
HAL Id: hal-03284571
https://univ-angers.hal.science/hal-03284571

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved SAT models for NFA learning
Frédéric Lardeux, Eric Monfroy

To cite this version:
Frédéric Lardeux, Eric Monfroy. Improved SAT models for NFA learning. International Conference
in Optimization and Learning (OLA), Jun 2021, Catania, Italy. �hal-03284571�

https://univ-angers.hal.science/hal-03284571
https://hal.archives-ouvertes.fr

Improved SAT models for NFA learning

Frédéric Lardeux[0001−8636−3870] and Eric Monfroy[0001−7970−1368]

LERIA, University of Angers, France firstname.lastname@univ-angers.fr

Abstract. Grammatical inference is concerned with the study of algo-
rithms for learning automata and grammars from words. We focus on
learning Nondeterministic Finite Automaton of size k from samples of
words. To this end, we formulate the problem as a SAT model. The gen-
erated SAT instances being enormous, we propose some model improve-
ments, both in terms of the number of variables, the number of clauses,
and clauses size. These improvements significantly reduce the instances,
but at the cost of longer generation time. We thus try to balance instance
size vs. generation and solving time. We also achieved some experimental
comparisons and we analyzed our various model improvements.

Keywords: Constraint problem modeling · SAT · model reformulation.

1 Introduction

Grammatical inference [7] is concerned with the study of algorithms for learning
automata and grammars from words. It plays a significant role in numerous
applications, such as compiler design, bioinformatics, speech recognition, pattern
recognition, machine learning, and others. The problem we address in this paper
is learning a finite automaton from samples of words S = S+∪S−, which consist
of positive words (S+) that are in the language and must be accepted by the
automaton, and negative words (S−) that must be rejected by the automaton.
A non deterministic automaton (NFA) being generally a smaller description for
a language than an equivalent deterministic automaton (DFA), we focus here on
NFA inference. An NFA is represented by a 5-tuple (Q,Σ,∆, q1, F) where Q is
a finite set of states, the vocabulary Σ is a finite set of symbols, the transition
function ∆ : Q × Σ → P(Q) associates a set of states to a given state and a
given symbol, q1 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

Not to mention DFA (e.g., [6]), the problem for NFA has been tackled from
a variety of angles. In [15] a wide panel of techniques for NFA inference is given.
Some works focus on the design of ad-hoc algorithms, such as DeLeTe2 [3] that
is based on state merging methods. More recently, a new family of algorithms
for regular languages inference was given in [14]. Some approaches are based
on metaheuristic, such as in [12] where hill-climbing is applied in the context
of regular language, or [4] which is based on genetic algorithm. In contrast to
metaheuristics, complete solvers are always able to find a solution if there exists
one, to prove the unsatisfiablility of the problem, and to find the optimal solution
in case of optimization problems. In this case, generally, the problem is modeled

2 F. Lardeux et al.

as a Constraint Satisfaction Problem (CSP [11]). For example, in [15], an Integer
Non-Linear Programming (INLP) formulation of the problem is given. Parallel
solvers for minimizing the inferred NFA size are presented in [8, 9]. The author
of [10] proposes two strategies, based on variable ordering, for solving the CSP
formulation of the problem.

In this paper, we are not interesting in designing or improving a solver, but
we focus in improving models of the problem in order to obtain faster solving
times using a standard SAT solver. Modeling is the process of translating a
problem into a CSP consisting in decision variables and constraints linking these
variables. The INLP model for NFA inference of [15] cannot be easily modified
to reduce the instances: to our knowledge, only Property 1 of our paper could be
useful for the INLP model, and we do not see any other possible improvement.
We thus start with a rather straightforward conversion of the INLP model into
the propositional satisfiablity problem (SAT [5]). This is our base SAT model to
evaluate our improvements. The model, together with a training sample, lead to
a SAT instance that we solve with a standard SAT solver. The generated SAT
instances are very huge: the order of magnitude is |S|.(|ω|+1).k|ω| clauses, where
k is the number of states of the NFA, ω is the longest word of S, and |S| is the
number of words of the training sample. We propose three main improvements to
reduce the generated SAT instances. The first one prevents generating subsumed
constraints. Based on a multiset representation of words, the second one avoid
generating some useless constraints. The last one is a weaker version of the first
one, based on prefixes of words. The first improvement returns smaller instances
than the second one, which in turn returns smaller instances than the third
one. However, the first improvement is very long and costly, whereas the third
one is rather fast. We are thus interested in balancing generation and solving
times against instance sizes. We achieved some experiments with the Glucose
solver [1] to compare the generated SAT instances. The results show that our
improvements are worth: larger instances could be solved, and faster. Generating
the smallest instances can be too costly, and the best results are obtained with
a good balance between instance sizes and generation/solving time.

