 < s2 < 1} . (6)

The boundary and transmission conditions become

BC/T C :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bs1h1x1 (0)− λ1x ′
1 (0) = bs1v1

x1 (1) = x2 (0) , b (s2 − s1) λ1x ′
1 (1) = bs1λ2x ′

2 (0)

x2 (1) = x3 (0) , b (1 − s2) λ2x ′
2 (1) = b (s2 − s1) λ3x ′

3 (0)

b (1 − s2) h2x3 (1)+ λ3x ′
3 (1) = b (1 − s2) v2.

(7)

3. Existence, unicity, and stability

We review in this section some theoretical issues concerning the direct problem and the
inverse problem.
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Inverse Problems in Science and Engineering 5

3.1. Direct problem

In connection with the method of complex temperatures, it is useful at this stage to define
the solution concept for the direct problem considered. The linear one-dimensional heat
equation is perhaps the simplest parabolic partial differential equation. A difficulty arises
here with the coefficients (volumic capacity C , conductivity λ) that are discontinuous along
the rod. Note that the system (1), (2) is given without any initial conditions. Let

θ (ξ, 0) = θ0 (ξ) ∈ L2 (0, b) (8)

be such a condition. In our case of piecewise constant coefficients, the existence, the
uniqueness and the regularity of solutions are given in [16]. But quite curiously, these results,
as with more general results on coefficients in L∞ (0, b),[17,18] are widely presented for
a uniform volumic heat capacity, i.e. C1 = C2 = C3 constant on [0, b]. A simple division
by Ci in (1) seems to bring us back to this case. This formulation is not correct. When we
investigate why, we obtain an inequality which serves to justify the method of complex
temperatures.

Let us begin with some notations and definitions. We denote by C, λ, the piecewise
constant functions on [0, b] that take, respectively, the values C1, λ1 over [0, b1) ,C2, λ2
over (b1, b1 + b2) and C3, λ3 over (b1 + b2, b].

We define the non-bounded linear operator M by Mu (ξ) = − d
dξ

(
λ (ξ) dθ

dξ (ξ)
)

with
the domain of definition

D (M) =
{

u ∈ H1 (0, b) ; d

dξ

(
λ (ξ)

du

dξ

)
∈ L2 (0, b) ,

h1u (0)− λ1
du

dξ
(0) = 0, h2u (b)+ λ3

du

dξ
(b) = 0

}
.

(9)

Note that for an element u in space D (M), this u (·) and λ (·) du
dξ (·) can be considered

continuous [19] and thus some transmission conditions are satisfied, which are precisely:⎧⎨
⎩

u (b1−) = u (b1+) , u ((b1 + b2)−) = u ((b1 + b2)+)
λ1

du

dξ
(b1−) = λ2

du

dξ
(b1−) , λ2

du

dξ
((b1 + b2)−) = λ3

du

dξ
((b1 + b2)+) .

We define a second non-bounded linear operator N by Nu (ξ) = 1
C(ξ)Mu (ξ) =

− 1
C(ξ)

d
dξ

(
λ (ξ) du

dξ

)
with the same domain D (M) = D (N ). Equation (1) is an evolution

equation that takes the form

∂θ

∂t
= −Nθ. (10)

Let (·, ·) and |·| be the usual Hermitian scalar product and associated norm in L2 (0, b).
Because C (ξ) ≥ min {C1,C2,C3} > 0, we have for L2 (0, b) the following Hermitian
scalar product and associated norm:

〈u, v〉 =
∫ b

0
C (ξ) u (ξ) v (ξ)dξ =

(√
Cu,

√
Cv

)
, ‖u‖ = √〈u, v〉.

We denote E = (
L2 (0, b) , ‖·‖).
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6 J.-C. Jolly et al.

We have for u, v ∈ D(M):

(Mu, v) =
∫ b

0
− d

dξ

(
λ (ξ)

du

dξ

)
v (ξ)dξ

=
∫ b

0
λ (ξ)

du

dξ

dv

dξ
dξ + h1u (0) v (0)+ h2u (b) v (b).

Since λ is bounded over [0, b] with positive bounds, this defines a Hermitian
sesquilinear form e over H1 (0, b) such that (Mu, v) = e (u, v) and which is positive.
If C is constant, we can choose to define e with the same properties, but with N instead of
M by (Nu, v) = 1

C (Mu, v) = e (u, v). In this case, the operator N is monotone selfadjoint
and it is not difficult to verify that it is maximal too. The Hille-Yosida theorem for Hilbert
spaces applied to the evolution Equation (10) then gives a solution θ that satisfies

|θ (·, t)| ≤ exp (−μ0t) |θ0| ,
where μ0 is the smallest eigenvalue of N , necessarily non-negative.[20] It is non-zero
because the homogeneous boundary conditions in (9) are not of Neumann type for non-zero
h1, h2.

It is not clear that this last inequality, which is needed to justify the method of complex
temperatures, is still true in the case of a non-constant C . We are going to show:

Lemma 3.1 The evolution problem (10) defined for an initial condition θ (ξ, 0) = θ0 (ξ) ∈
D (N ) has a unique solution θ with regularity

θ ∈ C1 ([0,∞) ; E) ∩ C([0,∞); D(N )).

