
HAL Id: hal-03276901
https://univ-angers.hal.science/hal-03276901

Submitted on 7 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-Online Disturbance Rejection for Nonlinear
Parabolic PDE using a Receding Time Horizon Control
Thérèse Azar, Laetitia Perez, Christophe Prieur, Emmanuel Moulay, Laurent

Autrique

To cite this version:
Thérèse Azar, Laetitia Perez, Christophe Prieur, Emmanuel Moulay, Laurent Autrique. Quasi-
Online Disturbance Rejection for Nonlinear Parabolic PDE using a Receding Time Horizon Con-
trol. 2021 European Control Conference (ECC), Jun 2021, Rotterdam, Netherlands. pp.2603-2610,
�10.23919/ECC54610.2021.9654905�. �hal-03276901�

https://univ-angers.hal.science/hal-03276901
https://hal.archives-ouvertes.fr


Quasi-Online Disturbance Rejection for Nonlinear Parabolic PDE using
a Receding Time Horizon Control

Thérèse Azar1, Laetitia Perez1, Christophe Prieur2, Emmanuel Moulay3 and Laurent Autrique1

Abstract— Null controllability of nonlinear partial differ-
ential equation is a very complex challenge. The context
underlying this study is to improve the behavior of the plasma
in a tokamak reactor in order to lengthen the duration of
the nuclear fusion process. Considering the class of a specific
parabolic PDE, the well known heat equation is nonlinear
if thermal properties are temperature dependent. In such
a context a numerical method based on the resolution of
inverse heat conduction problem is proposed. It aims to provide
identified control laws quasi-online in order to guarantee that
the thermal state is kept close to its equilibrium state at
zero. The iterative conjugate gradient method is implemented
in order to control the temperature in the one-dimensional
spatial domain despite several disturbances (time-dependent
or thermo-dependent). The proposed strategy is based on
successive numerical resolutions of ill-posed inverse problem
on receding time horizons which are adapted considering the
previous evolution of the system. Numerical results in the
investigated configuration highlight that identified control laws
are able to reject disturbances and to ensure null controllability.

I. INTRODUCTION

Partial differential equations (PDE) are widely investigated
in physics and the development of efficient control strategies
is a key-requirement for numerous processes. A classic
objective is to seek to maintain the state of the system
in the neighbourhood of a desired target regardless of the
evolution of the uncontrolled inputs. In the following a
parabolic nonlinear PDE is studied. A one dimensional
domain is considered and the study is motivated by the
control of nuclear fusion for which both magnetic flux
density and thermal state is described by such a PDE
system [1], [2], [3] . Numerous approaches have been
developed in the past decades: sliding mode approach in
infinite dimension, feedback control [4] , H∞ control [5],
model predictive control [6], control-oriented model [7],
. . . However, disturbances rejection is complex to ensure
from a theoretical point of view if mathematical model
nonlinearities are not neglected. Moreover, if the location
of the actuators is different from the spatial area where
disturbances occur, the problem of optimal control is quite
difficult to deal with.
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In the following the method presented in [8] is modified
in order to provide a quasi-online numerical strategy for
the identification of control laws. The goal is to identify
the control that keeps the system state close to zero (null
controllability) using the conjugate gradient problem. This
method is relevant for ill-posed problem such as Inverse
Heat Conduction Problem IHCP [9], [10]. In thermal
context, adaptive selection of relevant sensors in a network
for unknown mobile heating flux estimation has been
proposed in [11]. The approach presented in the following
is different from model predictive control but corresponds to
a delayed command [12], [13]. From the theoretical point of
view, the null controllability problem for the heat equation
has been investigated for example in [14].

The paper is organized as follows. In addition to this
introductory section, Section II is devoted to the mathemat-
ical description of the physical system. Direct problem is
numerically solved in order to describe temperature evolution
of the uncontrolled nonlinear system from a given initial
state. Effect of several disturbances is highlighted and an-
alyzed considering a relevant cost-function. In Section III,
an iterative regularization method is described in order to
solve the IHCP for which the unknown parameter which has
to be identified is the control (depending on time and space).
Adaptation of such method to an online implementation is
presented in Section IV and numerical results are shown
in order to discuss the method performances. Comparison
between several online strategies are presented in Section V.
In the last section concluding remarks and several outlooks
are proposed.

