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Introduction

In man, one of the most striking findings observed during dis-
use and other unloading conditions such as bed rest, spinal cord
injury, weightlessness... is a rapid and continuous bone loss due
to an unbalanced bone turnover1. In paraplegic patients, the
number of osteoclast cells is increased in bones under the spinal
section compared to bones above the lesion2. To reproduce a
zero g environment in laboratory animals, prolonged localized
disuse of the extremity has been repeatedly used by various sur-
gical techniques such as denervation, spinal cord section, teno-
tomy or arthrodesis3. They lead to a permanent immobilization
inducing a rapid bone loss. However, in these models, bone loss

results from the cumulative effect of disuse and the regional ac-
celeratory phenomenon caused by the surgical trauma4. At the
present time, nonsurgical methods such as immobilization by
casting, tail suspension, bandaging or Clostridium botulinum
toxin type A (BTX) injection have become more popular3,5. BTX
is a bacterial metalloprotease that acts in the cytosol of cholin-
ergic nerve terminals. It degrades cytosolic core proteins of the
neuroexocytosis apparatus causing an inhibition of the neuro-
transmitter release6. Such inhibition is fully reversible in several
months, following the degradation of the internalized toxin and
re-synthesis of the cleaved proteins7. We have previously devel-
oped the disuse model due to BTX injection in the rat and re-
ported a significant bone loss on the proximal tibia and on the
distal femur from the immobilized hindlimb after 1 month5.
Moreover, combination of BTX injection and orchidectomy in-
duces a more severe bone loss than orchidectomy alone8. The
model was also adapted in mice by others9-11. Most of the studies
done with the BTX model have focused on tissue data and, at
that time, no investigation has been done to explain the mecha-
nisms implicated in bone loss. The local expression of several
genes implicated in bone remodeling can be assessed to specify
the mechanisms of bone loss. Bone marrow microenvironment
includes mostly non-adherent cells of hematopoietic origin and
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a small proportion of adherent cells, comprising mesenchymal
stem cells (MSCs). Different intracellular and extracellular sig-
nals control differentiation of MSCs into osteoblasts. The Runx2
(runt-related transcription factor-2; previously known as Core-
binding factor α1 - Cbfa1), is a transcription factor of the Runt
domain gene family identified as an essential transcriptional ac-
tivator of osteoblast differentiation and represents a master gene
for bone12. Osteoblasts also express high levels of alkaline phos-
phatase activity (ALP) which contributes to bone mineraliza-
tion13. More recently, the Wnt pathway has been found to play
a key role for osteoblast maturation and bone formation14. Loss
of function in Lrp5 leads to an extremely low bone mass phe-
notype15. Several antagonist molecules (sFRP2, DKK1, Scle-
rostin) of the Wnt pathway have a physiological role in the
negative control of bone formation. Osteoblasts regulate recruit-
ment and activity of osteoclasts through the expression of re-
ceptor activator of NF-κB ligand (RANKL) and osteoprotegerin
(OPG) and the RANK/RANKL/OPG system has a key role in
bone resorption16,17. The aim of the present study was to eluci-
date the molecular events that occur in the bone marrow mi-
croenvironment during bone loss due to a localized disuse
induced by a single BTX injection. Bone loss was controlled in
parallel by X-ray micro computed tomography (microCT) on
the tibias.

Material and methods
Animals

Forty female Swiss mice (Harlan, France), aged 10 weeks
and weighing 27.9±2.0 g were acclimated for 1 week under
conventional conditions (24°C and a 12h/12h light/dark cycle)
in the animal house facility of the University of Angers, France
(Agreement A 49 007 002). In vivo experiments were per-
formed in accordance with the regulations of the official edict
of the French Ministry of Agriculture, under the supervision
of authorized researchers (autorization # 49028).

Mice were given a standard laboratory food (UAR, Ville-
moison sur Orge, France) and water ad libitum. Mice were ran-
domly spread into 5 groups of 8 mice each. At day 0, mice
from 4 groups were weighted, anesthetized with isoflurane and
injected intramuscularly with 0.5 U of BTX (Allergan®,
France) in the right muscle quadriceps femoris. This injected
side will be referred as the immobilized limb (I); an injection
with a same volume of saline was done in the left hindlimb
which will be referred as the non-immobilized limb (NI) and
will serve as control. Mice were weighted and sacrificed at 7,
14, 21 and 28 days by cervical dislocation. The remaining
eight mice were not injected; they were sacrificed at day 0 and
constituted the baseline group (B). For all mice, tibia and
femur were dissected and defleshed. The tibias were used for
X-ray micro computed tomography; the femurs were then used
for real-time quantitative RT-PCR analysis.