The operator −N is the infinitesimal generator of a C0-semigroup of contractions
(T (t))t≥0 defined on E. There exists a constant μ0 > 0 such that

‖T (t)‖L(E) ≤ exp (−μ0t) .

Note that the inequality in Lemma 3.1 is false in general for the norm |·|L(L2(0,b)) instead
of the norm ‖·‖L(E).

Proof We want to apply the Hille-Yosida theorem for Banach spaces. Let us show that N
is a m-accretive operator. The domain D (N ) = D (M) is dense in E . Let μ > 0. We must
verify that I +μN is bijective from D(N ) onto E and that

∥∥(I + μN )−1
∥∥ ≤ 1. Let f ∈ E .

We look for u ∈ D (N ) such that u + μ
C Mu = f . Because of the homogeneous boundary

and transmission conditions satisfied for u ∈ D (N ), an integration by parts leads to

〈u, v〉 + μe (u, v) = 〈 f, v〉 , ∀v ∈ H1 (0, b) (11)

with

e (u, v) =
∫ b

0
λ (ξ)

du

dξ

dv

dξ
dξ + h1u (0) v (0)+ h2u (b) v (b).
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Inverse Problems in Science and Engineering 7

The sesquilinear form 〈·, ·〉+μe (·, ·) is a Hermitian scalar product in H 1 (0, b). As 〈 f, ·〉 ∈
H1 (0, b)′, the Riesz-Fréchet theorem gives a unique u ∈ H 1 (0, b) that verifies (11). We
have

μ

∫ b

0
λ

du

dξ

dv

dξ
dξ = 〈 f − u, v〉 , ∀v ∈ C1

c (0, b)

where C1
c (0, b) is the space of continuously differentiable functions over (0, b) with

compact supports. That shows λ du
dξ ∈ H1 (0, b). A reversed integration by parts in (11)

then shows that u satisfies the homogeneous boundary conditions

h1u (0)− λ1
du

dξ
(0) = 0, h2u (b)+ λ3

du

dξ
(b) = 0

and thus u ∈ D (N ). So, I + μN is bijective from D (N ) onto E . As e is a positive
sesquilinear form, the relation ‖u‖2 + μe (u, u) = 〈 f, u〉 implies ‖u‖2 ≤ ‖ f ‖ ‖u‖and
thus

∥∥(I + μN )−1
∥∥ ≤ 1. Operator N is m-accretive. The Hille-Yosida theorem for Banach

spaces gives the conclusion [19,21]. The constant μ0 is the lower bound of all real parts of
eigenvalues of N [20]. We will see in the next proposition that μ0 > 0. �

To apply this lemma to the complex temperature method, we also have to consider the evo-
lution problem with non-homogeneous boundary conditions. We summarize some known
results in the following proposition, see [18,22] and [23,p.158] (that needs to be adapted
for a non-constant C!).

Let us recall that the causal fundamental solution G
(
ξ, t; ξ ′, t ′

)
associated to problem

(1), (2) and (8) is the solution of the problem obtained from the original one by adding a
term source δ

(
ξ − ξ ′) δ (

t − t ′
)

and changing the boundary conditions to get homogeneous
ones. Moreover, it is required that G is zero for t < t ′.

Proposition 3.2 The problem (1), (2) and (8) has an unique solution θ (ξ, t) defined by
the inverse Fourier transform. The Sturm-Liouville problem which is associated to it has
the form

− d

dξ

(
λ (ξ)

du

dξ
(ξ, t)

)
= μC (ξ) u (ξ) .

Eigenvalues μ are positive with the smallest μ0 > 0. The solution θ (ξ, t) of the original
problem admits the decomposition

θ = θ0 + θ1 + θ2

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ0 (ξ, t) =
∫ b

0
C

(
ξ ′) G

(
ξ, t; ξ ′, 0

)
θ0

(
ξ ′) dξ ′

θ1 (ξ, t) =
∫ t

0
G

(
ξ, t; 0, t ′

)
φ1

(
t ′
)

dt ′

θ2 (ξ, t) =
∫ t

0
G

(
ξ, t; b, t ′

)
φ2

(
t ′
)

dt ′.

where G is the causal fundamental solution.
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8 J.-C. Jolly et al.

The method of complex temperatures is based on the following result:

Theorem 3.3 Let θ∞ (ξ, t) = exp ( jωt) y (ξ) be the solution of (1), (2) with hypothesis
(3). It is defined as the unique solution for the initial condition θ∞ (ξ, 0) = y (ξ). Let
θ (ξ, t) be the solution of (1), (2) for the initial condition (8). Then, θ∞ (ξ, t) represents the
periodic steady part of θ (ξ, t) in the following sense: in L2 (E) we have

lim
t→∞ θ (·, t) = lim

t→∞ θ
∞ (·, t) . (12)

Moreover, the following decomposition holds:

θ = θ∞ + θ0, θ0 (ξ, t) =
∫ b

0
C (ξ)G

(
ξ, t; ξ ′, 0

) (
θ0

(
ξ ′) − y

(
ξ ′)) dξ ′, θ0 (·, t) ∈ V,

(13)
where θ0 is the solution of problem (1), with (2) transformed to be homogeneous (i.e.
v1 = 0, v2 = 0) and with θ0 − y as the initial condition.

