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Chapter 1

(zeneral Definitions

In the later, an obstacle ¢; is defined as a closed subset of R".

1.1 Visibility relations between two points

Definition 1.1.1 Letx; € R" and xo € R" be two points, and €; be an obstacle . The visibility relation between
the two points regards to the obstacle is defined as

(x1Vx2)e, & Seg(x1,%x2) Ne; =0, (1.1)

with Seg(x1,X2) the segment defined by the two edges x1 and Xa.
The complement of this relation, the non-visibility relation, is denoted

(X1VX2)§7, = (X1VX2)5].. (12)

Remark 1.1.1 Some remarks about this relation:

- the wvisibility relation is reflexive
(X1VX2)5J. = (XQVXl)aj. (13)

- the wvisibility relation is symmetric
(X1Vx1)5j . (14)

- the wvisibility relation is not transitive (Figure 1.1)

(X1VX2)5j A (XQVXS)E]. 7£> (X1VX3)5J. (15)

- the non-visibility relation can be noted

(X1VX2)EJ = Seg(Xl,Xg) n €j 7£ @ (16)

Figure 1.1 presents visibility and non-visibility examples between two points regards to an obstacle.

€j

T2

Figure 1.1: In this example: (x1Vx2).,, (x2Vx3)c, and (x1Vx3)e,.
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(a) Visible space example. (b) Non-visible space example.

Figure 1.2: Visibility and non-visibility spaces example.

1.2 Visible and non-visible spaces of a point

Definition 1.2.1 Let x € R" be a point and €; an obstacle, with x ¢ €;.
The visible space of the point x regards to the obstacle €; is defined as

B, (x) = {xi € R" | (xVxy), }. (1.7)

The non-visible space of the point x regards to the obstacle €; is defined as

E,(x) = {x; € R" | (xVx;)c,}. (1.8)
Remark 1.2.1 _

B, (x) = Ec; (x) (1.9)

Remark 1.2.2
(X1VX2)EJ. < X1 € Eé«j (Xg), (110)
(x1Vx2)e, & x2 € B (x1), (1.11)
x2 € B, (x1) & x1 € B (x2). (1.12)

Remark 1.2.3
(X1VX2)EJ. < X1 € Esj ()(2)7 (113)
(x1Vxa)., & Xa € B, (x1), (1.14)
x2 € B, (x1) & x1 € Ec, (x2). (1.15)

Figures 1.2a and 1.2b present examples of visible and non-visible spaces.

1.3 Visible/non-visible/partially-visible spaces of a closed set

Definition 1.3.1 Let X C R™ be a closed set and ¢ an obstacle, with X Ne; = 0.
The visible space of X regards to €; is defined as

E.,(X) = {x; € R" | Vx € X, (x,Vx)., }. (1.16)

The non-visible space of X regards to €; is defined as

—~

E., (X) = {x; e R" | Vx € X, (x;Vx), }. (1.17)

i
The partially-visible space of X regards to €; is defined as

E,,(X)={x; e R" | 3x1 € X,3xp € X, (x;Vx1):, A (%VX2)e, }- (1.18)



Figure 1.3: Example of visible, non-visible and partially-visible spaces.

It can be noticed that the visibility relation is a binary relation when considering points, but a ternary
relation when considering sets. The partially-visible space corresponds classically to the twilight (compared to
the light (visible space) and the shade (non-visible space) ). Figure 1.3 presents an example of visible, non-visible
and partially-visible spaces.

Proposition 1.3.1 links the visibility of a set to the visibility of its points.

Proposition 1.3.1 Let X C R" be a closed set, €; an obstacle with XNe; =0, x € X and x; € R" two points
with x; € X. Then

(xiVx)e, = x; € B (X) U
(x;Vx)., = x; € B, (X) UE, (X). (1.20)

Proof
(xiVX)e, = x; & EE] (X) (Eq. 1.16)
(x;Vx )5]:>X,€EJ(X)U ;(X)
(x;Vx X)e, = X € Ee, (X) (Eq 1.16)
(Xiv )87 = X; € E (X) ( )

1.4 Visibility regards to a set of obstacles

An environment of R™, noted &, is defined as a set of np obstacles
no
£ = U € (1.21)
j=1

with €1,--+ ,€5,- - ,€pn,, Obstacles of R™.
It is possible to extend the previous definitions to an environment:

=
™

(x1Vx2)s & Seg(x1,%x2) NE =10, (1.22)
(x1Vx2)e & Seg(x1,x2) NE # 0, (1.23)
Es(x) ={x; e R" | (x;Vx)e}, (1.24)
E$(x) = Be(x), (1.25)
(1.26)

(1.27)

(x

(x) =

(X) ={x; e R" | Vx € X, (xVx;)e},
(X) =

Ee(X) = {x; € R" | ¥x € X, (xVx;)e }.

The objective then is to characterize the visibility regards to an environment by considering the visibility
regards to its obstacles.
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Figure 1.4: In this example (x1Vx3)e, and (x1Vx3)c, and (x;Vx3)c,, then it can be conclude that (x;Vx3)e.
It can also be noticed that (x1Vxz)e, and (x1Vx2)e, and (x1Vx2)e,, which leads to (x1Vxg)s. The same idea
applies to x2 and x3: (x2Vx3), and (x2Vxs)e, and (x2Vx3)e,, then (x2Vxs)s.

Proposition 1.4.1 Let x; € R" and x2 € R™ be two distinct points, and £ an environment of R™ composed by
no obstacles with xy € € and xo € £. Then

no

(x1Vxa)e & [\ (x1Vxa)e,, (1.28)
(X1VX2)5 ~ \7 (X1VX2)5]. . (129)

Proof (Eq. 1.28)

(x1Vx2)s < Seg(x1,%x2) NE =0 (Eq. 1.22),
no
& Seg(xy,x2) N ( U 5j) = (Eq. 1.21),
j=1
no
== U (Seg(xl,xz) n Ej) = @,
j=1
& Ve; € &, Seg(x1,%2) Nej =10,
=4 VE]‘ S 5, (X1VX2)E]. (Eq 11),

no

(x1Vx2)e & /\ (x1VXa)e;.

j=1
Proof (Eq. 1.29)

(x1Vx2)e < Seg(x1,%2) NE # O (Eq. 1.23),
& Seg(xy,x2) N ( U €j> # 0 (Eq. 1.21),
j=1
< U (Seg(x1,%2) Nej) # 0,
j=1
& Jej € E]Seg(x1,%x2) Ne; # 0,

& Jej € E|(x1Vx2)., (Eq. 1.6),
no
(x1VXa)e & \/ (x1Vx32)e, -

j=1

Figure 1.4 illustrates Propositions 1.4.1.
It is also possible to characterize the visibility spaces of a point regards to an environment to the visibility
spaces of this point regards to the obstacles of the environment.
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Figure 1.5: In this example Eg (x) = EEI (x) UE, (x).

Proposition 1.4.2 Let x € R™ be a point and £ an environment composed by no obstacles with x ¢ £. Then

Eg(x) = ) B, (x), (1.30)
j=1

Ee(x) = | E., (x) (1.31)
j=1

Proof (Eq. 1.30)
Es(x) = {x; € R"|(xVx;)e} (Eq. 1.24),

= {x; € R"| /\(xin)gj} (Eq. 1.28),

j=1
= {x; € R"|(xVx)s, } N+ N {x; € RY(xVx;)e, } N - N {x; € R(xVx;)e,,, )
=E.,(x)N---NE;(x)N---NE;,_(x) (Eq. 1.7),

Ee(x) = ﬂ E.,(x).

Proof (Eq. 1.16)

Ee(x) = B¢(x) (Eq. 1.25),

Figures 1.5 and 1.6 illustrate Proposition 1.4.2.

Those propositions can be generalized to closed sets. It is possible to characterize the visibility spaces
of a closed set regards to an environment by the visibility spaces of this set regards to the obstacles of the
environment.

Proposition 1.4.3 Let X C R™ be a closed set and € an environment defined by no obstacles with XNE = (.
Then

Ee(X) = () Ee, (X), (1.32)
Ee(X) D ¥ E.,(X). (1.33)



Eg(x)

E., (x) : E., (x)
....... ‘52 ‘Z L -
1:2 ....... ;( €1 x2 ------ X ............. .El --------
T—» T T—Nﬂl
(b) Ecy (x) (c) Ee(x)

Figure 1.6: In this example E¢(x) = E,, (x) N E,, (x).

Proof (Eq. 1.32)
Ee(X) ={x; e R" | Vx € X, (xVx;)¢} (Eq. 1.26),

no

={x; eR" | ¥x € X, /\ (xiVx).,} (Eq. 1.28),

j=1
={x; eR" | ¥x € X, (x;Vx), } N---N{x; € R" [ Vx € X, (x;VX)c, } N~

N {x; e R" | Vx € X, (x,Vx)e,_ }»

no

= ﬂ{3~7 eR" | vx € X, (x;Vx)., },

Jj=1

Ee(X) =) Ee, (X) (Eq. 1.16).

Proof (Eq. 1.33)
Ee(X) = {x; € R" | ¥x € X, (x,Vx)¢} (Eq. 1.27),

no
={x;i eR" | Vx € X, \/ (x;Vx).,} (Eq. 1.1).

j=1
no ~ no
JE.,(X) = [J{xi e R | vx € X, (x;Vx)., } (Eq. 1.17),
j=1 j=1
no
={x;ieR" | \/[vx € X, (x;Vx).,]}.
j=1
no o no o
{x; €R" | ¥x € X, \/(XiVX)Ej} D {x; € R™ | \/ vx € X, (x,Vx).,]},
j=1

j=1

no
= Ee(X) 2 | J B, (X).
j=1

It can be noticed that the non-visible space of a closed set regards to an environment can not be perfectly
characterized by the non-visible spaces of this set regards to the obstacles of the environment (Equation 1.33).