This paper is organized as follows. In Section 2, we describe the problem
and we give the basic SAT model. We also evaluate the size of the generated
instances. Section 3 presents 3 model improvements, together with sketches of
algorithms to generate them. Section 4 exposes our experimental results and
some analysis. We finally conclude in Section 5.

2 Modeling the problem in SAT

The non-linear integer programming (INLP) model of [15, 9] cannot be easily
improved or simplified. Indeed, the only improvement proposed in [15] and [9]
corresponds to Property 1 (given in the next section). In this section, we thus
present a SAT formulation of the NFA inference problem. This SAT model per-
mits many improvements to reduce the size of the generated SAT instances.

Improved SAT models for NFA learning 3

The NFA inference problem Consider an alphabet Σ = {s1, . . . , sn} of n
symbols; a training sample S = S+ ∪ S−, where S+ (respectively S−) is a set
of positive words (respectively negative words) from Σ∗; and an integer k. The
problem consists in building a NFA of size k which validates words of S+, and
rejects words of S−. The problem can be extended to an optimization problem:
it consists in inferring a minimal NFA for S, i.e., an NFA minimizing k. However,
we do not consider optimization in this paper.

Notations Let A = (Q,Σ, q, F) be a NFA with: Q = {q1, . . . , qk} a set of
states, Σ a finite alphabet (a set of symbols), q the initial state, and F the set of
final states. The symbol λ represents the empty word. We denote by K the set
{1, . . . , k}. A transition from qj to qk with the symbol si is denoted by τsi,qj→qk .
Consider the word w = w1 . . . wn with w1, . . . , wn in Σ. Then, the notion of
transition is extended to w by Tw,qi1→qin+1

which is a sequence of transitions
τw1,qi1→qi2

, . . . , τwn,qin→qin+1
. The set of candidate transitions for w between the

states qi1 and qil in a NFA of size k is Tw,qi1→qil
= {Tw,qi1→qil

| ∃i2, . . . iil−1 ∈
K, Tw,qi1→qil

= τw1,qi1→qi2
, . . . , τwl,qil−1→qil

}.

A SAT model Our base model is a conversion into SAT of the nonlinear integer
programming problem given in [15] or [9]. Consider the following variables:

– k the size of the NFA we want to build,

– F = {f1, . . . , fk} a set of k Boolean variables determining whether states q1
to qk are final or not,

– and ∆ = {δs,qi→qj |s ∈ Σ and i, j ∈ K} a set of n.k2 variables determining
whether there is or not a transition δs,qi→qj , i.e., a transition from state qi
to state qj with the symbol s, for each qi, qj , and s.

A transition Tw1...wn,qi1→qin+1
= τw1,qi1→qi2

, . . . τwn,qin→qin+1
exists if and only

if the conjunction d = δw1,qi1→qi2
∧ . . . ∧ δwn,qin→qin+1

is true. We call d a
c transition, and we say that d models Tw1...wn,qi1→qin+1

. We denote by Dw,qi,qj

the set of all c transitions for the word w between states qi and qj .

The problem can be modeled with 3 sets of equations:

1. If the empty word λ is in S+ or in S−, we can determine whether the first
state is final or not:

if λ ∈ S+, f1 (1)

if λ ∈ S−, ¬f1 (2)

2. For each word w ∈ S+, there is at least a transition starting in q1 and ending
in a final state qj :

∨

j∈K

∨

d∈Dw,q1,qj

(

d ∧ fj
)

(3)

4 F. Lardeux et al.

With the Tseitin transformations [13], we create one auxiliary variable for
each combination of a word w, a state j ∈ K, and a transition d ∈ Dw,q1,qj :

auxw,j,d ↔ d ∧ fj

For each w, we obtain a formula in CNF:
∧

j∈K

∧

d∈Dw,q1,qj

[(¬auxw,j,d ∨ (d ∧ fj))] (4)

∧

j∈K

∧

d∈Dw,q1,qj

(auxw,j,d ∨ ¬d ∨ ¬fj) (5)

∨

j∈K

∨

d∈Dw,q1,qj

auxw,j,d (6)

d is a conjunction, and thus ¬auxw,j,d ∨ d is a conjunction of |w| binary
clauses: (¬auxw,j,d ∨ δw1,q1→qi2

) ∧ . . . ∧ (¬auxw,j,d ∨ δw|w|,qi|w|
→qi|w|+1

).

|Dw,q1,qj | = k|w|−1 since for each symbol of w there is k possible moves
in the NFA, except for the last symbol which leads to qj . Thus, we have
(|w|+1).k|w| binary clauses for Constraints (4), k|w| (|w|+2)-ary clauses for
Constraints (5), and one k|w|-ary clause for Constraints (6). We have added
k|w| auxiliary variables.