Proof Because of the linearity, we have ψ (ξ, t) = θ (·, t)− θ∞ (·, t) ∈ V and ψ (·, 0) =
θ0

(
ξ ′) − y (ξ). We observe that ψ is a solution of the evolution problem (10). Lemma 3.1

gives ψ = G (t) (θ0 − y) ∈ L2 (E) that satisfies ‖ψ (·, t)‖ ≤ exp (−μ0t) (θ0 − y). This
yields limt→∞ ψ (·, t) = 0 in L2 (E) and in L2 (0, b) too; we get (12). Proposition 3.2
applied to the solution ψ of the problem (1), with (2) as requested, i.e. v1 = 0, v2 = 0, and
with the initial condition θ0 − y, gives the expression (13) for ψ = θ0. �

3.2. Inverse problem

The inverse problem we are interested in is the determination of s = (s1, s2) =
(

b1
b , 1 − b3

b

)
knowing the complex temperatures X1 = x1 (0) and X2 = x3 (1). This determination is
subject to the constraint (6). Let us denote X = (x1 (0) , x3 (1)) and X = A (s), where A is
an operator from S into C2. The direct problem being well posed, operator A is well defined.
We have to study the non-linear inverse operator A−1.

If the system (4), (7) and the hypothesis (3) correctly model the phenomenon of heat
conduction for the composite rod in a periodic steady state, then this implies the existence
of a solution to the inverse problem. Note that in practice the complex measurements

x1 (0) , x3 (1) are obtained by measuring 1
2 jω

∫ π
ω

0 θ∞ (0, t) dt, 1
2 jω

∫ π
ω

0 θ∞ (b, t) dt or, other
averaging summations over a much longer time. This measurement redundancy can mitigate
the effect of any disturbance with zero mean.

The unicity can be locally studied from the explicit solution of the direct problem
which is possibly deduced from [24], chapter XII, part II, par. 3. According to this author,
under the condition of non-nullity of a particular determinant, it is possible to transform
the scalar two-point boundary problem (4) and (7) into a matrix Cauchy problem. The
verification of the validity conditions of the implicit function theorem for the used simulation
values then gives the uniqueness of the solution of the inverse problem. The operator A
decomposes into A = P B, where B is the operator from S into C∞ ([0, b] ,C)3 that, for
s associates (x1, x2, x3) which is the solution of (4) and (7), and where P is the projection
of C∞ ([0, b] ,C)3 into C2 that for (x1, x2, x3) associates (X1, X2). The solution xi (ξ ; s)
of (4) and (7) depends on the parameter s with regularity C∞ with respect to s, [24]. The
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Inverse Problems in Science and Engineering 9

operator B is, therefore, C∞ on S. Its range is a real submanifold U of C∞ ([0, b] ,C)3 having
dimension two and class C∞. It follows that A is defined from S onto a real submanifold T
of C2 having dimension two and class C∞. It is observed that

X1 = x1 (0) , X2 = x3 (1) (14)

represents four real equations for two real unknowns s1 and s2. The approach then consists
of extracting two real equations of (14) for the application of the inverse function theorem
in the neighbourhood of fixed s1, s2, as, for example, real part projections, and to consider
the two remaining equations as compatibility conditions, imaginary part projections in this
case. This must be done under the additional constraint (6). The same inverse function
theorem gives regularity C∞ for A−1 that is thus locally defined from a neighbourhood of
(X1, X2) ∈ T into a neighbourhood of (s1, s2) ∈ S.

The previous approach gives rise to a local unicity result. It is strongly constrained by
S and T . It can be applied to a candidate solution (s1, s2) obtained by a numerical method.
Because it is difficult to determine the corresponding neighbourhoods, its interest is more
theoretical than practical. The existence and uniqueness being acquired in practice, our
goal is rather to find a judicious exploitation of the system redundancy (14) to improve the
determination of s.

The expression (X1, X2) that could be deduced from [24] would indicate that the edge ∂S
is a place of singularity. Numerical instabilities for both the direct and the inverse problems
are, therefore, expected at the edge ∂S. A second source of instability comes from the
constraint (x1, x2, x3) ∈ U . Indeed, the experimental disturbances and the approximations
with which the periodic steady state is observed lead to temperature measurements θ (ξ, t)
that are not made in exp ( jω [0,∞))U but, let us say, in C

(
[0,∞) , L2 (0, 1; C)3

)
. But

B, seen as a compact operator from S into L2 (0, 1; C)3, has no bounded inverse. That
makes the inverse problem unstable. We can note, however, that for simulations performed
in this study, the main noise source comes from the numerical approximations. These can
be adjusted at the price of more computation time.