It can only be under approximated, this is illustrated Figure 1.7.
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B (X)

(¢) Ex, (X) UEc, (X). (d) Ee(X)

-~

Figure 1.7: In this example it can be noticed that Eg(X) D Eel (X)UE.,(X).



Chapter 2

Particular cases of the visibility

In this section the visibility of three types of sources of R? are considered (point, segment and box - defined
later - ) regards to two types of obstacles of R? (segment and convex polygon). The interest is that in those
cases the visibility spaces can be defined by sets of inequalities.

For a segment as obstacle, the following notation is used

e; = Seg(ey;, es;), (2.1)
with e;; € R? and ey, € R? two distinct points that represent the edges of the segment &3
6? is an obstacle that corresponds to a convex polygon defined by np, edges, named ey, -+ , e, -+, e, Py

in a trigonometric order, with ey = (e1, , e, ) € R2.
a? can also be associated to a closed environment composed by np, segments:

j
U Seg(e, ex+1), with €np, +1 = €1, (2.2)
1

np
p
&j

o

In the following it is noted
Seg(ey,ext1) = €}, (2.3)
The interest of considering convex polygons remains in Proposition 2.0.4. Note that with random obstacles
it is an inclusion, not an equality (Equation 1.33).

Proposition 2.0.4 Let X € R? be a closed set and z—:? an obstacle composed by np; edges with Xﬁs? =(. Then

E.(X) = | Bey (%), (2.4)

Proof
Eeé’ (X)={x; € R? | vx € X, (XiVX)Ef} (Eq. 1.17),
= {x; € R? | Vx € X, Seg(x;,x) N e? # 0} (Eq. 1.6),

P

= {x; € R? | Vx € X, Seg(x;,x) N ( U 62) # 0} (Eq. 2.2),

k=1
7LP7.
= {x; e R? | ¥x € X, | J (Seg(xi,x) Ne}) # 0},
k=1

P

= U{Xi € R? | vx € X, Seg(x;,x) Nej # 0},

k=1
npj
= | J{xi e R? | ¥x € X, (x,Vx))c: } (Eq. 1.6),
k=1
npj
Er(X) = | B (X) (Eq. 1.17).
k=1

Figure 2.1 illustrates Proposition 2.0.4.

10



ESeg(el ,e2) (X)

(31

i€

(a) Eseg(er,e0)(X)-

ESeg(el.,ég) (X)

€ _,~'.

(C) ESeg(el’es)(X). (d) /F:a:; (X)

Figure 2.1: Non-visible space of a closed set X regards to a convex polygon 5’7-’

2.1 Visibility spaces of a point
2.1.1 Regards to a segment obstacle
Proposition 2.1.1 Let x € R? be a point and €j = Seg(ei,,ez,) an obstacle with x ¢ ;. Then

Ec:(x) ={x; € R? | [x;Ux]N[er, Uey,] =0 V (det(x; —eq,les, —eq,) >0V

Cedet(x; —eq;[x —ey,) >0 V (ydet(x; — ey |x —ey;) <0}, (2.5)
with
1 if det(x —eq.|es. — ey, 0
Co = ¥ det(x ey e, —en,) > 0, (2.6)
—1  otherwise.
Proof

E.:(x) = {x; €R?| (Xin)Ej} (Eq. 1.7),

{x; e R?| Seg(x,x;) N Seg(e,,ez,) =0} (Eq. 1.1),

{x; eR?| det(x —ey,|ez, —eq,) - det(x; —eq,les, —e1,) >0 Vv
det(er; — x|x; —x) - det(es; —x|x; —x) >0 \
[xUx;|Nle;, Uey] =0} (Eq. A5).

According to Proposition C.1.1 (Appendix):
det(x — ey, |eq, —ey;) -det(x; — ey, lex;, —e;;) >0V
det(er; —x|x; —x) - det(ez; —x|x; —x) >0
Sy det(xi —ey; |62j — elj) >0V ( det(xi —ey; |X — elj) >0V

(e det(x; —ey,[x —ey;) <O0. (2.7)

Then
Ee. (x)={x; €R?* | [x; Ux] N[e1, Uey,] =0 V ( det(x; —eq,les, —e1,) >0V
Cedet(x; —eq;[x —e;) >0 V (pdet(x; —ey;[x —ey,) <0},

11



(o det(x; —eq,|ex, —er,) >0 (o det(x; —eq;lez, —ep,) <0
# (pdet(x; —eq|x —ey;) >0 # (pdet(x; —ey,[x —e;) <0
# (o det(x; —ey[x —ey;) <0 # (pdet(x; —eg|x —ey,) >0

o ~

> 1
(a) Ees (x). (b) Ee: (x)

J

Figure 2.2: Visible and non-visible spaces characterization example.

The following proposition characterizes the non-visible space of a point regards to a segment.

Proposition 2.1.2 Let x € R? be a point and e? = Seg(ey;,es;) an obstacle with x ¢ €. Then

Ea; (X) = {Xi S R2 | ng det(xi — elj|e2j — elj) < 0 N
G det(x; —eq;[x —ey,) <0 A (2.8)
(e det(x; —eg;[x —ey;) >0 A
[x Ux;]Nler, Uey,] £0 },
with
= 1 if det(x —ey,lez; —e1;) >0,
T =1 otherwise.
Proof

Bee(x) = (Bas (x))° (Ba. 19),
= ({xl ER? | [xUx;|N[e;, Uey] =0 V (,det(x; —er,les, —eq,) >0V
Codet(x; — ey |x —ep,) >0 V G det(x; — ey |x —ep,) < o})c (Eq. 2.5),
= {x; € R?| ([X Uxi|Nfe, Uey] =0 V (,det(x; — e, |es, —e1,) >0V
Cedet(x; —ep;|x —e;) >0 V (pdet(x; —ey;[x —ey;) < O)c},

—~

EE;;(X) ={x; eR? | [xUx]N ey, Uey, ] #D A (pdet(x; —eq,ler, —er,) <O A
Cedet(x; —eq;|x —er;) <0 A (pdet(x; —eq,|x —ez,) > 0}.

Figure 2.2 illustrates Propositions 2.1.1 and 2.1.2.

2.1.2 Regards to a polygon obstacle

The following proposition characterizes the visible space of a point regards to a convex polygon.
Proposition 2.1.3 Let x € R? be a point and 55 a convex polygon defined by np, edges with x ¢ E?. Then

Far () = [ Eug (). (2.9

P,
=1

ko

12



() Eep (x). (b) Ecr (x).

Figure 2.3: Visible and non-visible spaces of a point regards to a convex polygon.

Proof
’npj
Eer(x) = (] E; (x) (Eq. 1.30 et 2.2).
k=1

The following proposition characterizes the non-visible space of a point regards to a polygon.

Proposition 2.1.4 Let x € R? be a point and 5? an obstacle defined by np, edges with x ¢ 5?. Then

Eor(x) = [ Ee; (%) (2.10)
k=1

Proof
’n.p].
E.r(x) = | Be (x) (Eq. 1.31 et 2.2).
J k:1 v

Figure 2.3 illustrates Propositions 2.1.3 and 2.1.4.

2.2 Visibility of a segment

A segment can be considered as a closed subset of R2.

2.2.1 Regards to a segment obstacle

First we consider the non-visible space of a segment regards to an other segment. It can be noticed that this
space can be characterized by the non-visible spaces of the segment edges.

Proposition 2.2.1 Let Seg(x1,x2) be a segment with x; € R? and x2 € R?, and g = Seg(ey,,ez;) be an
obstacle with Seg(x1,%2) Nej = 0. Then

-~ -~

EE; (Seg(xl,XQ)) = EE; (Xl) N Ee;j (Xg). (2.11)

Proof
EE;(SEQ(X17X2)) = {x; € R? | ¥x € Seg(x1,x2), (xiVx)E;} (Eq. 1.16),
= {x; € R? | Vx € Seg(x1,%2), [x Ux;] N e, Uey, | #0 A
(e det(x; —eq;lex;, —e1;) <0 A (pdet(x; —ey,|x —e;) <OA
(e det(x; —eg;|x —ey;) > 0}(Eq. 2.8),

13



E.: (Seg(x1,x2))

8 (Xl)

)

L.,

(¢) Bes(Seg(x1,x2)) = Ee:(x1) N
EE-_ (Xg).

J

Figure 2.4: Non-visible space of a segment regards to a segment.

B (x1) N Ees (x2) ={x; € R? | ¢, det(x; — ey [ea, —e1,) <0 A
o, det(x; —e;|x1 —e1;) <0 A
(o, det(x; —eg;|x1 —€3,) >0 A
[x1Ux;|Ner, Ueg,] # 01N

{x; € R? | (y, det(x; — ey, |ez, —e1,) <0 A

Co, det(x; —e;|xo —e1;) <0 A
Ce, det(x; —e[x2 —e,) > 0 A
[xo Uxi|Nler, Uey,] # 0}, (Eq. 2.8)

Es-; (x1)N Es‘; (x2) ={x; € R? | ¢y, det(x; — e,les, —e1,) <O A

Gy det(x; —eq, [x1 —e1,) <0 A
Coy det(x; — €g,]x1 —€2,) > 0 A
i Uxi]Nfer, Uey,] #0 A

Co, det(x; — ey, lez;, —e1,) <0 A
G, det(x; — €y, |xo — e;) < 0A
Co, det(x; —en;|x0 —€3,) >0 A
[x2 Uxi] N [er, Uey,] # 0}

According to Proposition C.2.1 (Appendix)

Vx € Seg(x1,X2), (r det(x; —eq;]es; —e1;) < 0N det(x; —ey,[x —er,) <0A
(e det(x; —eg;|x —ey;) >0

& (g, det(x; — ey, [x1 —e1;) <0 (g, det(x; —eq;[x2 —eq;) < 0A
Co, det(x; — e, [x1 —e1;) > 0 A (g, det(x; —eg;[x2 —eq;) > 0A
(o, det(x; — ey, |ez;, —e1,) < OA (G, det(x; — ey, lex, —e1,) <0.