3. For each w ∈ S− and each state qj , either there is no complete transition
from state q1 to qj , or qj is not final:

¬





∨

j∈K

∨

d∈Dw,q1,qj

(

d ∧ fj
)



 (7)

Constraints (7) are already in CNF, and we have k|w| (|w + 1|)-ary clauses.

Thus, the constraint model Mk for building a NFA of size k is:

Mk =
∧

w∈S+

(

(4) ∧ (5) ∧ (6)
)

∧
∧

w∈S−

(7)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the models Considering ω+, the longest word of S+, and ω−, the
longest word of S−, the number of constraints in model Mk is bounded by:

– |S+|.(|ω+|+ 1).k|ω+| binary clauses;
– |S+|.k|ω+| (|ω+|+ 2)-ary clauses;
– |S+| k|ω+|-ary clauses;
– |S−|.k|ω−| (|ω−|+ 1)-ary clauses.

The number of Boolean variables is bounded by:

– k variables in F determining final states;
– n.k2 variables determining existence of transitions;
– |S+|.k.|ω+| auxiliary variables auxw,j,d.

It is thus obvious that it is important to improve the model Mk.

Improved SAT models for NFA learning 5

3 Improving the SAT model

We now give some properties that can be used for improving the SAT model.
By abuse of language, we will say that a model M1 is smaller than a model
M2 whereas we should say that the SAT instance generated with M1 and data
D is smaller than the instance generated with M2 and D. A first and simple
improvement is based on the following property.

Property 1 (Empty word λ). If λ ∈ S−, then each c transition ending in q1 does
not have to be considered when generating the constraints related to the word
w ∈ S.

Indeed, if w is positive, it cannot be accepted by a transition ending in q1;
similarly, if w is negative, ¬d∨¬f1 is always true. When λ ∈ S+, the gain is not
very interesting: f1 can be omitted in Constraints (7), (4), and (5). This does not
really reduce the instance, and a standard solver would simplify it immediately.

Whereas a transition is an ordered sequence, the order of conjuncts in a
c transition is not relevant, and equal conjuncts can be deleted. Thus, a c transi-
tion may model several transitions, and may correspond to several words. By
abuse of language, we say that a c transition ends in a state qj if it corresponds
to at least a transition ending in qj . Thus, a c transition may end in several
states. We consider an order on c transitions. Let d and d′′ be two c transitions.
Then, d � d′′ if and only if there exists a c transition d′ such that d ∧ d′ = d′′.
In other words, each transition variable δs,qi→qj appearing in d also appears in
d′′. This order is used in the two first model improvements which are based on
c transitions. The third model improvement is based on transitions. We now
consider some redundant constraints.

Property 2 (Redundant constraints). When a state qi cannot be reached, each
outgoing transition becomes free (it can be assigned true or false), and qi can be
final or not. In order to help the solver, all the corresponding variables can be
assigned an arbitrary value. For each state qj , j 6= 1:

(

∧

i∈K,i6=j

∧

s∈Σ

¬δs,qi→qj

)

→ ¬fj ∧
(

∧

i∈K

∧

s∈Σ

¬δs,qj→qi

)

In CNF, these constraints generate (for all qj), (k−1).(k.n+1) redundant clauses
of size n.(k − 1) + 1.

These constraints are useful when looking for a NFA of size k when k is not
the minimal size of the NFA. Compared to SAT instance size, these redundant
constraints can be very helpful without being too heavy.

Note that in our implementation, for all the models, we always simplify in-
stances using Property 1 and removing duplicate transition variables in c transitions
(i.e., δs,qi→qj ∧ . . . ∧ δs,qi→qj is simplified into δs,qi→qj ∧ . . .). Moreover, we also
generate the redundant constraints as defined in Property 2.

6 F. Lardeux et al.

Improvement based on c transitions subsumption. This first improve-
ment consists in removing tautologies for negative words, and some constraints
and unsatisfiable disjuncts for positive words.