The authors of [4] give a quite general stability result for a composite material in Rn

obtained (for a constant C!) with the help of Carleman-type estimates. It can be applied
to our inverse-geometry problem, but with flux measurements at the boundary instead of
temperature measurements. This is not essential for us since all techniques developed here
apply. Let T > 0 be a terminal time and let a = λ

C be the diffusivity, which is a piecewise
constant for us and that includes unknown interior border points. Their result concerns
the operator that maps the diffusivity a and the initial conditions θ0 to the gradient at the
boundary ∂θ

∂n

∣∣
0,b and the Laplacien in the rod ∂2θ(·,T )

∂ξ∂ξ

∣∣∣
[0,b]

. They show that the operator

is injective and that there is linear stability for the diffusivity and logarithmic stability for
the initial conditions. The used second-order derivative on the whole rod to control the
diffusivity variation is limiting for us. As we are only interested in the steady periodic state,
is this necessary? We will not expand on this issue.

Let us also mention that the conjugate gradient algorithm is known for its regularizing
properties [23]; this will be used in Section 4.3.

We illustrate the stability behaviour of the inverse problem in our simulations by
adopting a measurement error X equal to (0.01K), which is realistic for a temperature
measurement in the laboratory. In Figures 2–8, the associated solution is s∗∗, whereas the
exact solution is s∗.
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10 J.-C. Jolly et al.

Figure 2. Log of the modulus criterion J.

4. Direct problem

4.1. Resolution

System (4) and (7) is a two-point boundary value problem together with some transmission
conditions. It cannot be solved by current versions of Maple© or Matlab©. Following [24],
chapter XII, part II, par. 3, it can be shown that there exists a unique solution with an explicit
formula. For lack of place, we do not give it here.

Prior to this study, a numerical scheme based on a Haar wavelet devoted to (4) and
(7) has been developed and tested.[25] A third method of finite element type consists of
solving directly the PDE (1), (2) and (8) rather than the ODE system (4) and (7). For this,
it is necessary to work with a solver that accepts the transition conditions, as is the case of
Comsol©.

We have tested the three methods; they give consistent results. We chose to use the
Haar wavelet scheme; it seems to lead to more stable computations (with only additions
and multiplications) than with the explicit formula (combination of exponentials with low
and high arguments). For the FEM, some limitations appear for transition conditions that
will not be discussed here.

4.2. Data

For the inverse problem considered here, measurements X∗ = (
X∗

1, X∗
2

)
correspond to the

desired geometric solution

s∗ = (0.2, 0.7)
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Inverse Problems in Science and Engineering 11

Figure 3. Four minimizer candidates obtained for 1326 uniformly distributed initialization points.
Computation time: 11253s.

Figure 4. Argument criterion K with its singularity K0(θ) (grid with transparency).
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12 J.-C. Jolly et al.

Figure 5. Argumnet criteria K: tangent lines to the singularity.

Figure 6. Image criterion L with a global minimum.

disturbed by a truncationX to a hundredth of a degree. Thus, we do not have X∗ = A(s∗),
but rather X∗ = A (s∗∗). In this way, a measurement error X is included in X∗ =
A (s∗) + X which is of the order 0.01 K. Of course, if the algorithms converge, then
they will converge to s∗∗ instead of s∗. The simulations are performed for the following
numerical values:
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Inverse Problems in Science and Engineering 13

Figure 7. Min-grad citerion M (by transparency).

Figure 8. The solution given by max M and min J.

• Materials data:{
λ1 = λ3 = 1.4 W/m/K, C1 = C3 = 1.5 × 106 J/m3/K,

λ2 = 21.9 W/m/K, C2 = 2.3 × 106 J/m3/K, b = 5 × 10−3 m,

which is a titanium plate clamped between two glass plates.
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14 J.-C. Jolly et al.

• Experimental data:

h1 = h2 = 20 W/m2/K, v0 = 104 W/m2, ω = 30 s−1,

and (v1, v2) = (v0, v0) which corresponds to the same heat fluxes and to the same
exchange coefficients with ambient air at the boundaries.

4.3. First-order derivatives

The determination of partial derivatives ∂x1(0)
∂sk

,
∂x3(1)
∂sk

, k = 1, 2, is necessary for the gradient
computation of some criteria, see Section 5. It is also needed for the computation of some
tangent lines, see Section 8.

The easiest way to proceed is to solve the sensitivity problem. However, it is possible to
get the first-order derivatives by defining an adjoint problem [25]. It has several advantages,
but the formulae are more complicated.

Consider b1, b2, b3 as free variables. Write (4 ) and (7) for b j + δb j instead of b j ; its
solution is (xi + dxi ) (ζi ). Subtract (4) and (7) and discard second-order terms and higher
order ones. This yields

b2
i ci dxi (ζi )− λi dx ′′

i (ζi ) = −2biδbi ci xi (ζi ) , i = 1, 2, 3 (15)

BC/T C :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bs1h1dx1 (0)− λ1dx ′
1 (0) = (v1 − h1x1 (0)) δb1,

dx1 (1) = dx2 (0) ,

λ1x ′
1 (1) δb2 + b (s2 − s1) λ1dx ′

1 (1) = λ2x ′
2 (0) δb1 + bs1λ2dx ′

2 (0) ,

dx2 (1) = dx3 (0) ,

λ2x ′
2 (1) δb3 + b (1 − s2) λ2dx ′

2 (1) = λ3x ′
3 (0) δb2 + b (s2 − s1) λ3dx ′

3 (0) ,

α3,2dx3 (1)+ λ3dx ′
3 (1) = (v2 − h2x3 (1)) δb3.