Then

-~

E.:(Seg(x1,%s)) = Ees (x1) 1 Bes (x2).

Figure 2.4 illustrates Proposition 2.2.1.

The visible space of a segment regards to an other segment is more difficult to characterize. Indeed, it is
not possible to characterize it by considering the visible spaces of the edges of the segment.

Proposition 2.2.2 Let Seg(xi,x3) be a segment with x; € R? and x5 € R?, and ei = Seg(ei,,ez;) be an
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obstacle with Seg(x1,%z) Nej = 0. Then
Eg;(Seg(Xl,XQ)) = {x; €R? |
(Cor = Goa) A (Gon et — e fea, —e1,) > 0V
oy det(x; — ey, |x1 —e1;) >0 A (g, det(x; —ey,|xo —ey;) >0V
Coy det(x; —eg;[x1 —eg,) <0 A (y, det(x; —eg;[x2 —€3;) < O) Vv

(Cor = —Ca) A (

(Cey det(x; —eq,[x1 —eq,) >0 V (e, det(x; — ey, [x2 —e1,) <0) A

)
)

(§62 det(x; —ez,[x1 —e€z;) >0 V (e, det(x; —eg;[x2 —ey;) < 0)) Vv
([xi Uxi Uxo] N ey, Uesy, | = @)} (2.12)
with

Cor = 1 if det(X1—61j|82j—e1j)>0,

. —1 otherwise.

o = 1 if det(xz —eq;|es; —e1;) >0,

2\ =1 otherwise.
1 if det(er; —x1|x2 —x1) >0,

Cel = .
—1 otherwise.

1 if det(ez;, —x1|x2 —x1) >0,
C€2 = .
—1 otherwise.

Proof The proof of this proposition is presented in the appendix, Section C.3.

Figures 2.5 and 2.6 illustrate Proposition 2.2.2.

2.2.2 Regards to a polygon obstacle

As it has already been pointed out, a polygon can be considered as a set of segments. It is then possible to
characterize the visibility spaces of a segment regards to a polygon by considering the visibility spaces of the
segment regards to the segments that define the polygon.

Then, for the visible space of a segment regards to a polygon:

Proposition 2.2.3 Let Seg(xl,XQ) be a segment with x, € R? and x, € R2, and 5 an convex polygon defined
by np, edges with Seg(xy,%z2) N E =0. Then

Pj

Eag?(Seg(xl,xz)) = n Ee: (Seg(x1,%2)). (2.13)
k=1

Proof

E.»(Seg(x1,%2)) = [ Be: (Seg(x1,%2)) (Eq. 1.32 et 2.2).
k=1

And for the non-visible space of a segment regards to a polygon:

Proposition 2.2.4 Let Seg(x1,X2) be a segment with x; € R? and x3 € R?, and 5? a convex polygon defined
by np, edges with Seg(x1,x2) Nel = 0. Then

Ecp(Seg(x1,x2)) ( U Ee; (x1) ) n ( O Es;(m))- (2.14)
k=1

15



elj i
S ]
S P
.ez . er
X1 X9 To : 2
T—»m 11
o (b) (e det(x; —e1;|x1 —e1;) > 0 A
(a) Cay det(x; —en;le2; —e1;) >0 Con det(xi — o1, [x2 —1,) > 0.
»
X1 :
(€)  Cuydet(x; —ez;|x1 —e1;) < 0 A

d) B.s x2)).
C:tQ det(xz _e2j|x2 _elj) <0. ( ) j(Seg(Xl XQ))

Figure 2.5: Visible space of a segment regards to a segment : case where (;, = (g,.
Proof
’erj
E5§2(Seg(x1,x2)) = U E.: (Seg(x1,%x2)) (Eq. 2.4),

k=1

’erj
= |J(EBe: (x1) NEc; (x2)) (Eq. 2.11),
k=1
Eer(Seg(x1,x2)) = (|J By x0)) 0 (| Bey (x2)
Figure 2.7 illustrates Propositions 2.2.3 and 2.2.4.

2.3 Visibility of a box

As it is indicated in the appendix, a box [x] can be associated to four segments, Figure A.5. In the later, Py
denotes the convex polygon associated to the box [x] = [z1] X [z2] with [z1] = [z1,71] and [22] = [z, T2].

Py = polygon defined by p1, p2, ps and p4,
np
Py = U Seg(Pk, Pr+1), with np =4 and ps = p1,
k=1
with
p1 = (21,%2),p2 = (T1,%2),P3 = (T1,72), Pa = (¥1,72). (2.15)

Thus the propositions of the previous section can be applied in order to characterize the visibility spaces of
a box.
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i
&
: ©2;
x g x2 p
[2 [ » 8
X1 : 1
_ (b) Ce, det(x; —e1.|x1 —e€1,)
(a) Czl = sz . (:el det(xi —ei, |X2 _ 6‘1;). J
.
. el <
&
T_,zl I :
(c) Ceo det(x; — €2, |x1 —€2,) Vv d) Eoe (S
Cep det(x; — ez, [x2 — e2jj). ’ (d) Be; (Seg(x1, x2)).
Figure 2.6: Visible space of a segment regards to a segment: case where (y, = —(z,-
‘Ep(Seg(, x2))

L Ecr(Seg(x1,x2))

(a“) Es?(seg(XhX?))' (b) ﬁai(Seg(xl,xQ)).

Figure 2.7: Visible et non-visible spaces of a segment regards to a polygon.
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€2

Figure 2.8: Visible and non-visible spaces of a box regards to a segment.

2.3.1 Regards to a segment obstacle

As denoted previously, the visibility spaces of a box can be characterized by the visibility spaces of the associated
segments.

Proposition 2.3.1 Let [x] be a box with Py its corresponding polygon , and €5 = Seg(ei,,ez;) an obstacle with
PcNei=0. Then

n

v

Eor([x]) = Ee: (Py) = () Ee: (Seg(pr, Pir1))- (2.16)
k=1
Proof
x; € Bes (Pe) €Y%, € Py, (x;Vxp)z: (Bq. 1.17),
Y, € Py, X € Ees(x,) (Eq. 1.13),
=VSeg(Pr, Pri1) € P, Xi € Ecs (Seg(pr, Pri)),
np
x; € Ecs (Px) =x; € N Ec: (Seg(Pr: Pr+1))-
k=1
Then
o~ ne ~
Esj (Px) 2 ﬂ Esj (Seg(Pr:Pr+1))- (2.17)
k=1
np _
X; € ﬂ Ec: (Seg(Pr, Prt1)) ©VSeg(Pr, Pe+1) € Px, VX € Seg(Pr: Pr+1),
k=1
(xisz)sj (Eq. 1.17),
:>pr S Px, (xiVXp)Ej,
np
X; € ﬂ EE‘; (Seg(pr, Pr+1)) =X; € EE; (Px) (Eq. 1.13).
k=1
Thus
np = _
() Ee: (Seg(prs Prt1)) 2 Ee: (Py). (2.18)
k=1
It can be concluded
np
(Eq. 2.17 et 2.18) = Ee. (Px) = EE;(Seg(pk,pkH)).
k=1

18



And for the non-visible space of a box regards to a segment (Figure 2.8):

Proposition 2.3.2 Let [x] be a boz with Px its corresponding polygon, and €5 = Seg(e1;, e2,) an obstacle with
Pcenes=0. Then

np
Bor([x]) = Exs (P) = () Bes (Seq(pe. pis)). (2.19)
k=1
Proof
x; € Egj(Px) &Vx, € Py, (XiVXp)E§ (Eq. 1.16),
@pr € Py,x; €E aj(X ) (Eq 110)
=VSeg(Pr: Pr+1) € Px,Xi € Ecs (Seg(Pr, Pr+1)),
np
X; € Ee: (Px) =x; € (] Ee: (Seg(Pk, Prs1))-
k=1
Then
np
E.:(Py) 2 ) Ec:(Seg(pr, Prt1))- (2.20)
k=1
np
X; € ﬂ Ec: (Seg(Pr, Prt1)) ©VSeg(Pr, Pet1) € Px, VX5 € Seg(Pk: Prt1),
k=1
(XiVXS)gj (Eq. 1.16),
:>VXP S Px, (Xivxp)s§;
np
x; € [ ] Ee: (Seg(pr, Prt1)) =i € Ee: (Py) (Eq. 1.10).
k=1
Thus
np
ﬂ Esj (Seg(pk, pk+1)) 2 Esj (PX)- (2-21)
k=1

It can be concluded
np
(Eq. 2.20 and 2.21) = Ec: (Py) = (] Ee: (Seg(pr, Prt1))-
k=1
The last step consists of characterizing the visibility spaces of a box regards to a polygon obstacle.

2.3.2 Regards to a polygon obstacle

Proposition 2.3.3 Let [x] be a box with Py its corresponding polygon, and 5? an obstacle defined by np, edges
with Pyx N 5? = (. Then

np TP;
Bor(ix)) = Ber (P) = () ([ Bes, (Seg(pr, prin)) ) (2.22)
k=1 k/'=1
Proof
npj
Ecr(Px) = (] Ez;, (Px) (Eq. 1.32 et 2.2),
k'=1

n (ﬂ Ec: (Seg pk,pkﬂ))) (Eq. 2.19),

k'=1

Eer (Px ﬂ ( ﬂ Ec: (Seg pk;karl)))

k! =

And for the non-visible space it can be defined:
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Figure 2.9: Visible and non-visible spaces of a box regards to a convex polygon.

Proposition 2.3.4 Let [x]| be a box with Py its associated polygon, and 5? an obstacle defined by np, edges

with PN z—:? =1{. Then

np.
PJ

(U

k=

_
B.r
J

np
(Px) = ﬂ

k=1
Proof

Ees (Px) (Eq~ 2'4)a

"Pj  np

U < Ea;, (Seg(Pk; Pr+1

~

E.»(Px)

p
g
J

Figure 2.9 illustrates Propositions 2.3.3 and 2.3.4.
We now have all the needed tools to detail the contractors.