II. PROBLEM STATEMENT
A. Mathematical Description

Let us consider the direct problem modeled by the
following parabolic PDE:


ρC

∂θ

∂t
− ∂

∂x

(
λ(θ)

∂θ

∂x

)
= u

∣∣
[a,b]

+ f
∣∣
[c,d]

θ(0, t) = θ(L, t) = 0
θ(x, 0) = θ0(x)

(1)

The space variable is x ∈ Ω = [0, L], t ∈ [0, tf ] is the
time variable where tf is the final time, ρC is the volumic
heat in J.m−3.K−1, θ(x, t) in K is the temperature at point
x at the instant t. It is important to specify that θ is the



temperature variation compared to a reference temperature
(in what follows, negative temperatures therefore mean that
the temperature is lower than the reference temperature).
λ(θ) is the thermal conductivity in W.m−1.K−1.

u
∣∣
[a,b]

(x, t) is the control applied to the interval
[a, b] ⊂ ]0, L[ which aims to keep the system state θ
close to zero despite disturbances f

∣∣
[c,d]

(x, t) acting on
[c, d] ⊂ ]0, L[.

Boundaries condition for x ∈ {0, L} are Dirichlet condi-
tions and θ0(x) is the initial temperature at t = 0.

B. Direct Problem Resolution and Disturbance Impact

In this work, input parameters of (1) are taken into
account: L = 0.1m, tf = 900s and ρC = 106 J.m−3.K−1.
Thermal conductivity is assumed to depend on temperature:

λ(θ) = 4 exp

(
−θ2

104

)
+ 1.

In order to describe the impact of the disturbance, let us
consider the following disturbance function localized at x ∈
[0.04, 0.08] such as:

f(x, t) =


106(t− 240)

60
if t ∈ [240, 300]

1.4× 104 × θ(x, t) + 104 if t > 600

0 if not

Such a disturbance which depends on the temperature intro-
duces an interesting non-linearity. It could be also suitable
to consider random disturbances. Initial temperature is:

θ0(x) = 25

(
1.5exp

−(x− 0.03)2

5× 10−5
+ exp

−(x− 0.05)2

10−4

−0.5exp−(x−0.08)2

5×10−5

)
.

This configuration aims to show how the control law acts
to drive the state of the system more quickly from its initial
state to the equilibrium state (zero without disturbances)
and how the two types of disturbances (time-dependent for
t ∈ [240, 300] and thermo-dependent for t ∈ [600, 900]) are
rejected.

It is important to notice that the orders of magnitude of all
the previous parameters are quite realistic. With the thermo-
physical parameters previously defined, (1) is solved numeri-
cally using finite element method with Comsol-Multiphysics
solver interfaced with Matlab program. Without control i.e.
u
∣∣
[a,b]

(x, t) = 0, temperature evolution is shown in Fig. 1.

Based on Fig. 1., it is obvious that if

f(x, t) = 1.4× 104 × θ(x, t) + 104

Fig. 1. Temperature evolution without control.

for x ∈ [0.04, 0.08] and t > 600 then

lim
t→∞

‖θ(x, t)‖2L2(Ω) = lim
t→∞

∫ L

0

[θ(x, t)]
2
dx = +∞.

In such configuration and due to the disturbance, temperature
θ(x, t) governed by (1) is not stable. In order to illustrate
how the temperature is affected by the disturbances f , it
is relevant to compute the following criterion (2) which is
shown in Fig. 2.:

J(θ) =
1

2
‖θ(x, t)‖2L2(Ω). (2)

Fig. 2. Criterion evolution without control.

Considering previous figures from 0 to 240 seconds, the
system evolves from its initial temperature and naturally
tends towards its equilibrium state (θ(x, t) = 0,∀x ∈ Ω)
without disturbances. Then between 240 and 300 seconds,
the system is affected by a local (x ∈ [0.04, 0.08])
disturbance whose amplitude increases linearly as a function
of time. State system is thus quickly moved away from
zero. When this first disturbance vanishes at t = 300s,
temperature naturally converges towards zero. Finally,
from 600 seconds, the system is once more disturbed by
a function which depends on the temperature. As it has
been previously mentioned, such disturbance leads to non



stability. This numerical study illustrates the disturbance
impact and will be used as a try-model for our control
problem.