(16)

Note that all this is justified since the solution xi (ζ ; s) of (4) and (7) is continuously
differentiable with respect to s.[24]

Remembering (5), we find that the variation δs = (δs1, δs2) is related to δbi by

δb1 = bδs1, δb2 = b (δs2 − δs1) , δb3 = −bδs2.

We also have

dx1 (0) = ∂x1 (0)

∂s1
δs1 + ∂x1 (0)

∂s2
δs2, dx3 (1) = ∂x3 (1)

∂s1
δs1 + ∂x3 (1)

∂s2
δs2.

Proposition 4.1 Let xi (ζi ) be the solution of the direct system (4) and (7). Consider the
resolution of the sensitivity system (15) and (16). The choice δs = (1, 0) gives a solution
that is ∂xi (ζ )

∂s1
and the choice δs = (0, 1) gives a solution that is ∂xi (ζ )

∂s2
. The first-order

derivatives ∂x1(0)
∂sk

,
∂x3(1)
∂sk

, k = 1, 2 follow from evaluations at ζ = 0, 1.
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Inverse Problems in Science and Engineering 15

5. Least-squares criterion in modulus J

We want to solve X = A (s) , s ∈ S. We distinguish between the searched solution
and the associated boundary temperatures, that is to say, the measured temperatures, by
the notations s∗ and X∗. Recall that we have to take into account an error measure-
ment that makes s∗ approximated by s∗∗ such that X∗ = A (s∗∗). A first idea consists
of solving

∣∣X1 − X∗
1

∣∣ = 0,
∣∣X2 − X∗

2

∣∣ = 0 with a Newton method. Other choices are
possible as, for example, X1 − X∗

1 = 0 taking X2 − X∗
2 = 0 as a constraint. In all

cases, this algorithm is badly adapted to take into account the different constraints, at
least s ∈ S. For this reason, we prefer an optimization method under constraints using
standard software. We chose the function fmincon of the Matlab©R2012a optimization
toolbox with the interior point algorithm option. It is better suited when the true gradient
of the criterion can be provided, this being the case for us. As the conjugate gradient
algorithm is used in some steps of fmincon, we can expect regularising behaviour of this
algorithm.

A natural criterion is one of the least squares in modulus:

J (s) = 1

2

(∣∣X1 − X∗
1

∣∣2 + ∣∣X2 − X∗
2

∣∣2
)
. (17)

We call it the modulus criterion. Let us give its gradient. We rewrite (17) as J (s) =
1
2 |X − X∗|2 with X = A (s) in C. For any δs ∈ R2, we have

J ′
s · δs = 1

2

((
A′

s · δs, A (s)− X∗) + (
A (s)− X∗, A′

s · δs))
= 1

2

((
A (s)− X∗, A′

s · δs) + (
A (s)− X∗, A′

s · δs))
= Re

((
A (s)− X∗, A′

s · δs))
= Re

(((
A′

s

)∗ · (
A (s)− X∗) , δs)) = (

Re
((

A′
s

)∗ · (
A (s)− X∗)) , δs)

and so J ′
s = Re

((
A′

s

)∗ · (A (s)− X∗)
)
. Here,

(
A′

s

)∗ is the adjoint operator of

A′
s =

⎛
⎜⎜⎝
∂x1 (0)

∂s1

∂x3 (1)

∂s1

∂x1 (0)

∂s2

∂x3 (1)

∂s2

⎞
⎟⎟⎠

that has been computed in Section 4.3.
Figure 2 gives the graphical representation of criterion J on S on a logarithmic scale.

It suggests the existence and the unicity of a global minimizer, s∗∗ = (0.2260, 0.7022) in
this case.

Recall that (s1, s2) is a way to model some kind of piecewise definitions for C andλ along
the rod. By looking at Figure 2, we can roughly make the assumption that the piecewise
constant parameters C and λ, at sufficient distance from ∂S, appear to have logarithmic
stability with respect to the boundary temperatures. This is to be compared with [4], already
cited.