20

) N Eai, (pk+1))

E-:, (p1)). (2.23)

) (Ea. 2.16),

) (Eq. 2.11),



Chapter 3

Visibility Contractors

Let x; € [x1] and x2 € [x2] be two points, and £} a polygon obstacle. The idea is to reduce the domains [x;]
and [xs] according to a visibility constraint (x1VxQ)5§7 or a non-visibility constraint (X1VX2)E§_J (Figure 3.1).

To be able to contract the domains, by using the propositions presented previously, we define contractors
(algorithms). Those contractors rely on the following

Proposition 3.0.5 Let a € A be a point with A C R", x € [x] be a variable and £ an environment defined in
R™. Then

(aVx)e = x € [x] N (Bs (A))C (3.1)

(aVx)e = x € [x] N (Eg(A))C (3.2)

Proof This proposition is deduced from Proposition 1.3.1.

The basic idea of the contractors is to use the characterizations of the visible and non-visible spaces to
contract the domains.

As previously, the contractors are going to be described step by step. First the contractors associated to a
point visibility are presented, then those associated to a segment visibility and finally to a box visibility.

It can be noticed that the contractors Cger, Cn—gp, and Cnp, used in the following, are presented in the
appendix.

3.1 Contractions over a point visibility information

3.1.1 Point visibility contractor regards to a segment obstacle

This contractor, named Cv([x], a,€3), is associated to the constraint

(xVa)s;, (3.3)

[x2]
wl )
L=
zof [ (b) Knowing that (xl\/xz)sg_z, the objective is to
1 contract (reduce) [x1] and [x2] by removing the

values that are not compatible with the visibility
constraint: the hatched area belongs to the non-
visible space of [x1] regards to €7, this area is
then not feasible with the visibility constraint
and can be removed from the domain [x2].

(a) Let x1 € [x1] and x2 € [x2] be two points,
and s? a polygon obstacle.

Figure 3.1: Contraction example according to the constraint (x3Vxs),».
J
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€1

Ny

€2

Qe

T2

L.,

(a) (xVa)E-;7 with x € [x]. (b) Contraction of [x].

Figure 3.2: Presentation of the contractor Cv([x],a,e}).

with a € R?, ei = Seg(ey;,eq,), €1, € R? e, € R? and x € [x]. Figure 3.2 illustrates its principle.
This contractor is presented Algorithm 1. It is based on the complement of Equation 2.8.

Algorithm 1: Contractor Cv([x],a, %)

Input: [x],a,e; = Seg(ey,, ez;)
if det(a — ey, |ez; —e;,) > 0 then

‘Ca:a

W N =
o
P
n
@

o N o o
=
&
I

S0
[}
8
™"
O
gl\)
o
|
g\r
N—

3.1.2 Point non-visibility contractor regards to a segment obstacle

The dual of the previous contractor, named C([x],a, %), is associated to the constraint

(xVa).:, (3.4)
with a € R?, e¥ = Seg(ey;, ey;), 1, € R?, ey, € R? and x € [x].

This contractor is presented Algorithm 2. Tt is based on the complement of Equation 2.5. Figure 3.3
illustrates its principle.

Algorithm 2: Contractor C5([x], a,5)

Input: [x],a, gi = Seg(ey;,ez,)

1 if det(a — e, |ez, —e1;) > 0 then
2 ‘ Ca=1;

3 else

4 L Ca - _]-a

® N o o
=
&,
Il

3
S
>
@)
&
Qo
g\r
N

[i4 :Cﬂ# ([X]aaaeljae2>;

Once those two contractors defined, it is possible de get interested into the contractors associated to a
segment visibility information.
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€1, ey,
g
a ey, a es,
Z2 X9
L. L.,
(a) (XVa)Ej, with x € [x]. (b) Contraction of [x].

Figure 3.3: Presentation of the contractor C5([x], a,€?).

[x] ]

(a) (x\/xab)gi7 with x5 € Seg(a,b) and x € [x]. (b) Contraction of [x].

Figure 3.4: Presentation of the contractor Cv([x],a,b,e?).

3.2 Contractions over a segment visibility information

3.2.1 Segment visibility contractor regards to a segment obstacle
This contractor, named Cv([x],a, b, &%), is associated to the constraint

(xVXap)e:, (3.5)

with x5 € Seg(a,b), a € R?, b € R?, ei = Seg(ey;,ez;), e, € R?, €3, € R? and x € [x].
It is detailed Algorithm 3. It is based on the complement of Equation 2.11. Figure 3.4 illustrates its principle.

Algorithm 3: Contractor Cv([x],a,b,¢7)

Input x],a,b,e5 = Seg(e1,,ez,)
1 [i] =Cv(x],a )

2 [io] = Cv([x], b,€});
Output: [x]* = [ 1) U [ia]

3.2.2 Segment non-visibility contractor regards to a segment obstacle

The dual of the previous contractor, named Cy([x],a, b, €7), is associated to the constraint

(vaab)g-;, (3.6)
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elj elj

E.:(Seg(a,b es(Oeg(a,
L. j(Seg(a,b) [ B (Seg(a, b))

(a) (xanb)si, with x4, € Seg(a,b) and x € [x]. (b) Contraction of [x].

Figure 3.5: Presentation of the contractor Cg([x], a, b, 3).

[x] ]
elj elj .........................
i e
Ec: ([x:]) Ee: ([x.])
©2; €2,
T2 ] o [Xs]
T—).’L‘l L’xl
(a) (vas)aj’ with x; € [x,] and x € [x]. (b) Contraction of [x].

Figure 3.6: Presentation of the contractor Cv([x], [xs],€7).

with x,;, € Seg(a,b), a € R?, b € R? ¢f = Seg(ey;, es;), €1, € R?, ey, € R? and x € [x].
This contractor is presented Algorithm 4. It is based on the complement of Equation 2.12. Figure 3.5
illustrates its principle.

3.3 Contractions over a box visibility information
3.3.1 Box visibility contractor regards to a segment obstacle
The contractor Cv([x], [xs],€3) is associated to the constraint

(XVXS)&";) (3.7)

with €3 = Seg(ey;, e2;), e1; € R? ey, € R* | x, € [x,] and x € [x]. Figure 3.6 illustrates its principle.
This contractor is presented Algorithm 5. It is based on the complement of Equation 2.16.

3.3.2 Box non-visibility contractor regards to a segment obstacle
The contractor Cg([x], [xs],€7) is associated to the constraint
(xVxs)es, (3.8)
with €3 = Seg(eq;, e2;), e1; € R?, ey, € R?, x, € [x,] and x € [x].

This contractor is presented Algorithm 6. It is based on the complement of Equation 2.19. Figure 3.7
illustrates its principle.
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Algorithm 4: Contractor Cy([x], a, b,ej)

Input: [x],a,b, e} = Seg(ey;, ey;)
if det(a — ey, |ez, —e1,) >0 then
‘ Ca=1;
else
=1

if det( — 81J ‘eg

N N

—ey,) >0 then

® N o w
[©)
—
7
@

©

if det(e;; —alb —a) > 0 then
10 ‘ Cey = 1;

11 else

12 L Cey = —1;

13 if det(ey; —alb —a) > 0 then
14 ‘ Cey = 1;

15 else

16 L CBQ = _17

17 // Two possible cases

18 if (, = ¢ then

19 li11] = Caee([x], €1,,€2,, —Ca)

20 [i12] = Caee([x], €1;,a, —Ca)

21 [i13] = Caee([x], €1;, b, —(p);

22 [i14] = Cdet([x]; €2,,4a, Ca);

23 lits] = Caee([x], €2,,b,();

24 | [loutpue] = [in] N ([i12] U [i13]) N ([ira] U [i15])

25 else

26 /] Ca=—C

27 liz1] = Cdet([x],el,- a,—Ce, );

28 lize] = Caer([x], 61j7b7 Cer )

29 li2s] = Caet([x], €2,, 8, — (e, )s

30 [i24] = Cdet([x],e ]7b <62)

81 | [loutput] = ([iz1 ] [i22]) U ([i23] N [i24])

32 [ig] = Chxp([x],a,e1,,e2,) UCq4p([x],b,e1;,e2,);
Output: [x]|* = [1ou,¢pm] N [io

Algorithm 5: Contractor Cv([x], [x],€?)

Input: [x], [Xs]v‘?j“ = Seg(ey,, ez;)
1 Ps; = polygon associated to [XS];
2 for all p;, € P, do

3 L li] = Cv([x], Pk, Prt1,€5);
Output: [x]* = Up%, lix]

Algorithm 6: Contractor C3([x], [x],€?%)

Input: [x],[x;],e] = Seg(e,,ez;)
1 Ps; = polygon associated to [xs];
2 for all p; € P, do
3 L [ik} = OV([X]vpkvpk-‘rlag;);
Output: [x]* = [J;Z, [ix]
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@i, €1;
€3 €3
€3, €2,
Ee: ([x,]) Ec: ([xs])
(a) (xsz)gi, with x, € [xs] et x € [x]. (b) Contraction of [x].

Figure 3.7: Presentation of the contractor Cg([x], [xs], 7).

[x] [x]
Er(x.]) Er (2]
e €] = €g ey €1 =€
€y €4
To [x] Lo [x]
L;xl T—),’El
(a) (XVXS)S;?, with x, € [x,] and x € [x]. (b) Contraction of [x].

Figure 3.8: Presentation of the contractor Cy([x], [x;],€}).

3.3.3 Box visibility contractor regards to a polygon obstacle
The contractor Oy ([x], [x;], %) is associated to the constraint
(xVx)er, (3.9)
with € a polygon defined by np, edges e, € R?, x, € [x,] and x € [x].