Property 3 (c transition subsumption). Let v be a negative word from S−, and
¬dv ∨ ¬qj be a Constraint (7) generated for the c transition dv for v ending in
state qj . We denote this constraint cv,dv,qj . Consider a positive word w from
S+, and dw a c transition for w ending in qj such that dv � dw. Then, each
dw ∧ fj will be false due to cv,dv,qj . Thus, Constraints (4) and (5) corresponding
to w, dw, and qj will force to satisfy ¬auxw,j,dw

; hence, they can be omitted and
auxw,j,dw

can be removed from Constraints (7). Similarly, consider ω from S−,
and dω a c transition for w ending in qj such that dv � dw. Then, Constraint (7),
¬dv∨¬qj , will always be true (due to the constraint cv,dv,qj), and can be omitted.

We can compute the size of the reduced SAT instance when the smaller word
is a prefix. Let v ∈ S− and w ∈ S be words such that w = v.v′, i.e., v ⊆ w and
v is a prefix of w. Then, using Property 3: if w ∈ S−, the number of clauses
generated for w is reduced to (k−1).k|w|−1 clauses of size |w+1|; if w ∈ S+, the
number of clauses generated for w is reduced to (|w| + 1).(k − 1).k|w|−1 binary
clauses for Constraints (4), (k−1).k|w|−1 (|w|+2)-ary clauses for Constraints (5),
and one clause of size (k− 1).k|w|−1 for Constraint (6). The number of auxiliary
variables is reduced to (k − 1).k|w|−1.

Operationally, we have a two step mechanism. First, for each negative word,
each c transition together with its ending state is generated and stored in a
database of couples (c transition, ending state) that we call c couple. Then,
for generating constraints for a word w, each of its c couple is compared to
the database. If a c transition for w ending in qj is smaller than a c transition
from the database also ending in qj , then the corresponding constraints are not
generated, as shown above. We call Mk,all this reduced model.

Improvement based on Multisets. Although efficient in terms of generated
instance sizes, the previous improvement is very costly in memory and time.
It becomes rapidly intractable. This second improvement also uses Property 3.
It is a weakening of the above operational mechanism that does not omit every
subsumed c transition. This mechanism is less costly. Hence, generated instances
will be a bit larger, but the balance generation time against instance size is very
good. The idea is to order words in order to search in a very smaller database
of c couples (c transition, ending state) when generating constraints for a word
w. Moreover, this order will also imply the order for generating constraints.

We associate each word to a multiset which support is the vocabulary Σ.

The word w, is thus associated with the multiset ms(w) = {s
|w|s1
1 , . . . , s

|w|sn
n }

where |w|si is the number of occurrences of the symbol si in w. Note that several
words can have the same multiset representation. Based on multiset inclusion

({s
a′
1

1 , . . . , s
a′
n

n } ⊆M {sa1
1 , . . . , san

n } ⇔ ∀i, a′i ≤ ai), we can now define the notion
of word inclusion, noted ⊆ω. Consider w and w′, two words of Σ∗, then:

w′ ⊆ω w ⇔ ms(w′) ⊆M ms(w)

Improved SAT models for NFA learning 7

Consider a sample S = S+ ∪ S−. Let ⊤(S) be the multiset defined as

⊤(S) = {s
1+maxw∈(S){|w|s1}
1 , . . . , s

1+maxw∈(S){|w|sn}
n }

and ⊥ = {s01, . . . , s
0
n}. Then, ⊤(S) represents words which are not in the sample

S, and ⊥ represents the empty word λ which may be in S.
Consider the sample S = S+ ∪ S−. Let MS(S) = {ms(w)|w ∈ S+ ∪ S−} be

the set of the representations of words of S. Then, (MS(S) ∪ {⊥,⊤(S)},⊆M)
is a lattice. Let m be a multiset of MS(S). Then, inf(m) is the set of multisets
{m′ ∈ MS(S) | m′ ⊆M m}. This lattice of multisets defines the data structure
used for constraint generation. For generating constraint of a wordw of a multiset
m, we now only compare its c couples with the database of c couples of words
w′ ∈ S− with w′ ⊆ω w, i.e., words represented by multisets smaller than m.