In order to reduce the effect of disturbances, an inverse
problem is formulated in the next section.

III. IHCP RESOLUTION

In this section, an optimization method is proposed
in order to minimize the cost-function defined in (2).
This method is based on the Conjugate Gradient Method
(CGM) which acts as an iterative regularization method
(convergence of this well-known minimization method is
discussed for linear systems in [15], [16] and for specific
non-linear system in [17], [18]). Examples of numerical
implementation for identification purposes in a thermal
context are given in [19], [20] or [21]. However, in the
works cited above, the authors never broached the question
of control.

Minimization algorithm implemented for IHCP resolution
is presented hereafter according to the following notations:
time interval T = [t∗o, t

∗
f ] is considered, control law u(x, t) is

discretized as a piecewise continuous linear function defined
by u(xi, tj) = uij . Temperature is measured by sensors
equally spaced in domain Ω = [0, L].

A. Conjugate gradient algorithm

At each iteration of the algorithm, three well-posed prob-
lems have to be solved:
• The direct problem in order to determine the temper-

ature distribution θk(x, t∗f ), and then to estimate the
criterion J(θk);

• The adjoint problem to determine the gradient of the
cost function J(θk(x, t∗f )) and thus to define the next
descent direction dk;

• The sensitivity problem to estimate the descent depth
γk (in the descent direction).

Optimization algorithm is briefly described as follows in
order to minimize criterion (2) (in [8] a similar algorithm is
presented in offline context):

1) Initialization of the unknown parameter (control flux)
at the first iteration k = 0:

[
ukij
]

= 0;
2) Resolution of the direct problem (1) in order to deter-

mine θk(x, t),
3) Determination of the criterion J(θk(x, t∗f )) according

to (2);
4) Solve the adjoint problem (5) in order to determine

the Lagrange multiplier ψk(x, t) and the cost function
gradient according to (6). Determination of the descent
direction dk according to (7);

5) Resolution of the sensitivity problem (3) in the de-
scent direction dk to calculate the sensitivity function
δθk(x, t) and determination of the descent depth γk

according to (4);

6) Update new estimations of the control according to

[uij ]
k+1 = [uij ]

k − γk[dij ]
k

7) Increment of the iteration k = k + 1 and back to step
2.

In the following section, sensitivity problem is briefly
presented.

B. Sensitivity Problem

In order to calculate at iteration k the descent depth γk in
the descent direction dk, the sensitivity problem has to be
solved. Let us consider temperature variation:

θ(x, t) + ε0δθ(x, t)

induced by a variation of the control (thermal flux):

u(x, t) + ε0δu(x, t).

Sensitivity function δθ is solution of this so-called sensitivity
problem:

ρC
∂δθk

∂t
−
∂2
(
λ(θ)δθk

)
∂x2

= ξδθk + δuk

δθk(0, t) = δθk(L, t) = 0

δθk(x, t∗0) = 0

(3)

where

ξ(x, t) =

{
1.4× 104 if t > 600 and x ∈ [0.04, 0.08]

0 if not

It should be noticed that in the previous equation, the
coefficient ξ(x, t) is due to the disturbance f(x, t).

The optimal descent depth γk is determined as follow:

γk = arg min
γ∈R

J(uka − γdk),

and estimated as in the pioneer work [22]:

γk =

−
∫ L

0

θk(x, t∗f )δθk(x, t∗f )dx∫ L

0

[
δθk(x, t∗f )

]2
dx

(4)

where θk(x, t∗f ) is the solution of the direct problem and
δθk(x, t∗f ) is the solution of the sensitivity problem (3)
(solved in descent direction dk).

In the following section, adjoint problem is developed in
order to determine the descent direction dk.