This contractor is presented Algorithm 7. It is based on the complement of Equation 2.23. Figure 3.8
illustrates its principle.

3.3.4 Box non-visibility contractor regards to a polygon obstacle
The contractor C5([x], [xs], €%) is associated to the constraint
(xVx,).r, (3.10)
with € a polygon defined by np, edges e, € R?, x, € [x,] and x € [x].

This contractor is presented Algorithm 8. It is based on the complement of Equation 2.22. Figure 3.9
illustrates its principle.
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Algorithm 7: Contractor Cv ([x], [x], )

Input: [x], [xs],sg
1 P; = polygon associated to [xs];
2 for all p; € P, do
3 for all e}, € £ do

4 | [ix] = Ov([x], px, Seg(ew, err11));

[ix] = M2y iw)s
Output: [x]* = [J.Z, [ix]

%]

[x] x]
e e; = eg ey €1 = €6
€y €4
[XS] [Xs]
¥ E.s([x.]) ¥ Bor ()
E:; s 5;’ Xs
L;.rl T—)xl
(a) (vas)ei, with x, € [x,] and x € [x]. (b) Contraction of [x].

Figure 3.9: Presentation of the contractor Cg([x], [x;],€%).

Algorithm 8: Contractor Cg([x], [x], €7)

Input: [x], [x;], €}
1 P; = polygon associated to [x,];
2 for all p € P, do
3 for all ey, € & do
4 | [ix] = C([z], PRy Prt1, Seg(er, exr11));
k] = U s
Output: [x]* = [J.Z, [ix]

[S))
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Appendix A

Segment Tools

A.1 Parametric Equation of a Segment

Let Seg(a,b) be a segment with a = (a1,a2) € R? and b = (b1, b2) € R?. Every point s = (s1, s2) € Seg(a, b)

can be written as
S1 = (1 — t)a1 + tby,

S9 = (1 — t)ag + tbg, (Al)
t € [0,1].

This notation corresponds to the parametric equation of the segment Seg(a,b).

A.2 Segment Intersection

A.2.1 Point Position Regards to a Segment
Let a = (a1,a2) € R2, b = (by,b2) € R? and ¢ = (c1, ca) € R? be three points,

_ ar—b1 ¢ — bl)
det(a—Db|c—b) = det <a2 by b))

= det(a—b|c—b) = (al—b1>(02—b2>—(a2—b2)(01—bl).

(A.2)
The sign of det(a — b|c — b) characterizes the position of the point a regards to the line associated to the

vector be. Figure A.1 illustrates the different cases.

{a} | det(a—Db|c—b) <0

{a} | det(a—blc—b)=0

T—»xl {a} | det(a—blc—Db) >0

Figure A.1: Different cases for the sign of det(a — b|c — b).
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)

b= (7,12)
10 ay = (15,9)
c = (13,6)
L[]
U M TS -

Figure A.2: Case study.

Considering the example in Figure A.2:

det(a; —blc —b) = (4 —7)(6 — 12) — (4 — 12)(13 — 7),

=66 > 0.

det(az — blc —b) = (3 — 7)(6 — 12) — (16 — 12)(13 — 7),
=0.

det(as — blc — b) = (15 — 7)(6 — 12) — (9 — 12)(13 — 7),
=30 <0.

Algorithme 9 presents the contractor associated to the constraint
(det(x —alb—a) >0 (A.3)

with a = (a1,a2) and b = (by, ba) two known points and ¢ = {—1,1}. By considering Equation A.3

(Elc(bQ — a2) - ZL’QC(bl - al) - C(ag(bl - CL1) — al(bg — ag)) 2 0 (A4)

Algorithm 9: Contractor Cye:([x],a, b, ()
Input: [x] = ([z1], [z2]),a = (a1,a2),b = (b1,b2),¢
1 // Temporary variable to facilitate the reading

CStl = C(bl — Cl1), CStQ = C(bQ — ag), CStg = C(U,Q(bl — CL1) — al(bz — ag));

2

3 // Initialization

4 [21] = [3?1}&%27 [22] = [:I:g]cstl, [13] = [21] — [22] + CStg;
5 // Contractions

6 [13]* = [23] O]Rﬂ';

7 [i]* =[] N ([d3]" — estz + [i2]);

8 [ia]" = [io] N ([ix]" + ests — [is]");

9 if cst2 # 0 then

10 \1 [21]" = [z1] N ([ia]" /esta);
12 | [w]" =[]

13 if ¢stl # 0 then

14 | [w2]* = [w2] N (i) /esth);
15 else

16 | [zo]* = [z2];

Output: [x]* = ([z1]*, [z2]*).

A.2.2 Intersection Test

The general idea to test the intersection between two segments is to test if the points of each segment are on
both part of the other one [Jaulin 2001a].
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[aU b]

T2 [cud]

0 1

Figure A.3: Particular case for the intersection: the two segments are on the same line. In this case
det(a —c|d — ¢) -det(b — c|d — ¢) = 0 and det(c — alb — a) - det(d — a|b — a) = 0 but the two segments do not
intersect each other.

Be four distinct points of R?, a = (aj,az), b = (b1, b2), ¢ = (c1,¢2) and d = (dy,dz). Then

Seg(a,b) N Seg(c,d) =0 < det(a—c|ld—c)-det(b—c|d—c) >0V
det(c—alb—a)-det(d—ajb—a) >0V
[aUb]N[cud] =0, (A.5)
Seg(a,b) N Seg(c,d) # 0 < det(a —c|d — ¢) - det(b — ¢|d — ¢) < 0A
det(c—alb—a)-det(d—ajb—a) <0 A
[aUub]Nncud] #0. (A.6)

It can be noticed that it is needed to test [a U b] N [cUd] to avoid the situation depicted in Figure A.3.

A.2.3 Contractor for [aUx]|N[cUd]

We want the contractor associated to the constraint
[au[x]]N[cud] # 0, (A7)

with a € R2, b € R? and ¢ € R? three known points and [x] € TR?,
By considering Equation A.7:

aUu[x]]Nn[cud] #0
< [min (a, [x]) , max (a, [x])] N [min (¢, d) , max (¢, d)] # 0
< [max (min (a, [x]) ,min (¢, d)) , min (max (a, [x]) , max (c,d))] # 0
max (c,d))

d)
< max (min (a, [x]) , min (¢, d)) < min (max (a, [x
) -

d)) <

)
), max (c,
N ( max(m?n(al,[xl]) min (¢, dy)) — min (max (a1, [21]) , max(cl,dl))
max (min (ag, [22]) , min (¢, d2)) — min (max (ag, [22]) , max (cq, d2))
) <
)

d) ]
< max (min (a, [x]) ,min (¢, d)) — min (max (a, [x]) , max
(

)=(5)

< (max (min (a1, [#1]) , min (¢1, d1)) — min (max (ay, [21]) , max (¢1,d1))) <0 A
(max (min (ag, [z2]) , min (¢z,ds2)) — min (max (ag, [z2]) , max (¢z,d2))) <0 (A.8)
with
min (a, [z]) = min ([z],a) = [min (a, z) , min (a, T)], (A.9)
max (a, [z]) = max ([z], a) = [max (a, z) , max (a,T)]. (A.10)

It is needed to have contractors associated to the operators min () and max (). Algorithm 10 corresponds to
the contractor associated to the constraint

[y] = min ([z],a), (A.11)
and Algorithm 11 corresponds to the contractor associated to the constraint
[y] = max ([z],a) . (A.12)

The two previous algorithms are inspired from [Jaulin 2001b].
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[y,y],a

Algorithm 10: Cpi,([y], [2], @)
Input: [z] = [z,7], [y] =

1 // Contraction of [y]

2 [y]" = [y) N min ([z], a);

3 // Contraction of [x]

4 if a € [y]* then

s | [a]" =[] Ny

6 else

7 | [l =[Ny +ool;
Output: [z]*, [y]*.

Algorithm 11: Cyaz([y], [7], @)

Input: [z] = [z,7], [y] = [y,7],
1 // Contraction of [y]
2 [y]" = [y] Nmax ([z], a);
3 // Contraction of [z]
4 if a & [y]* then
s | [al" =[] Ny
6 else
7 | [ =[] N[00,
Output: [z]*, [y]*.

*];

<

Algorithm 12: Cny(|z], a, ¢, d)

Input: [z] = [z,7],a,c,d
1 // Initialization

2 [i1] = min (a, [2]);
3 [i2] = max ([i1], min (¢, d));
4 [i3] = max (a, [2]);
5 [i4] = min ([i3], max (¢, d));
6 [is] = [i2] — [i];
7 // Contractions
8 [i5]* = [is] N [—00,0];
o [ia]* = [i5]" + [ia];
10 [iq]" = [io]" — [is];
(is]**7 ia]") = Crnin([i4]", [i3], max (¢, d));

Cmax([i3]*7 [il?], a);

(2] [i2]*) = Comae (o] [ir), min (c, d));

Omin([il]*, [x]*v CL);
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By using those two contractors it becomes possible to develop a contractor associated to the constraint
max (min (a, [z]) ,min (¢,d)) — min (max (a, [z]) , max (¢,d)) < 0. (A.13)

This new contractor is presented Algorithm 12.
Considering Algorithm 12 and Equation A.8, it is possible to develop the contractor (Algorithme 13) asso-
ciated to the constraint
[au[x]]Nfcud] #0 (A.14)

Algorithm 13: Cr4p([x],a,c,d)

Input: [X] = ([xl], [332]),3 = (al, ag), C = (Cl, 62), d= (d17 dg)
1 // Contraction over each component
2 [21]" = Crzg([21], an, 1, dr);
3 [1'2]* = Cﬁ;ﬁ@([m?]v az, C2, d2)7

Output: [x]* = ([z1]", [12]").