The negative words that allow to reduce the most, are the ones represented
by the smallest multiset. We thus also propose a mechanism to reduce the
database (c transition, ending state) with the most useful c couples, i.e., the
ones from smallest words. Let level(m) be the ”level” of the multiset defined by:
level(m) = 0 if m = ⊥, 1 +maxm′∈inf(m)(level(m

′)) otherwise. Given a multi-
set m, and a threshold l, the base function returns all the multisets m′ of level
smaller than l, and such that m′ ⊆M m: base(p, l) = {n ∈ inf(p) | level(n) ≤
l}
⋃
(
⋃

p′∈inf(p) base(p
′, l)
)

if p 6= ⊥, ∅ otherwise.
Based on Property 3, c couples of the negative words of these multisets

will be used to reduce constraint generation of the words of m. We call this
model Mk,mset,l, with l a given threshold. If base is called with the threshold
0, the database will be empty and the complete instance will be generated:
Mk,mset,0 = Mk. If base is called with the maximum level of the lattice, then,
the database will be the largest one built with all the smaller words, and we
will thus obtain the smallest instances with this notion of lattice. However, the
larger the threshold, the longer the generation time, and the smaller the SAT in-
stance. With the maximal threshold, the generated instances will be a bit larger
than with the previous improvement (Mk,all ⊆ Mk,mset,max), but the genera-
tion is significantly faster. For lack of space, we cannot give here the complete
algorithms for generating this improved model.

Improvements based on Prefixes. Although faster to generate, the second
model is still costly. We now propose a kind of weakening of Property 3, restrict-
ing its use to prefix.

Property 4 (Prefix). Let w ∈ S be a word from the sample. Consider D∗
w,qi,qj

the set of c transitions defined by:

D∗
w,qi,qj

=
∨

l∈K,l 6=j

(

(

∨

du∈D∗
u,qi,ql

du ∧
(

∨

dv∈D∗
v,ql,qi

dv

)

)

)

if w = u.v, and u ∈ S−; otherwise, D∗
w,qi,qj

= Dw,qi,qj . Then,

∀d ∈ Dw,qi,qj \D
∗
w,qi,qj

,¬d ∨ ¬fj

8 F. Lardeux et al.

Hence, this property allows us to directly generate the reduced constraints, for
negative or positive words, without comparing c couples with a database.

Let w = u1 . . . un be a word from S such that u1 ∈ S−, u1.u2 ∈ S−, and
u1 . . . un−1 ∈ S− and for each i < n, there does not exist a decomposition
ui = u′

i.u
′′
i such that u1 . . . ui−1.u

′
i ∈ S−. Then, if w ∈ S+, using several times

Property 4, Constraints (4), (5), and (6) can be replaced by Constraints (8), (9),
and (10) where l0 = q1 and N = [1, . . . , n]:

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

[(¬auxw,l1,...,ln ∨ (d1 ∧ . . . ∧ dn ∧ fj))] (8)

∧

i∈N,li∈K\{lj|1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(auxw,l1,...,ln ∨ ¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (9)

∨

i∈N,li∈K\{lj |1≤j<i}

∨

i∈N,di∈Dui,qli−1,ql

auxw,l1,...,ln (10)

Similarly, if w ∈ S−, using several times Property 4, Constraints (7) can be
replaced by Constraints (11):

∧

i∈N,li∈K\{lj|1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (11)

The number of clauses and variables generated for w ∈ S+ is reduced to:

– (|w| + 1).
(
∏n

i=1(k − i+ 1)
)

.k|w|−n binary clauses for Constraints (8),

–

(
∏n

i=1(k − i+ 1)
)

.k|w|−n (|w| + 2)-ary clauses for Constraints (9),
– one clause of size

(
∏n

i=1(k − i+ 1)
)

for Constraint (10),
– and the number of auxiliary variables is reduced to

(
∏n

i=1(k − i+ 1)
)

.

For w ∈ S−, Constraints (11) are already in CNF and they correspond to
(
∏n

i=1(k − i + 1)
)

.k|w|−n (|w + 1|)-ary clauses. Interestingly, these new counts
of clauses (and more especially the factor k − i + 1 with i = n) also give us a
lower bound for k: k must be greater than or equal to n, the number of nested
prefixes in a word. This new improved model, that we call Mk,pref , is not much
larger than Mk,mset, but it is significantly faster to generate.

Improvement order. We have defined various models for inference of NFA of
size k that can be ordered by their sizes:Mk,all ⊆ Mk,mset,l max ⊆ mk,pref ⊆ Mk.
Note that Mk,mset,l with l 6= l max, and Mk,pref cannot be compared in the
general case; their sizes depend on the instance, the number and size of prefixes,
and on the given level l. In the next section, we compare these models not only
in terms of instance size, but also in terms of generation and resolution time.