More interesting is the presence of several local minimizers for J that are quite close
to each other, as suggested by Figure 2. We get a numerical confirmation with the used
descent algorithm fmincon by varying the initialization point s0 ∈ S and visualizing all exit
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16 J.-C. Jolly et al.

points. For 1326 points s0 uniformly distributed in S, we get four local minimizers for J
shown in Figure 3. They are marked by four square points, with one of them s∗∗ that is
close to the exact solution s∗ represented by a cross. We are thus dealing with a problem of
global optimization for a non-convex criterion. In Figures 7 and 8, we marked three surfaces
B1, B2, B3 which are oblong, fairly regular and focused on the three local minimizers of
J other than s∗∗. These areas represent the basins of attraction of the minimizers for the
descent algorithm initialized by s0. More specifically, they were obtained as contour lines
of the minimum of J, as a function of s0, according to a colour scale. This explains the
smooth appearance of the border lines. Their complementary in S is the basin of attraction
associated to the fourth minimizer of J, i.e. s∗∗. If we return to the inverse problem posed,
the basins B1, B2, B3 materialize the risk of error associated to the resolution by f mincon
according to the chosen initialization point s0. We can notice that in this example, the area
B1 ∪ B2 ∪ B3 is small compared to that of its complement in S, about 4%. This means that
the aforementioned risk is reduced. Nevertheless, the basins B1, B2, B3 are quite close to
the estimated solution s∗∗ = (0.2260, 0.7022), which can be interpreted as an increased
risk factor.

Either visually in Figure 3, or with f mincon in Figure 4, we obtain all the local
minimizers and, therefore, the solution s∗∗. This resolution is affected by uncertainties
in temperature measurements. It also assumes that we have been able to vary sufficiently
s0 in S, for example, by using a grid of a sufficiently small step size , in order not to
miss a minimizer. The situation looks favourable for this simulation. Indeed, the basin of
the global minimizer is the largest one. If this fact could be established more generally,
this would suggest the following rule: that a minimizer as a solution candidate is even
more probably the true solution when the descent algorithm gives the same minimizer for
different initialization points s0 that are far away from each other.

But if the stepsize is as small as the precision expected for s∗, then a descent algorithm
makes no sense: a simple sorting algorithm gives the global minimizer. That is the case
here. Nevertheless, we have in mind to solve inverse problems that lead to a more general n
parameter criterion. For example, such a criterion could be the one for the determination of
n = 4 unknown interior border points. The four temperature measurements needed would
again be obtained at the two boundaries, but doubled for two different frequencies ω1 and
ω2. The sorting algorithm in dimension n is rapidly inefficient since its complexity order is
exponential with n.

Let us now suppose, as in our application, that a random choice of the initialization point
s0 for the descent algorithm rapidly gives a minimizer s∗1 that has a good chance to be the
desired solution. Could we find a criterion that can check if a local minimizer has the property
of globality or not? We could believe that the verification of J = 0 is sufficient to decide if a
given minimizer is the global one or not. But, this is not the case because of the unavoidable
numerical and measurement approximations that prevent us to decide when the value of J is
close to zero or not, see Figure 2. Thus in our application, the three minimizers associated to
the basins B1, B2, B3 give the respective values for J: 1.30×10−5, 1.07×10−4, 1.02×10−4

against 7.60 × 10−6 for s∗∗. The choice s0 = (0.12, 0.67) with f mincon gives the local
minimizer s∗1 = (0.1286, 0.7021) in B1, see also Figure 3. A misinterpreted assessment of
J

(
s∗1

) = 1.30 × 10−5 could lead to retain s∗1 instead of s∗∗.
Keeping in mind an n-dimensional inverse problem, n > 2, we explore below for n = 2

some new criteria to test if a local minimizer is global or not.

D
ow

nl
oa

de
d 

by
 [

Je
an

-C
la

ud
e 

Jo
lly

] 
at

 0
8:

39
 2

6 
Se

pt
em

be
r 

20
13

 



Inverse Problems in Science and Engineering 17

6. Least-squares criterion in argument K

Criterion J assesses the modulus of a difference. For complex temperatures, it is quite natural
to seek additional information by looking at the argument of a difference. We define the
criterion

K (s) = 1

2

(
arg2 (

X1 − X∗
1

) + arg2 (
X2 − X∗

2

))
. (18)

We call it the argument criterion. The nullity of K provides the equality of the arguments
of X1, X∗

1 on one hand and X2, X∗
2 on the other hand. It does not provide the equality of

moduli. The relation (18) thus defines a partial optimization criterion. However, we can
see that the relation K allows a good determination of the solution s∗. Indeed, its graphic
representation in R3 reveals two lines of strong discontinuity that are substantially straight,
and whose intersection is s∗, or more exactly s∗∗, see Figure 4. How can this be explained?

Let us set
s1 = s∗

1 + r cos (θ) , s2 = s∗
2 + r sin (θ) , r ≥ 0

which is a polar representation of s centred at s∗ (the choice of s∗∗ would be more accurate).
A limited expansion with respect to r and for fixed θ gives

X1 − X∗
1 = r (R1 (θ)+ Or (1)) , X2 − X∗

2 = r (R2 (θ)+ Or (1)) ,

where

R1 (θ) = ∂1 X∗
1 cos (θ)+ ∂2 X∗

1 sin (θ) , R2 (θ) = ∂1 X∗
2 cos (θ)+ ∂2 X∗

2 sin (θ) ,

∂l X∗
k = ∂l Xk (s∗) , k, l = 1, 2.

We have

arg
(
X1 − X∗

1

) = arg (R1 (θ)+ O (1)) , arg
(
X2 − X∗

2

) = arg (R2 (θ)+ O (1)) .