We now want to develop the contractor associated to the constraint
[au[x]]N[cud] =0, (A.15)

with a € R, b € R? and ¢ € R? three known points and [x] € TR?,
Considering Equation A.8:

au[x]]Nn[cud] =0
< (max (min (aq, [£1]) , min (¢1,dy)) — min (max (a1, [z1]) , max (¢1,d1))) > 0 A

(max (min (ag, [x2]) , min (cz, d2)) — min (max (ag, [x2]) , max (cg,dz))) > 0 (A.16)
Which leads to the contractor (Algorithm 14) associated to the constraint
max (min (a, [z]) , min (¢, d)) — min (max (a, [z]) , max (¢,d)) > 0, (A.17)

and the contractor (Algorithm 15) associated to the constraint

[au[x]]N[cud] = 0. (A.18)
Algorithm 14: Cr_¢([2],a,c,d)
Input: [z] = [z,T],a,¢,d
1 // Initialization
2 [i1] = min (a, [2]);
3 [iz] = max ([i1], min (¢, d));
4 [i3] = max (a, [z]);
5 [i4) = min ([i3], max (¢, d));
6 [is] = [i2] — [i4];
7 // Contractions
8 [i5]" = [i5] N[0, +o0];
9 [22]* = [25]* + [i4];
10 [ig]" = [i2]" — [is];
11 ([is]", [1]") = Cin ([ia]”, [i3], max (¢, d));
12 ([a]", [i]") = Caa([is]", [2], a);
13 ([ia]", [12]") = Ciaa ([i2]", [i1], min (¢, d));
14 ([x ", [Zl]*) = Chin [21]*7 [x]*va)v
Output: [z]
Remark A.2.1
[[x] Uaub} nleud] = [[x] Ua} nlcud]u [[x] ub] nlcud]. (A.19)
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Figure A.4: Polygon P composed by np = 5 edges.

Proof

[[x] Uaub} Nleud]
= [min ([x],a, b) ,max ([x],a, b)] N [min (c,d) , max (c,d)]. (A.20)
[[x]Ua} Alcud] U [[x]ub} nlcud,
= [min ([x, a]) , max ([x, a])] N [min (c,d) , max (c,d)]U
[min ([x], b) ,max ([x],b)] N [min (c,d) , max (c,d)],
= [min (c,d) ,max (c,d)]N
(1min (], ) , max (i, )] U [ (], b)  mae (. b)),
= [min (c,d) ,max (c,d)]N
[min (min ([x],b), min ([x],a)) , max (max ([x], b) , max ([x], a))],
= [min (c,d) , max (c,d)] N [min ([x], a,b) , max ([x], a, b)],

— [Xluaub|nlcud]. (Eq. 4.20)

Algorithm 15: Cr_y([x],a, c,d)
Input: [x] = ([z1], [z2]),a = (a1, a2),¢c = (c1,¢2),d = (d1, d2)
1 // Contraction over each component
2 [21]" = Crp([21], ar, 1, dr);
8 [z2]" = Crg([22], a2, c2, d2);
Output: [x]* = ([z1]*%, [z2]%).

A.3 Segments and Convex Polygons

A.3.1 Definitions

This section present polygons as considered in this report.

A convex Polygon P corresponds to a convex subset of R?, delimited by at least three segments. We note
np the number of edges (at least three) of the polygon P. The edges of P are denoted px, k =1,--- ,np. Those
edges are named according to a trigonometric order in this report.

Remark A.3.1 A polygon P with np edges, is delimited by np segments. In order to facilitate the reading,
the first edge p1 is equivalent to the edge pn,+1. That leads to

np

U Seg(pr, Prs1), with pysr = pr. (A.21)
k=1

Figure A.4 presents a convex polygon example.
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Figure A.5: A box is a convex polygon.

Definition A.3.1 Let P be a polygon with np edges px, (k=1,--- ,np), then
Vx € P,Vpy € P,det(x — pg|pr+1 — Pr) < 0. (A.22)

In other words, Equation A.22 describes all the points inside inside the polygon (border included). It can be
noticed that this equation is correct only if the edges of the polygon are ordered in a trigonometric order. It is
then possible to defined a polygon P as

np

P={x; eR*| )\ det(x; — px|prs1 — Px) < 0}. (A.23)

Remark A.3.2 A two dimensional interval vector (a box) can be assimilated to a convexr polygon. Let [x] =
([z1]; [22]) = ([21, 7], [22, T2]) be a boa:

[x] = {x; € R? | det(x; — (1, 22)|(T1, 22) — (21, 22)) <0 A
det(x; — (T1, 22)|(T1, T2) — (T1,22)) <0 A
det(x; — (71, 72)|(21,72) — (T1,72)) <0 A
det(x; — (21,72)[(z1,72) — (21,72)) < 0}. (A.24)

Figure A.5 illustrates this remark. Algorithm 16 allows to match a two dimensional box R? with a convex
polygon.

Algorithm 16: Boite2Polygone([x])
Input: [x] = ([z1], [x2])

1 p1= (561,362),

2 p2 = (T1 2),

3 P3 = (961,»132)7

4 py = (71,72);

5 Py = polygon defined by the four edges p1, p2, p3 and py;
Output: Px.

A.3.2 Polygon/Segment Intersection

Remark A.3.3 Let P be a polygon with np edges, and a € R?, b € R? two distinct points with a € P and
b & P. Then

np

Seg(a,b)N P # () & Seg(a,b) N ( U Seg(pr, pk+1)> # 0. (A.25)
k=1

Figure A.6 illustrates this remark.
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Figure A.6: Remark A.3.3 notifies that the segment Seg(a, b) intersects the polygon only if it intersects one of its
segment border (knowing that a and b do not belong to the polygon). In this example Seg(a, b)NSeg(p1, p2) # 0
and Seg(a,b) N Seg(p2, p3) # 0.
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Appendix B

Determinant Properties

B.1 First Proposition

Proposition B.1.1 Let a = (a1,as), b = (by,b) and ¢ = (c1,ca) be three distinct points of R2. Then

Proof

det(a — b|c — b) = det(c — alb — a) = det(b — cla — ¢),
det(a — c|b — ¢) = det(c — bla — b) = det(b — alc — a),
det(a — c|b — ¢) = — det(a — bjc — b).

det(a — blc —b) = (a1 — b1)(ca — ba) — (az — b2)(c1 — b1) (Eq. A.2),

= (a1¢2 — a1ba — bica + b1ba) — (azcr — agby — bacy + boby),
det(a — bjc — b) = ajca — a1by — bica — agcy + azby + bacy.
det(c —alb —a) = (¢; — a1)(by — az) — (c2 — a2)(by — a1) (Eq. A.2),

= (c1bg — c1a2 — a1bs + ar1a2) — (cabr — caa1 — asbi + a1az),
det(c — alb — a) = ¢1bs — cras — a1bs — coby + caaq + asby,
det(c — aJb — a) = det(a — bjc — b).

det(b —cla—c) = (by — c1)(az — ¢2) — (b — c2)(a1 — 1) (Eq. A.2),

= (braz — bicg — c1a2 + c1c) — (b2a1 — bacy — c2a1 + cac1),
det(b — cla — ¢) = byag — bica — cras — baag + bacy + coay,
det(b — cla — ¢) = det(a — b|c — b).

det(a—clb—c¢) = (a1 —c1)(ba — c2) — (a2 — c2) (b1 — c1) (Eq. A.2),

= (a1by — a1co — c1ba + c1c2) — (agby — azey — caby + cac1),
det(a — c|b — ¢) = a1by — ajca — ¢1ba — agby + azcy + caby,
det(a — c|b — ¢) = — det(a — b|c — b).

det(c —bla—b) = (¢; — b1)(az — b2) — (c1 — ba)(a1 — b1) (Eq. A.2),

= (c1a2 — biag — c1ba + b1ba) — (coar — caby — baay + baby),
det(c —bla — b) = cjas — bjas — ¢1by — caay + caby + baay,
det(c — bla — b) = det(a — c|b — ¢).

det(b —aljc —a) = (by —a1)(ca — az) — (ba — az)(c1 — a1) (Eq. A.2),

= (b1ca — bras — a1¢2 + ajaz) — (baer — baay — azey + asaq),
det(b — aljc — a) = byca — brag — a1ca — bacy + baag + agcy,
det(b — ajc — a) = det(a — c|b —¢).
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A {a} | det(a—bld—b) >0
®{a}| det(a—c|d—c) <0
{a} | det(a—Dblc—b) <0

% {a} | det(a—bld—b) >0
T ‘:,0"'0 o * {a} | det(a—c|d —¢c) <0

Lxl ‘ T_,xl {al | det(a—blc—b) <0

(a) The inside of the triangle bed corresponds  (b) In this case det(b — ¢|d — ¢) > 0, but is does
to the points a that satisfy the three constraints. not exist any point a that satisfies the three con-
It can be noticed that det(b — c|d —c¢) < 0. straints.

Figure B.1: Illustration of Proposition B.2.1.

B.2 Second Proposition

Proposition B.2.1 Let a = (aj,az2), b = (b1,b2), ¢ = (c1,¢2) and d = (dy,dz) be four distinct points of R?.
Then

det(a—bld—b) >0 A det(a—blc—b) <0 A det(a—c|d—c) <0
< det(b—c|d —c) <0. (B.4)

Figure B.1 illustrates this proposition.