4 Experimental results

We suspect that, with respect to their generation time, the models are in reverse
order of the order given above. Thus, we are interested in findng the best balance
between three parameters: model size v.s. generation time + SAT solving time.

Improved SAT models for NFA learning 9

The experiments were carried out on a computing cluster with Intel-E5-2695
CPUs and 128 GB of memory. Running times were limited to 2 hours for the
generation of SAT instances, and 3 hours to solve them. We used the Glucose [1]
SAT solver with the default options.The benchmarks are based on the training
set of the StaMinA Competition (http://stamina.chefbe.net). We selected 12
instances1 with a sparsity s ∈ {12.5%, 25%, 50%, 100%} and an alphabet size
|Σ| ∈ {2, 5, 10}. For each of them, we limited the number of words to |S+| =
|S−| = 10 and 20 for a maximal size of words equal to 7 and to |S+| = |S−| = 20
for a maximal size of words equal to 10. We generate CNF instances for different
NFA sizes (k ∈ {3, 4, 5}). Consequently, we obtained 96 instances.

Table 1 presents a synthetic view of our experiments. The 4 first columns de-
tail the instances: size of the NFA (k), size of the longest word (|ω|), number of
positive (and negative) words (|S+|), and the model. The next columns provide
average values over the 12 instances for the modeling time (TModel), the number
of variables (#V ar), the number of clauses (#Cl), the solving time (Tsolve), and
the total modeling+solving time (Ttotal). We do not indicate the standard devi-
ations but they are very close to zero. ”-” indicates that no result was obtained
before the time-out. From Table 1, we can draw some general conclusions about
model improvements. As expected, Mk,all always returns the smallest instances,
and also the instances that Glucose solve the fastest. However, the generation
time of these instances is very long. Thus, the total CPU time, i.e., generation
+ solving, is not the best. We can also see that when we increase the maximum
length of words, this model does not permit to generate the instances in less
than 2 hours (e.g., Table 1, for k = 4, ω = 10, and |S+| = 20). This model is
thus tractable, but only for small instances, with short words and small samples.

Mk,mset,lmax
generates instances a bit larger than Mk,all. Consider the nega-

tive word v = aaab, and the positive word w = ba. Mk,all uses some c transitions
of v to ignore some clauses of w that Mk,mset,lmax

will not detect. For example,
a loop on aaa from v with the same transition in v is used in Mk,all but not in
Mk,mset,lmax

. However, with the multiset data structure, we obtain a much faster
generation of instances. The total time is thus more interesting with Mk,mset,lmax

than with Mk,all. The generation time of Mk,mset,lmax
is still very high, and its

interest is not always significant. For large instances, not presented in the table,
Mk,mset,lmax

could not be generated in less than 2 hours.

For Mk,pref , we can see that the generation time becomes reasonable, and
much smaller than with the two previous improvements. Although smaller than
with Mk, the instances are larger than withMk,mset,lmax

. In various experiments,
this improvement was the best for the total time. Note also that our training
samples are not so big, and that the number of prefixes is not so important. With
larger |S+|, for a fixed k, we should obtain better performances of Mk,pref .

We also tried two more improvements of Mk,mset,l with l ∈ {1, 3}. The gen-
eration time of these models is logically faster than the ones of Mk,mset,lmax

; as
planned, the SAT instances are also larger. However, we were pleasantly sur-
prised by the total time which is much better than for Mk,mset,lmax

. The three

1 We conserved the ”official” name used during the Stamina Competition.

10 F. Lardeux et al.

Table 1. Comparison on 96 generated instances between the models mk,all,
mk,mset,lmax , mk,mset,1, mk,mset,3, and mk,pref . Instances are grouped by size of the
NFA (k), size of the longest word (|ω|), and number of positive (and negative) words
(|S+|). For each line, obtained values are average on 12 instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

3

7

10

mk 0.19 6742 61366 0.22 0.41
mk,all 0.68 4310 37789 0.14 0.82

mk,mset,lmax 0.17 4742 42020 0.14 0.31
mk,mset,1 0.18 5517 49484 0.16 0.34
mk,mset,3 0.17 4822 42850 0.14 0.31
mk,pref 0.18 6466 58645 0.2 0.38