X-ray micro computed tomography

MicroCT was performed on the proximal tibia extremity
with a Skyscan 1072 microtomograph (Bruker MicroCT, Sky-

scan, Kontich, Belgium) equipped with an X-ray tube working
at 80 kV and 100 μA. each tibia was placed in an Eppendorf’s
tube and filled with water to prevent desiccation. The tube was
fixed on a brass stub with plasticine and analyzed with a pixel
size corresponding to 5.25 μm, the rotation step was fixed at
0.45°, and exposure was done with a 0.5 mm aluminum filter.
For each tibia, a stack of 2D-sections was obtained. The CTAn
Software (Skyscan, release 2.5) was used for measuring the
bone mass and microarchitecture at the secondary spongiosa of
the tibia. The upper limit of the volume of interest was located
just after the disappearance of the growth plate and primary
spongiosa; the lower limit was located 200 sections below. A
threshold was determined interactively to eliminate background
noise and to select bone. The volume of interest (VOI) was de-
signed by drawing interactively polygons on the 2D sections.
Only a few number of polygons needs to be drawn (e.g. start-
ing, some at the middle, and on the final section) since a routine
facility calculated all the intermediary masks by interpolation.
The VOI comprised only trabecular bone and the marrow cav-
ity. The following parameters were measured according to the
recommendations of the American Society for Bone and Min-
eral Research18. Trabecular bone volume (BV/TV, in %) repre-
sents the percentage of the cancellous space occupied by
trabecular bone in the VOI, Trabecular thickness (Tb.Th, in
μm), trabecular separation (Tb.Sp, in μm), and trabecular num-
ber (Tb.N, in 1/mm) provide a full description of bone microar-
chitecture. Structure model index (SMI) indicates the
composition of trabecular bone in the form of rods or plates.
SMI values are comprised between zero (ideal plate structure
model) and three (ideal rod structure). The 3D models were ob-
tained from the stack of 2D images with a surface-rendering
program (Ant, release 2.0.5, Skyscan, Belgium). 

Measurements on cortical bone were performed using Im-
ageJ 1.45 software on 2D sections of the tibia at the diaphyseal
shaft (3.14 mm under the growth cartilage). Several parameters
were measured: cortical thickness (Ct.Th, mm), cortical area
(Ct.Ar, mm2), area within the periosteal envelope (Ps.Ar,
mm2), area within the endosteal envelope (Es.Ar, mm2) and
cortical porosity (%).

Real-time quantitative RT-PCR

Bone marrow from each femur was flushed in 200 μl of
RNAlater® (Applied Biosystems, Courtaboeuf, France) and stored
at -80°C until processing. Total RNA were extracted using
trizol/chloroforme extraction followed by RNeasy mini kit (Qia-
gen, Courtaboeuf, France) according to the manufacturer’s pro-
cedure; they were then stored at -80°C until use. The quality and
concentrations of the RNA were examined on Experion auto-
mated electrophoresis system (BioRad, Courtaboeuf, France).

Reverse-transcription

One μg of total RNA was mixed with 3 μg of random hexa-
mers (Invitrogen, Cergy Pontoise, France) in 10 μl final vol-
ume, incubated at 70°C for 5 min and chilled on ice. Then the
reaction was performed at 25°C for 10 min, 42°C for 1h and
70°C for 10 min with 10 mM of deoxynucleotide triphosphate,
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40 units of RNase Inhibitor (Invitrogen), 0.1 M of dithiothre-
itol and 200 units of SuperScript II reverse transcriptase (SSII)
(Invitrogen) in a 10 μl final volume of buffer. For each sample,
a reaction without SSII was performed and used as negative
control. cDNA was then purified using Qiaquick PCR Purifi-
cation Kit (Qiagen, Courtaboeuf, France) and stored at -20°C.

Real-time PCR

RT-PCR analyses were carried out using a Chromo 4™ (Bio-
Rad, Marnes-la-Coquette, France) and SYBR Green detection.
Forward and reverse primers were designed using Primer3 soft-
ware (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).
Studied genes were Runx2, Alkaline Phosphatase (Alp), Tgfβ1,
Lrp5, Dkk1, Sfrp2, Opg, Rankl, Tracp, Il1α, Il1β, Il6. Sequences
of primers used are given in Table 1. Amplification was done in
duplicate in a final volume of 15 μl containing 5 μl of cDNA di-
luted at 0.2 in sterile distilled water (sample or standard) and 10
μl of iQ SYBR Supermix (Biorad) containing 5 μM of each
primer. Then, the following protocol was used: (i) 95°C for
10 min, (ii) amplification and quantification program repeated 40
cycles (95°C for 15 s, 55°C for 11 s, 72°C for 22 s, with a single
fluorescence measurement of SYBR green I at each end of cycle),
(iii) 65-99°C with a heating rate of 0.1°C and continuous fluores-
cence measurement. The difference of the expression level was
determined by normalization to the expression level of the house-
keeping genes (Hprt1, B2m and Actb) in parallel runs and quan-
tification was made using a standard curve assay.