Proof

det(a —c|d — ¢)
(a1 - bl)(dg - bg) — ((IQ — bg)(dl — bl) Z 0 (Eq A2)
= ((11 — bl)(CQ — bg) — (CLQ — bg)(cl — bl) <0 (Eq. AQ) R
((11 - Cl)(ag - 62) — ((12 — 62)(d1 — Cl) S 0 (Eq. A2)

aydy — arba — bidy — asdy + azby + bady >0
& L ajeg — arby — bicy — aseq + asby +bac; <0 s
aldg — a1Cy — Cldg — a2d1 + asCq + Cle S O
aydy — bida — azdy + bady > a1by — azb;
< Qaice —bicg —agser + bacy < arby —asby )
a1d2 — a1Cy — Cld2 — CLle + agCq + Cle S O
a1dy — bidy — azdy + bady > ai1bs — asby > arca — bicy — agcy + bacy
aido — a1¢a — c1do — asdy + ascy + cod; <0

)

- {a1d2 —agd; — aycz + azer > bydy — bady — bico + bacy
ajdy — ayca — azdy + ager < crdy — cady

& cidy — cady > a1dy — azdy — arce + azer > bidy — bady — bicg + bacy,

& c1da — cady > bida — bady — bica + bacy,

& bida — bica — c1da — bady + bacy + cady <0,

< (b —c1)(dy —ea) — (b —e2)(d1 — 1) <0,

< det(b—c|d —c) <0 (Eq. A.2).
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Figure B.2: Illustration of Proposition B.3.1: a >b=a>s>b

B.3 Third Proposition

Proposition B.3.1 Let Seg(a,b) be a segment with a = (a1,as) € R? and b = (by,bs) € R?, s € Seg(a,b) be

a point, and ¢ = (c1,c2) € R? and d = (dy,dz) € R? be two points with Seg(a,b) N Seg(c,d) = 0. Then

det(a—c|d — ¢) > det(b —c|d — ¢)

< det(a—c|d — ¢) > det(s — c¢[d — ¢) > det(b — c|d — ¢),
det(a—c|d — c¢) < det(b —c|d —¢)

< det(a—c|ld —c¢) < det(s —c|d — c¢) < det(b—c|d —c).

(B.5)

(B.6)

In other words, Proposition B.3.1 notifies that the distance between the point s and the line associated to
the vector (;i is bounded by the distances of the two edges of the segment ab and this line. This is illustrated

Figure B.2.

Proof

det(s — C|d — C) = (51 — Cl)(dg — 62) — (82 — Cg)(dl — Cl) (Eq AQ),
= s1dy — s1¢2 — c1dy — Sady + S2¢1 + C2dy,
= s1(dg — c2) + s2(c1 — d1) + cady — c1da,
= ((1 — t)a1 + tbl)(dg — CQ) + ((1 — t)ag + tbg) (Cl — dl)
+ cody — c1ds (Eq. A.l),
= a1dy — a1y — taids + tajco + thids — thico + ascy — asdy,
— tascy + tasdy + thacy — thady + cody — c1do,
= t(CLlCQ — a1d2 + bldg — blcg — asC1 + CLle + bQCl — bgdl),
+aidy — arco + azey — azdy — c1da + cady,
det(s—cld —c¢) = t(det(b —c|d —c¢) —det(a—c|d — c))
+det(a—c|d — c) (Eq. B.9 et B.7).
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First case:
det(a — c|d — ¢)) > det(b — c|d — ¢),
< 0> det(b—c|ld —c) —det(a—c|d — c),
0> t(det(b —cld—c) — det(a—cld — c)) (t >0, Eq. A.1),
o det(a—cld —¢) > t(det(b —cld—¢) — det(a—c|d — c)) +det(a—c|d —c),

< det(a—c|d — ¢) > det(s — c|d — ¢) (Eq. B.10).
det(a — c|d — ¢) > det(b — c|d — ¢),
< 0> det(b—c|d —c) —det(a—c|d — ¢),

& det(b — ¢|d — ¢) — det(a — ¢|/d — ¢) < t(det(b —cld—¢) — det(a—c|d - c))
(t €10,1], Eq. A.1),

& det(b—cjd—¢) < t(det(b “cld - ¢) — det(a—c|d — c)) +det(a—¢|d — ¢),

< det(b —c|d — ¢) < det(s — c|d — ¢) (Eq. B.10).
Then, if det(a — c|d — ¢) > det(b — c|d — ¢),

det(a — c|d — ¢) > det(s — c|d — ¢) > det(b — c|d — ¢) (Eq. B.11 et B.12).
Second case:

det(a — c|d — ¢) < det(b — c|d — ¢),

< 0 < det(b—c|ld —c) —det(a—c|d —c),

s0< t(det(b —c|d —¢) — det(a— c|d — c)) (t >0, Eq. A.1),

o det(a—cld—c¢) < t(det(b —cld—¢) — det(a—c|d — c)) +det(a—c|d —c),

< det(a—c|d — ¢) < det(s — c|d — ¢) (Eq. B.10).
det(a — c|d — ¢) < det(b — c|d — ¢),
< 0 <det(b—c|d—c)—det(a—c|d—c),

& det(b — ¢|d — ¢) — det(a — ¢|/d — ¢) > t(det(b —cld—¢) — det(a—c|d c))
(t €10,1], Eq. A.1),
& det(b —cjd —¢) > t(det(b —cld—¢) — det(a—c|d — c)) +det(a— ¢|d — ¢),
< det(b —c|d — ¢) > det(s — c|d — ¢) (Eq. B.10).
Then, if det(a — ¢|d — ¢) < det(b — c|d — ¢),

det(a — c|d — ¢) < det(s — c|d — ¢) < det(b — c|d — ¢) (Eq. B.13 et B.14).
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Appendix C

Some Proofs

In order to make the reading of this report easier, some proofs are written here.

C.1 Proof of Proposition 2.1.1

Proposition C.1.1 Let x € R? be a point and Seg(ey;,ez;) a segment with x & Seg(ey,,es,). Then

det(x — ey, |es; —ey;) - det(x; — ey, les; —e1,) >0V
det(er; —x[x; —x) - det(ey, —x|x; —x) >0
S det(x; —ey e, —e;) >0 V (pdet(x; —ey,[x —ey;) >0V
(e det(x; —eg;|x —ey;) <O0.

with
C _ 1 Zf det(x — ey ‘egj — elj) >0,
* —1 otherwise.

Proof We aim to prove that:

det(x — ey, |ex, —ey;) -det(x; — ey, lex;, —e;;) >0V
det(er; —x|x; —x) - det(ez; —x|x; —x) >0
(e det(x; —ey;les; —eq;) >0 V (pdet(x; —eq [x —e;) >0V
(e det(x; —ez;[x —ey;) < 0.

To make this easier to read, in the following, det(a — b|c — b) is denoted d(a, b, ¢).
Two cases are possible: (, = —1 and {, =1 (Eq. C.2).
First case:

G=—-1< d(x,e1j7e2j) <0 (Eq: C2>

Then we want to prove:

d(xi,e1;,e2,) <0 V d(ey,,x,x;) - d(ez;,x,%x;) >0 &
d(xi,e1;,ez,) <0 V d(x;,e1,,x) <0 V det(x;lez;)x >0 (Eq. C.3 et C.4).

d(x;,e1,,e2,) <0 V d(x;,ez,,x) >0
< d(x;,e1;,e,) <0V d(x;ez,x) >0 A dx;,e;,x) >0
Vod(xi,e9;,%x) >0 A d(xy,eq;,x) <0,
& d(x4,e1;,e,) <0 V d(x4,e;,x) >0 A d(xg,e;,x) >0
Vod(xg,ez;,x) >0 A d(xg,er,,x) <0 A d(x,eq;,er;) <0 (Eq. C4),
& d(xj,eq;,e,) <0 V d(x4,ez,x) >0 A d(x;,e1,,x) >0
Vo d(xi,e1;,e2,) <0 (Eq. B.4),
d(xi,e1;,e2,) <0 V d(x;,ez,,x) >0
& d(x4,e1;,e2,) <0 V d(x;,ez,,x) >0 A d(x;,er;,x) > 0.
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d(xi,e1;,e2,) <0 V d(x;,e1,,x) <0
& d(xi,e1;,e2,) <0 V d(xj,ez,x) <0 A d(x;,ep;,x) <0
Vod(xi,e9;,%x) >0 A d(xy,eq;,x) <0,
& d(xg,e1;,e,) <0 V d(x4,e,,x) <0 A d(x4,e1;,x) <0
Vod(xi,e9;,x) >0 A d(x,e;,x) <0 A d(x,er;,es;) <0 (Eq. C4),
& d(xi,e1;,e2,) <0 V d(xj,ez,x) <0 A d(x;,ep,;,x) <0
Vo d(xi,eq;,e2,) <0 (Eq. B.4),
d(xi,e1;,e2,) <0 V d(x;,e1,,x) <0
& d(xi,e1;,e2,) <0 V d(x;,e2,,x) <0 A d(x;,er,;,x) <0.

d(xi,e1;,e2,) <0 V d(x;,e;,x) <0 V d(x;,ez,x) >0,
& d(xg,e1;,e;,) <0 V d(xs,er;,x) >0 A d(xg,er,x) >0
Vo d(x;,e1,,x) <0 A d(xq,e2,,x) <0 (Eq. C.5and C.6),
< d(x;,e1;,e2,) <0 V d(x;,eq;,x) - d(x;, e;,x) > 0.
The Proposition C.1.1 is then verified when ¢, = —1.