C. Adjoint Problem

In order to calculate at each iteration k, the gradient
∂J(θk)

∂ukij
and the descent direction dk, an adjoint problem

is formulated. Let us denote by ` a Lagrangian formulation
which is a function of ukij(.), θ

k(.) and ψk(.) where ψk(.)
is the adjoint function:

`(uk, θk, ψk) = J(θk(x, t∗f )) +

∫ t∗f

t∗0

∫ L

0

F (.)dxdt



where F is defined as:

F (.) =

[
ρC

∂θk

∂t
− ∂

∂x

(
λ(θk)

∂θk

∂x

)
− uk − f

]
ψk

The adjoint function ψk(.) is fixed such as
∂`

∂θk
δθk = 0.

Thus ψk(x, t) is solution of the following adjoint problem:
−ρC ∂ψ

k(.)

∂t
− λ(θ)

∂2ψk(.)

∂x2
= ξψk(.)

ψk(0, t) = ψk(L, t) = 0

ψk(x, t∗f ) = − 1

ρC
θk(x, t∗f )

(5)

Cost function gradient is then obtained as follows:

∂J

∂ukij
= −

∫ t∗f

t∗0

∫ b

a

ψk(x, t)si(x)sj(t)dxdt (6)

where si(x) is the basis function in space and sj(t) is
the basis function in time for piecewise continuous linear
functions (in space and time). Descent direction can be
estimated at each new iteration k from the previous gradient
(at iteration k − 1), as follows:

dk = −

(
∂J

∂ukij

)
+ βkd

k−1 (7)

with βk =

∥∥∥∥∥
(
∂J

∂ukij

)∥∥∥∥∥
2

∥∥∥∥∥
(

∂J

∂uk−1
ij

)∥∥∥∥∥
2 and ‖.‖ is the Euclidean norm.

In [7] the previous optimization method has been success-
fully implemented in order to determine a control strategy
which ensures the convergence to zero. The problem was
solved offline since T = [0, tf ] i.e. t∗0 = 0 and t∗f = tf . In
the following the online adaptation is presented.

IV. QUASI-ONLINE IMPLEMENTATION

Three quasi-online strategies based on an adaptation of the
iterative regularization method of the CGM are implemented
in order to determine a relevant control u which steers the
temperature to zero. The proposed approaches are based on
the choice of receding intervals T . Let us introduce general
comments:
• For the three strategies, it is important to have enough

observations contained in T in order to understand the
evolution of the system and to be able acting on it;

• Temperature is measured every centimeter of the do-
main. Such observation strategy could be easily modi-
fied considering experimental constraints;

• The control law is discretized with a spatial step of
3 millimeters inside [0.03; 0.06]. This arbitrary choice
leas to determine at each time step nine unknown
parameters. If this spatial step is too large, then un-
known required control distribution might be not pos-
sible to describe. If this spatial step is too small, a

large amount of unknown parameters is not useful and
overparametrization problems could appear;

• The choice of the time step has obviously a significant
effect on the performance of the method. It must be
realistic and consistent with the technologies and based
on a knowledge of the dynamics of heat transfers. A
time step equal to 1 second for both the control and the
observation has been chosen in this paper.

• Last but not the least, spatial interval, time discretization
and space discretization for disturbances, measurements
and control may be different. The formulation of the
methodology is not affected by such choices (but it is
obvious that results are).

In the next sections, the three strategies are briefly pre-
sented.

A. Strategy #1 - constant offset

For the first strategy, τ in seconds is a constant offset.
Strategy #1 acts sequentially in order to provide updated
control laws at constant intervals. For example, let us denote
by Tm the interval [mτ, (m+ 1)τ ].
• for m = 0: the process starts at t0 = 0, the system

evolves "naturally" from its initial state and under the
effect of any external disturbances. After τ seconds, the
temperature is measured throughout the plate and allows
us to know θ(x, τ);

• for m = 1: the temperature continues to evolve freely
without controller and simultaneously the first control
law is estimated considering the measurements collected
during the time interval T0;

• for m = 2: the first control validated for the time
interval T0 is applied and simultaneously the second
control law is estimated considering the measurements
collected during the time interval T1;

• for m = 3, the second control validated for the time
interval T1 is applied and simultaneously the third
control law is estimated considering the measurements
collected during the time interval T2;

• etc.
IHCP numerical resolution requires a computational time
(lower than τ ) to identify the command which acts with a
delay of 2τ . Results obtained for the strategy #1 are shown
for τ = 6 seconds in Fig. 3., Fig. 4. and Fig. 5.