The limit of (18) with respect to r for fixed θ is

K0 (θ) � lim
s→s∗,θ fixed

K (s) = 1

2

(
arg2 (R1 (θ))+ arg2 (R2 (θ))

)
.

Criterion K (s) has a singularity at s∗ (multivaluation K0 (θ)). See Figure 4 where the
graphical representation of the function (r, θ) �→ K0 (θ) has been superimposed over that of
K (s). The graphical representation of K is given for a fixed determination of the multivalued
function arg, for example, with values in (−π, π ]. Therefore, there is a discontinuity when

I m (Rk (θ)) = 0 and Re (Rk (θ)) < 0, k = 1 or k = 2.

A remarkable observation made in Figure 4 and also in Figure 5, its projected view on S, is
the quality of the approximation of K (s) by K0 (θ), i.e. at order 0 with respect to r:

K (s) = K0 (θ)+ Or (1) .

In Section 7, we will assume the validity of this approximation in order to propose an
image criterion where the singularity acts like a weighted factor.

Let us denote T1, T2 the tangent lines to the discontinuity lines of K (s) in the s-plane.
Their equations are

ak,1 sin
(
αk,1

) (
s1 − s∗

1

) + ak,2 sin
(
αk,2

) (
s2 − s∗

2

) = 0, k = 1 forT1, k = 2 for T2,

(19)
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18 J.-C. Jolly et al.

where ak,l , αk,2 are defined by ∂l X∗
k = ak,l exp( jαk,l), k, l = 1, 2. The angle θ∗ between

T1 and T2 is given by

tan
(
θ∗) = −ak,1 sin

(
αk,1

)
ak,2 sin

(
αk,2

) .
Figure 5 shows the graphical representation of T1, T2 together with the contour lines of
K (s) in the s-plane. In Section 8, we will assume the validity of the approximation of the
discontinuity contour lines of K (s) by T1, T2 in order to propose a min-gradient criterion
where the tangent lines T1, T2 act as strong gradient sensors.

7. Topological criterion in image L

To simplify the notations as we started to do in the last paragraph, let us now forget, as well
as for the following sequel, the distinction between s∗ and s∗∗.

We try to identify the location of the singularity observed for K (Figure 4). We note that
K given by (18) depends on s∗. Now let us note K∗ (s) instead of K (s) for s∗ corresponding
to the measurements. Let us denote more generally Ks (σ ) instead of K (σ ) if s is a
variable parameter corresponding to some variable temperature measurements X̂ (s)which
are functions of s. Quite naturally, we define a criterion for a difference in L1 (S), namely:

L (s) =
∫

S0

|Ks (σ )− K∗ (σ )| dσ = ‖Ks − K∗‖L1(S0)

for a fixed S0 ⊂ S such that points too near to ∂S are excluded. Indeed, some singularities
appear in ∂S. We call it the image criterion. Numerically, a discretization of S0 is needed
to evaluate the integral. We choose a grid Sn ⊂ S0 of n points uniformly distributed with
respect to a step size  for either s1 or s2. Thus, criterion L is approximated by

Ln (s) = 2
∑
σi ∈Sn

|Ks (σi )− K∗ (σi )| . (20)

Let n = 1
2 n0 (n0 + 1) = 1326, where n0 = 51 is the number of discretization points

on one side of S. The graphic representation of the corresponding criterion Ln is given in
Figure 6. A remarkable analogy with the modulus criterion J is the presence of the same
three local minimizers and of the same global minimizer s∗. This can be seen by examining
the corresponding values.

We are interested in the determination of s∗ by L. The calculation of Ln (s) is approxi-
mated by that of Ln (sk), where sk is the point of Sn closest to s. The computation time and
the accuracy for a minimization algorithm are related to n. The accuracy of s∗ under these
conditions is of order 1

n0−1 = 0.02. The calculation of

Ks (σ ) = 1

2

(
arg2

(
X1 (σ )− X̂1 (s)

)
+ arg2

(
X2 (σ )− X̂2 (s)

))
that is for (s, σ ) ∈ S2

n is reduced to n resolutions of (4) and (7) giving Xl (σ ) , σ ∈ Sn,

l = 1, 2. We can deduce immediately the n values of Ln (Sn). A sorting algorithm of
complexity O

(
n2

)
or O (nlog(n)) (function min of Matlab) then gives the global minimizer

of L. The last two steps are of negligible cost in time compared to the calculation of
Xl (Sn) , l = 1, 2. Note that the use of such a sorting algorithm to determine s∗ applies
for J, as well as for L with the same number (n = 1326) of calls to the criterion. This
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is to be compared with the 60000 calls to J by fmincon to obtain Figure 6. As already
mentioned, the cost of this global minimization sorting algorithm varies exponentially with
the dimension of the parameter space S, that is equal to two here. This preserves the interest
of using a descent algorithm and of the study of an alternative method oriented towards
global minimization. Three conclusions can be drawn:

• The remarkable similarity in terms of local extrema of L and J confirms the
characterization of s∗ as a topological singularity of K∗.