Second case:
CI =1& d(x,elj,egj) >0& d(x,egj,elj) <0 (Eq: C.2 and B3)

We now aim to prove that:
d(xi,e1;,e2,) >0 V d(ey,,x,x;) - d(eg;,x,%;) >0
=4 d(xi,elj,egj) >0V d(xi,elj,x) >0V d(Xi,egj,X) <0 (Eq C.3 and 07)
= d(xi,egj,elj) <0V d(xi,elj,x) >0V d(Xi,egj,X) <0 (Eq. B3)

d(x;,ez;,e1,) <0 V d(x;,ez,,x) <0
& d(xi,eg;,e1,) <0V d(x,ez,x) <0 A d(xj,e1,,x) <0
Vod(xi,e9;,x) >0 A d(xy,eq;,x) >0,
& d(x4,ez;,e1,) <0 V d(xg,e,,x) <0 A d(x4,er;,x) <0
Vo d(xg,ez;,x) <0 A d(x4,e1,,x) >0 A d(x,eq;,e;) <0 (Eq. C.7),
& d(xi,eg;,e1,) <0 V d(x4,ez,x) <0 A d(x;,e1,,x) <0
Vo d(xi,es;,e1,) <0 (Eq. B.4),
d(x;,e2;,e1,) <0 V d(x;,ez,,x) <0
< d(x;,ez;,e1,) <0V d(xg,eq;,x) <0 A d(xg,eq;,x) <O0.

d(xi,e9;,e1,) <0 V d(x;,eq,,x) <0
& d(xi,ez;,e1,) <0 V d(x;,ez,,x) >0 A d(x;,er;,x) >0
Vod(xi,eq;,%x) <0 A d(xy,eq;,x) >0,
& d(x;,ez;,e1,) <0 V d(xg,e;,x) >0 A d(xy,eq;,x) >0
Vod(xi,e9;,x) <0 A d(x,e1;,x) >0 A d(x,ez;,e;) <0 (Eq. C.7),
& d(xi,ez;,e1,) <0 V d(xj,ez,x) >0 A d(x;,ep;,x) >0
Vo d(x;,es;,e1;) <0 (Eq. B.4),
d(xi,e9;,e1,) <0 V d(x;,e1,,x) <0
& d(xg,e1;,e,) <0 V d(x4,e;,x) >0 A d(xy,e;,x) > 0.

d(x;,ez;,e1,) <0 V d(x;,er,,x) >0 V d(x;, ez, x) <0,
& d(xi,ez;,e1;) <0 V d(x,e1,,x) >0 A d(x;,e,,x) >0V
d(x,e1;,x) <0 A d(x4,es,,x) <0 (Eq. C.8 and C.9),
& d(xi,ez;,e1,) <0 V d(x,er;,x)-d(x;,ez;,x) > 0.
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Proposition C.1.1 is then verified when (, = 1.

C.2 Proof of Proposition 2.1.2

Proposition C.2.1 Let Seg(xi,x3) be a segment with x; € R? and x5 € R?, and Seg(ey;,e2;) be a segment

with Seg(x1,x2) N Seg(ey,,ez,) =0. Then

Vx € Seg(x1,X2),(x det(x; —eq;]ex;, —e1;) <0 A (pdet(x; —ep;[x—eq;) <O A
Cedet(x; —eg;|x —ez,) >0

& (g det(x; —eq,|x; —e1,) <0 A (G, det(x; —eq,|xo —ey,) <O A
Cop det(x; —eg,x1 —e1;) >0 A (g, det(x; —eg,|[xo —e1;) >0 A
Co, det(x; —ey;lez;, —e1,) <0 A (g, det(x; — ey, |es; —eq;) <0.

Proof According to Proposition B.3.1
CI 6 [Cﬂ,l I CIQ]?

det(xi — ey, |X — elj) S [det(xi —ey, |X1 — elj), det(xi — ey, |X2 — ey )],
det(x; —ey,[x —eg,) € [det(x; — ey,;|x1 — eg;),det(x; — ey;|x2 —ey,)].

Then,

Vx € Seg(x1,X2), (; det(x; —eq;]ex;, —ey;) <0 A
Vx € Seg(x1,X2), ( det(x; —eq;[x —ey,)
Vx € Seg(x1,xX2), (z det(x; — ez;[x — e3;)
&[Cay, Capl det(x; —eq,|ea, —eq;) <O A
[Car» Ca] - [det(x; — eq;x1 — ey, ), det(x; — ey, [x2 —e1,)] <O A
[Cay» Can] - [det(x; — e2,|x1 — €2, ), det(x; — ey, |x2 —e,)] >0
E(p, det(x; —eqlex; —er;) <0 A (g, det(x; —eq;ley; —e;) <O0A

<O0A
>0

oy det(x; —eq,|x1 —e1;) S0 A (g, det(x; —eq;[x2 —eq;) <O A
Cop det(x; —ey,|x1 —e1,) <0 A (g, det(x; —eq;[x2 —ep;) <O A
(o, det(x; — ez, [x1 — 62]) >0 A (g, det(x; —eg;[xz —ez,) >0 A
Cop det(x; — ez, [x1 —€2,) 20 A (g, det(x; — eg;[x2 —ez;) > 0.

It can be noticed that
Coy det(x; — ey |ez;, —e1,) <0 A (g, det(x; —eq,lez, —e1,) <0 (o = (o,

Then it can be deduced

oy det(x; — ey, |ez; —e1,) <0 A (p, det(x; —eq,lex, —e1,) <0 A
Coy det(x; —eq,|x1 —e1;) <0 A (p, det(x; —eq;[x2 —ep;) <OA
Cop det(x; — e, [x1 —e1,) <0 A (g, det(x; —eq,[xz —e1;) <OA
oy det(x; —eg;|x1 —e2,) >0 A (4, det(x; —eg;[x2 —eg;) >0 A
Cop det(x; —eg;|x1 —€2,) >0 A (u, det(x; —eg;|x2 —es;) >0
(e, det(x; —eq;]ex; —e1;) <0 A (u, det(x; —ep;les;, —e1;) <O A
Coy det(x; — e, |x1 —e1;) S0 A (g, det(x; —eq;[x2 —ep;) <O A
oy det(x; —eg;|x1 —€2,) >0 A (g, det(x; —eg;[x2 —es;) >0

&Vx € Seg(x1,X2), G det(x; —e1;lex; —ey;) <0 A
Cedet(x; —eq;[x—e1;) <0 A (det(x; — ey [x —e;) >0 (Eq. C.10).
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C.3 Proof of Proposition 2.2.2

Ee;(Seg(XhXQ)) = {x; € R? | Vx, € Seg(x1,x2), (Xz‘VXs)e-;}
= {x; € R? | Vx, € Seg(x1,Xs), (s det(x; — ey lex, —ey,) >0V
Csdet(x; — ey, |xs —eq;) >0 V (sdet(x; —eg,|xs —ea,) <OV
[x; Uxg|Nley, Uey,] =0}

with,
¢ = 1 if det(xs —eq,lez, —e1;) >0,
? —1 otherwise.

It can be noticed that

Vxs € Seg(x1,X2), [x; Uxs|Nle, Uey ] =0 & [x;Uxi Uxp]Nler, Uey,] =10

Then there are two ways of writing Equation C.11

EE;; (Seg(x1,%x2)) ={x; € R? | Vx5 € Seg(x1,X2), (XiVXs)es

i
={x; € R? | Vx5 € Seg(x1,X2), (s det(x; —eq;|es, —e1,) >0V
Csdet(x; —eq,;|xs —eq;) >0 V (sdet(x; —eg, |x; —es;) <O0}U
{x; € R?| | [x; Ux,]N[er, Uey,] = 0}.

There are two cases: (z, = (g, and (g, = —(a,-

C.3.1 First case: (,, = (4,

In this case

C:L’l = ng <~ <s = Cwl = Ca:z

= (sdet(x; — ey, |ex;, —e1;) = (p, det(x; —eq;|ex; —ey,) = (u, det(x; — ey, |ez;, —e1,),

and

det(x; —e1,[xs —ey;) € [det(x; — e, [x; —e1;) Udet(x; — ey, [x2 —ey,)],

det(x; — ey, |xs —e;) € [det(x; — ey, [x1 — ey;) Udet(x; —ey;|x2 —e3,)].

Then

Vxs € Seg(x1,X2), (s det(x; —e1;|x1 —e1;) >0

Coy det(x; —eq,|x1 —e1;) >0 A (g, det(x; —eq,[x2 —eq;) >0,

J
VX € S€g(X1,X2), gs det(xi — ey, |X1 — egj) >0<
oy det(x; —eg;|x1 —e2,) >0 A (g, det(x; — ey [x2 —ey;) > 0.

According to Equations C.18, C.19 et C.14,

EE; (Seg(Xl,Xg)) = {Xi € RQ I Cgcl det(xi — e1j|e2j — elj) >0V

J

Gy det(x; —eg;[x1 —e;) >0 A (g, det(x; —eg;|x2 —ez,) >0V

Coy det(x; —eq;|x1 —e1;) >0 A (g, det(x; —eq,|xo —ey,) >0V
;)
[Xi ] Xs] n [elj @] egj] = @}

C.3.2 Second Case: (,;, = —(,,
It has to be reminded that Seg(x1,x2) N Seg(ey,,ez,) = 0. Then it can be deduced that

C-’El = 7C372 = Ce1 = Cez'
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Figure C.1: The two possible configurations.

(a) Cer = ey = 1.

(b) Cer = Cep = —1.

Figure C.2: Visible spaces in both configurations.



It appears that there are two possible configurations: (., = (., = 1 (Figure C.1a) and (., = (., = —1

(Figure C.1b).
In the first configuration (., = (., = 1) the visible space can be defined as (Figure C.2a):

EE;;(Seg(xl,xQ)) = {x; € R?|
(det(xi —ey,|x; —ey;) >0 V det(x; —eq;[x2 —eq;) < ()) A
(det(xi —eg,|x; —e,) >0 V det(x; —eg;[x2 —ey;) < O) V

[x; Ux; Uxo] N [er, Uey,| = 0}.

For the second configuration (., = (., = —1) the visible space corresponds to (Figure C.2b):

Esj(seg(X1,X2)) = {x; € R?|
(det(x; —eq,|x1 —eq,) <0 V det(x; —eq,[x2 —e1,) > 0) A
) >0)V

(det(x; — ez, [x1 —ez,) <0 V det(x; — ez, |x2 — ey,

[Xi Ux UXQ] n [elj U er] = @}

From that, it can be deduced that when (;, = —(,,

Ee. (Seg(x1,x2)) = {x; € R? |
(Cey det(x; —eq,[x1 —e1,) >0 V (g, det(x; —eq,[x2 —eq,) <0) A

<

(Cep det(x; —eg,[x1 —€2,) >0 V (., det(x; — ey, |x2 —e3,) <0)
[x; Uxi Uxo] N ey, Ueg,] = 0}.
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