With the identified control law, disturbances effect is
reduced as can be seen in Fig. 3. and Fig. 5. The second
disturbances (after 600 s) is rejected more efficiently because
its effect is proportional to the temperature. In Fig. 4., control
evolution is shown at location x = 0.045.

B. Strategy #2 - adaptive offset

For the second strategy new control is updated only when
the final temperature distribution deviates too far from a
previously fixed threshold related to a given J̃ . Tempera-
tures are measured every second. If J(θ) > J̃ then, the
identification procedure is launched taking into account the
previous measurements on interval Tm whom size is equal
to τ seconds. This strategy is called adaptive offset.



Fig. 3. Temperature evolution with control (strategy #1; τ = 6).

Fig. 4. Control law evolution at x = 0.045 (strategy #1; τ = 6).

Fig. 5. Criterion evolution with and without control (strategy #1; τ = 6).

Results obtained with strategy #2, are shown for τ = 6
and J̃ = 0.5 in the next Fig. 6., Fig. 7. and Fig. 8.

Fig. 6. Temperature evolution with control (strategy #2; τ = 6; J̃ = 0.5).

Fig. 7. Control law evolution at x = 0.045 (strategy #2; τ = 6; J̃ = 0.5).

It is shown in Fig. 6., Fig. 7. and Fig. 8 that disturbance
is attenuated even if control laws are calculated less often
than according to strategy #1.

C. Strategy #3 - adapted duration

As for the previous strategy, the temperatures are
measured every second and the criterion is calculated
every second. Strategy #3 differs from the other previous
strategies by the modification of the duration of receding
time interval Tm = [t∗0m, t

∗
fm]. In fact, control laws are

estimated only if temperature observations leads to a
criterion J(θ(x, t)) > J̃max. In such a case, t∗fm = t

and t∗0m is the previous time where J(θ(x, .)) > J̃min.
Thus J̃max is considered as a prohibitive threshold (for
which temperature distribution is too far from zero) and
J̃min is considered as significant threshold (for which
temperature distribution begins to move slightly away from
its equilibrium state).



Fig. 8. Criterion evolution with and without control (strategy #2; τ = 6;
J̃ = 0.5).

Strategy #3 authorizes the recovery of the control laws
which can reduce delays. Since the control laws have
variable duration, this strategy is called adapted duration
strategy.

The request to determine a new control law is triggered as
soon as the criterion exceeds prohibitive threshold J̃max and
the new control is implemented as soon as it is determined.
Numerical result obtained with J̃min = 0.1 and J̃max = 0.5
are shown in Fig. 9., Fig. 10. and Fig. 11.

Fig. 9. Temperature evolution with control (strategy #3; J̃min = 0.1;
J̃max = 0.5).

V. COMPARISON OF DIFFERENT STRATEGIES

In this section, different tables are proposed in order to
compare the previous strategies.

A. Numerical Results

Table I corresponds to the performance of the control by
calculating:

M̃ =
1

901

 900∑
j=0

(
1

2

∥∥∥∥θ(x, j

900
)

)∥∥∥∥2

L2(Ω)

)

Fig. 10. Control law evolution at x = 0.036 (strategy #3; J̃min = 0.1;
J̃max = 0.5).

Fig. 11. Criterion evolution with and without control (strategy #3;
J̃min = 0.1; J̃max = 0.5).

Obviously, the closer the criterion is to zero, the better
the equilibrium state is obtained (Identified control laws are
relevant).

Without control: M̃ ≈ 3.

Table I shows that the strategy #3 with a low trigging
threshold J̃max = 0.05 ensures the best null-controllability.
It has the closest temperature to zero. Strategies #1 and
#2 with a small constant offset, provides good results and
keeps the domain temperature close to zero.

Table II provides the duration T̃ during which

max
x∈Ω

| θ(x, t) | > 1◦C.