20

mk 0.48 14830 134302 1.58 2.06
mk,all 2.62 8274 72569 1.64 4.26

mk,mset,lmax 0.42 8929 79030 1.22 1.64
mk,mset,1 0.45 11179 99811 1.39 1.84
mk,mset,3 0.46 9148 81188 1.27 1.73
mk,pref 0.43 13689 123390 1.71 2.14

10 20

mk 11 303519 3276974 397.68 408.68
mk,all 746.08 108417 1172093 79.98 826.06

mk,mset,lmax 9.87 122423 1313463 143.32 153.19
mk,mset,1 9.04 208610 2255307 233.97 243.01
mk,mset,3 9.06 134720 1443357 156.24 165.3
mk,pref 8.88 281408 3040802 270.04 278.92

4

7

10

mk 1.46 45014 428775 10.3 11.76
mk,all 19.42 32956 302835 5.59 25.01

mk,mset,lmax 1.64 35362 328938 5.58 7.22
mk,mset,1 1.42 39242 369600 7.12 8.54
mk,mset,3 1.56 36048 336637 5.58 7.14
mk,pref 1.3 43655 414141 10.69 11.99

20

mk 3.93 100984 950473 83.55 87.48
mk,all 93.48 64428 588293 74.55 168.03

mk,mset,lmax 4.33 68041 628400 43.08 47.41
mk,mset,1 3.65 83463 777005 32.32 35.97
mk,mset,3 4.27 70720 653396 41.36 45.63
mk,pref 3.37 94829 887943 55.88 59.25

10 20

mk 187.59 4670833 53350566 2084.78 2272.37
mk,all - - - - -

mk,mset,lmax 919.56 2304788 26010946 651 1570.56
mk,mset,1 173.82 3336332 38121787 658.7 832.52
mk,mset,3 375.34 2345238 26693196 107.13 482.47
mk,pref 162.45 4405201 50260648 1331.92 1494.37

5 7

10

mk 6.61 201651 1962754 215.06 221.67
mk,all 232.47 161828 1526044 51.82 284.29

mk,mset,lmax 14.38 169816 1619550 171.92 186.3
mk,mset,1 7.24 182445 1759734 180.98 188.22
mk,mset,3 10.76 172660 1653301 210.1 220.86
mk,pref 6.26 196894 1908623 176.12 182.38

20

mk 19.37 456976 4382919 1268.18 1287.55
mk,all 1158.5 320689 2995308 631.14 1789.64

mk,mset,lmax 44.01 333799 3148787 1115.9 1159.91
mk,mset,1 20.24 398074 3784691 1192.49 1212.73
mk,mset,3 32.82 348339 3288509 1309.17 1341.99
mk,pref 16.54 434008 4141453 1203.36 1219.9

models Mk,pref , Mk,mset,1, and Mk,mset,3 are very difficult to compare. Depend-
ing on the instance, on the number and size of prefixes, on multiset inclusion,
one can be better than the other. But for all the instances we tried, one of this 3
models was always the best of the 6 models, and they were better thanMk. Table
2 presents a focus on 2 specific instances (25 training and 35 training, both with
|Σ| = 5) with a fixed value for k, |ω|, and |S+|. The columns correspond exactly
to those of Table 1. For the first instance, we clearly see the order presented in
Section 3 for instance sizes of improved models. We can also see the reverse order

Improved SAT models for NFA learning 11

Table 2. Focus on 2 specific instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

25 training

5 7 20

mk 16.72 378030 3748314 934.92 951.64
mk,all 854.47 271338 2626880 841.22 1695.69

mk,mset,lmax 48.71 275331 2678349 1538.06 1586.77
mk,mset,1 14.25 280899 2733709 895.92 910.17
mk,mset,3 23.67 277359 2696089 1147.41 1171.08
mk,pref 11.76 338880 3377124 687.79 699.55

35 training

4 10 20

mk 163.10 5253332 59504339 - -
mk,all - - - - -

mk,mset,lmax 676.22 4234500 47661301 2322.42 2998.64
mk,mset,1 209.86 4969772 56092438 - -
mk,pref 184.56 5253332 59504339 7145.62 7330.18

in terms of generation time. When |Σ| is small, the probability of having prefixes
is higher than with larger vocabularies, and for this instance, Mk,pref returns
the best instance in terms of generation+solving time. For the second instance,
Mk,all could not be generated in less than 2 hours. Mk and Mk,mset,3 could be
generated rather quickly, but could not be solved. Mk,pref was even faster for
generating the SAT instance. However, we see that there was not prefix in the
training set (the size of instances ofMk andMk,pref are the same). The overhead
for taking prefixes into account is rather insignificant (12% of generation time).
Since the solving time was close to the timeout, the Mk instance did not succeed
to be solved while the Mk,pref instance succeeded (the small difference of 55 s.,
i.e., less than 0,8 %, is certainly due to clause order in the SAT instance). This
instance shows that Mk,mset,lmax

can be the best model in terms of total time.
This is due to the fact that there is no negative word being prefix of another
word from S, and that the lattice is rather ”wide”, with a long branch. Hence,
Mk,mset,l is interesting when l is large for this training sample.