• The sorting algorithm, with either J or L, is the most effective for a global minim-
imum search when working in a parameter space S with a low-dimension (two in
this case).

• For higher a dimension of space S, the descent algorithm is the right tool. Moreover,
the definition by summation on S of L disqualifies the use of L in this way.

8. Topological criterion in min-gradient M

For our application, the function fmincon initialized by a random choice of s0 gives a
minimizer s∗× of J with 45 calls on average to the criterion. In addition, we observed that
there is a good chance that this minimizer is a global one, i.e. s∗× = s∗, which solves the
inverse problem under consideration. Can we confirm or deny the identity s∗× = s∗ with
fewer calls to the criterion (to be detailed) than the 1236 calls of either J or L given by the
sorting algorithm of the previous section to obtain s∗? We make a proposal in this direction
by introducing a new topological criterion M .

Let us consider Ts = T1,s ∪T2,s , where T1,s, T2,s are the tangent lines to the discontinuity
contour lines of Ks (σ ) as defined in (19) (to be read in place of Ks∗ (s)). Let K n∗ (σ ) be
a sufficiently regular approximation of K∗ (σ ) , obtained by using a grid discretization Sn

of S (see (20)) and a smoothing. Note that K∗ (σ ) is issued from the measurements X̂ and
from the thermal model (4) and (7) for σ in place of s. We define the topological criterion
M as follows:

Mn (s) = min
σ∈Ts

∥∥�K n∗ (σ )
∥∥

2

where ‖·‖2 is a norm of C2. We call it the min-grad criterion. This is the minimal norm of
the gradient �K n∗ (σ ) of a point σ in Ts ⊂ S.

Its consideration is based on the following arguments:

• If s = s∗, then K∗ (σ ) varies greatly (discontinuity) at the point of singularity s∗,
but also all along Ts∗ , due to the supposed quality of the approximation of K∗ (σ )
by s = (r, θ) �→ K0 (θ). This implies high values for Mn (s). Conversely, and
taking into account Figure 4, if s �= s∗ then we assume that Ks (σ ) varies slightly
along Ts , except when Ts cuts across Ts∗ . The selection of the minimum over Ts of∥∥�K n∗ (σ )

∥∥
2 then implies a low magnitude of Mn (s).

• The above assumptions need to be checked only approximately and locally; the
approximation should be sufficient to discriminate a local minimizer s∗× �= s∗
(low value of Mn(s∗×)) from the global minimizer s∗ (high value of Mn (s∗)).

• The assumption of discontinuity of K∗ (σ ) all along Ts∗ implies that
limn→∞Mn(s∗) = +∞. This answers the question of defining what is a high
value of Mn (s∗∗): in practice, a graph of Dirac type is expected for Mn (s).
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• The minimum considered in the calculation of Mn (s) is taken over T which is one-
dimensional, corresponding to a number 2n0 of calls to �K n∗ (σ ) (number of dis-
cretization points of the tangents), actually less than the number n = 1

2 n0 (n0 + 1)
of calls to J or L for a sorting algorithm. It is assumed that a rough calculation of
�K n∗ (σ ) requires three calls to K n∗ (σ ).

The use of criterion Mn to test the globality of a minimizer obtained by a descent
algorithm is illustrated in Figures 7 and 8. Figure 7 gives the graph of Mn in perspective
and transparency. Figure 8 shows the contour lines of Mn in S superimposed on the
basins B1, B2, B3. We verify with this application that, from the four minimizers of J,
only s∗ gives a high value for Mn , namely 1.21 for s∗ against values of order 10−4 for a
generic point of S in our simulation. However, some numerical side effects can affect the
good localization of the maximum of M that characterizes s∗, see Figures 7 and 8.

9. Conclusion

We have presented an inverse problem and we have justified the method of complex
temperatures for determining the two unknown frontiers of a composite rod made of three
materials which undergoes heat conduction. This involves two periodic heating fluxes φ1
and φ2 imposed at both ends together with two temperature measurements at the same ends.
The method used is valid without further complication if we have a distributed heating
source φ along the rod. In fact, with or without a distributed source, all combinations of
either one or both end fluxes, together with all compatible boundary conditions, namely
Dirichlet, Neumann and Robin conditions, are possible. In each case, the simulations that
were carried out provided similar results.

We have shown that the redundancy of the temperature measurements, obtained using
the complex temperatures method, can be used to improve the application of the classical
least-squares method to our problem. For this, we have proposed new criteria of a topological
nature that suggest the possibility of an optimization approach that is more global. However,
their thorough study and efficient implementation remain to be done in the future.

In a certain way, the one-dimensional inverse problem considered in this paper is
probably the simplest one in order to bring out the interest of complex temperatures for
constructing global optimization tools. In this case, the practical interest of the corresponding
results is weakened by the possibility of a direct –but rough– graphical resolution. This is
no longer the case at greater dimensions for n-composite materials. Also, the perspective
of extending these global optimization tools to n-composite materials should open fields of
practical application, such as photothermal depth profiling.[26–28]
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