These values are calculated from the distributions θ(x, t)
which are calculated for each of the three strategies. Without
control T̃ = 900 seconds (obtained from the distributions
plotted in Fig. 1). Indeed, without control,

max
x∈Ω

| θ(x, t) | > 4.39◦C.



TABLE I
AVERAGE VALUE OF THE CRITERION.

Strategy #1
τ = 6 τ = 15

M̃ ≈ 0.41 0.79

Strategy #2
τ = 6 τ = 6 τ = 15 τ = 15

J̃ = 0.5 J̃ = 0.1 J̃ = 0.5 J̃ = 0.1

M̃ ≈ 0.51 0.42 0.89 0.82

Strategy #3

J̃min = 0.1 J̃min = 0.01

J̃max = 0.5 J̃max = 0.05

M̃ ≈ 0.49 0.37

TABLE II
TIME T̃ IN SECONDS.

Strategy #1
τ = 6 τ = 15

T̃ ≈ 271 354

Strategy #2
τ = 6 τ = 6 τ = 15 τ = 15

J̃ = 0.5 J̃ = 0.1 J̃ = 0.5 J̃ = 0.1

T̃ ≈ 726 501 785 682

Strategy #3

J̃min = 0.1 J̃min = 0.01

J̃max = 0.5 J̃max = 0.05

T̃ ≈ 863 571

Table II shows that in the studied configuration and
according to the parameters chosen, the strategy #1 is the
one which makes it possible to remain most often under the
threshold temperature fixed here at 1◦C. Strategy #3 could
give better results by lowering the trigger threshold J̃max.

Table III provides the cost control Ũ for each strategy such
as:

Ũ =

∫∫
x∈[0.03,0.06]
t∈[0,900]

u(x, t)2dxdt.

Table III shows that strategy #3 requires less energy to
maintain the temperature near zero (system state equilibrium
θ = 0).

Table IV provides the time tact in which the control is not
null.

Table IV shows that the strategy #1 requires a lot of calcu-
lations to identify the control laws. This could be obviously
explained by the fact that the controls are calculated even
when it is not useful. We can also notice that strategy #2
requires few calculations but the three previous tables have
shown that overall it was less effective than strategies #1
and #3.

TABLE III
COST OF THE CONTROL Ũ × 1012 .

Strategy #1
τ = 6 τ = 15

Ũ ≈ 9.27 8.62

Strategy #2
τ = 6 τ = 6 τ = 15 τ = 15

J̃ = 0.5 J̃ = 0.1 J̃ = 0.5 J̃ = 0.1

Ũ ≈ 10.04 9.45 9.49 9.96

Strategy #3

J̃min = 0.1 J̃min = 0.01

J̃max = 0.5 J̃max = 0.05

Ũ ≈ 0.83 0.30

TABLE IV
CONTROL DURATION tact IN SECONDS.

Strategy #1
τ = 6 τ = 15

tact ≈ 888 870

Strategy #2
τ = 6 τ = 6 τ = 15 τ = 15

J̃ = 0.5 J̃ = 0.1 J̃ = 0.5 J̃ = 0.1
tact ≈ 122 195 198 352

Strategy #3

J̃min = 0.1 J̃min = 0.01

J̃max = 0.5 J̃max = 0.05
tact ≈ 186 453

VI. CONCLUDING REMARKS

In this paper, the identification of control law for
nonlinear parabolic PDE with homogeneous Dirichlet
boundaries conditions is formulated as an inverse problem.
It has been shown how disturbances considerably move
the temperature away from its equilibrium state. In order
to ensure the null-controllability for such nonlinear PDE
where internal controls and disturbances are not collocated,
three quasi-online strategies have been proposed. The third
strategy based on a receding time interval with an adapted
duration (related to prohibitive and significant threshold) is
the most relevant. Disturbances effect is divided by 10 and
this strategy requires less energy comparing to the others one.

In the next future this methodology will be implemented
and tested for the control of the nuclear fusion in order to
improve the duration of the plasma. In such a way a coupled
system of two parabolic nonlinear PDE will be investigated
as investigated in [3].
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