5 Conclusion

In the context of grammatical inference, we proposeed various model improve-
ments for learning Nondeterministic Finite Automaton of size k from samples
of words. Our base model, Mk, is a conversion from an INLP model [15]. The
first improvement, Mk,all, leads to the smallest SAT instances, which are also
solved quickly. However, generating this model is too costly. Thus, when prob-
lems grow (in terms of k, |S|, or length of words), Mk,all cannot be generated
anymore. We proposed a set of improvements based on multiset representation
of words, Mk,mset,l. The generated SAT instances are a bit larger with the maxi-
mal level than with Mk,all, but generation is still costly. We thus defined a third
improvement based on prefix. On average, the best balance between generation
and solving time is obtained with Mk,pref , Mk,mset,1, or Mk,mset,3: the genera-
tion is rather light and the reductions are significant. The interest of our work
is that, to our knowledge, we are the only ones working on CSP model improve-
ments. It is very complicated to compare our results with previous works. Many
works on this topics are only formal and experimental results are also difficult

12 F. Lardeux et al.

to compare. For examples, the authors of [8, 9] focus on a parallel solver for op-
timizing k. In [10], experiments are based on samples issued from the Waltz-DB
database [2] of amino acid sequences, i.e., all the words are of size 6, and there
cannot be any prefix word: in the tests we performed, only anagrams could be
used in multisets. Moreover, for all the 50 instances we tried issued from this
database, the Mk model could be generated and solved in a reasonable time,
without need of any model improvement.

In the future, we plan to hybridizeMk,mset,l for small values of l withMk,pref .
The second idea is to simplify the work of the SAT solver and of the instance
generation with simplified and incomplete training samples. We would then eval-
uate our SAT models with respect to the accurateness of the generated NFA on
test set of words.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proc. of IJCAI 2009. pp. 399–404 (2009)

2. Beerten, J., van Durme, J.J.J., Gallardo, R., Capriotti, E., Serpell, L.C., Rousseau,
F., Schymkowitz, J.: WALTZ-DB: a benchmark database of amyloidogenic
hexapeptides. Bioinform. 31(10), 1698–1700 (2015)

3. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using rfsas. Theor.
Comput. Sci. 313(2), 267–294 (2004)

4. Dupont, P.: Regular grammatical inference from positive and negative samples by
genetic search: the GIG method. In: Proc. of ICGI 94. LNCS, vol. 862, pp. 236–245.
Springer (1994)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman & Company, San Francisco (1979)

6. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir-
ical Software Engineering 18(4), 825–856 (2013)

7. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010)

8. Jastrzab, T.: On parallel induction of nondeterministic finite automata. In: Proc.
of ICCS 2016. Procedia Computer Science, vol. 80, pp. 257–268. Elsevier (2016)

9. Jastrzab, T.: Two parallelization schemes for the induction of nondeterministic
finite automata on pcs. In: Proc. of PPAM 2017. LNCS, vol. 10777, pp. 279–289.
Springer (2017)

10. Jastrzab, T.: A comparison of selected variable ordering methods for NFA induc-
tion. In: Proc. of ICCS 2019. LNCS, vol. 11540, pp. 741–748. Springer (2019)

11. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier Science, 1st edn. (2006)

12. Tomita, M.: Dynamic construction of finite-state automata from examples using
hill-climbing. Proc. of the Fourth Annual Conference of the Cognitive Science So-
ciety pp. 105–108 (1982)

13. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–
483. Springer Berlin Heidelberg, Berlin, Heidelberg (1983)

14. Vázquez de Parga, M., Garćıa, P., Ruiz, J.: A family of algorithms for non deter-
ministic regular languages inference. In: Proc. of CIAA 2006. LNCS, vol. 4094, pp.
265–274. Springer (2006)

15. Wieczorek, W.: Grammatical Inference - Algorithms, Routines and Applications,
Studies in Computational Intelligence, vol. 673. Springer (2017)