Statistical analysis

Statistical analysis was performed with Systat statistical
software, release 13 (Systat, San José, CA). All data are ex-
pressed as mean±SEM. For each variable, differences between
each time point were analyzed by an analysis of variance with
the Fisher’s least significant difference post-hoc test. Data
from left and right hindlimb were compared using a paired
sample t-test. Differences were considered as significant when
P<0.05.

Results

General findings

24 hours after the BTX injection, all mice showed lameness
with hindlimb abduction during tail suspension and toe exten-
sion during sitting. Signs of lameness became maximal 48
hours after BTX injection. Body weight did not change signif-
icantly from 0 to 28 days despite a non-significant lower
weight observed at 7 and 14 weeks (Table 2). 

MicroCT analysis 

Trabecular bone measurements 

3D measurements are summarized in Table 3. In the baseline
group, no significant differences were observed between the left
and right limb in the baseline group. In the BTX groups, signif-
icant differences were observed on the I limb from 7 days and
maintained until 21 days. Trabecular bone loss was evidenced
(Figure 1) and characterized by lower BV/TV and Tb.N com-
pared to the NI limb (BV/TV at 7 days: -26.5%; 14 days: -31.0%;
21 days: -45.7%). SMI was significantly increased in the I limb
from 7 days until 21 days, thus emphasizing an increase in rod-
like trabeculae at the expense of plate-like trabeculae. A signifi-
cant decrease in Tb.Th was observed from 14 days until 28 days;
conversely, no significant difference was observed for Tb.Sp. For
each time point, significant differences were observed between

Gene Forward Reverse 

Runx2 GTGGCCACTTACCAC AGAGC GTTCTGAGGCGGGACACC 
Alp TGCCAGAGAAAGAGAGAGACC CAGCGGTTACTGTGGAGACG 
Tgfβ1 CACCATCCATGACATGAACC CAGAAGTTGGCATGGTAGCC 
Lrp5 GGTCACCTGGACTTCGTCAT TCCAGCGTGTAGTGTGAAGC
Dkk1 CTCTGCTAGGAGCCAGTGC CGCACTCCTCATCTTCAGC
Sfrp2 AGGTGTGTGAAGCCTGC CTTCAGGTCCCTTTCGGAC
Opg GAACTGCAGTCCGTG AAGC CAAACTGTGTTTCGCTCTGG
Rankl TGTACTTTCGAGCGCAGATG CCCACAATGTGTTGCAGTTC
Tracp TGAGGACGTGTTCTCTGACC AAGCGCAAACGGTAGTAAGG
Il1α GGGTGACAGTATCAGCAACG TGACAAACTTCTGCCTGACG 
Il1β GGACCCCAAAAGATGAAGG GTAGCTGCCACAGCTTCTCC 
Il6 CGATGATGCACTTGCAGA CTCTGAAGGACTCTGGCTTTG 

Table 1. Sequences of primers (5’→3’) used for real time PCR.

Day Body weight (g)

0 27.9 ± 0.3
7 26.0 ± 0.7
14 26.6 ± 0.5
21 28.1 ± 0.9
28 28.1 ± 0.6

Table 2. Body weight of mice from the BTX groups at day 0 and at
the time of sacrifice. Data are provided as mean±SEM.
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the NI limb and the left limb from the baseline group: BV/TV,
Tb.N and Tb.Sp were lower; SMI was higher. Significant in-
crease in Tb.Sp was observed at 28 days in the immobilized and
non-immobilized limb compared to baseline animals and the 3
BTX groups sacrificed at 7, 14 and 21 days. 

Cortical bone measurements 

No significant differences were observed at the diaphysis be-
tween I and NI independently of the considered parameter
(Table 4). At 28 days, Ct.Ar tended to be lower on the I limb com-
pare to NI limb (P=0.07). When differences were searched be-

Table 3. 3D microCT measurements on trabecular bone.

Figure 1. X-ray microCT reconstructions of the left and right hindlimb (A, D) at baseline and of the NI left and I right hindlimb at 7 days (B,
E) and 21 days (C, F).

BV/TV (%) Tb.Th (μm) Tb.N (1/mm) Tb.Sp (μm) SMI

Baseline Left 17.7±2.0 62±0.2 2.9±0.1 340±3 1.5±0.07

Right 17.7±0.8 62±0.2 2.9±0.1 320±3 1.6±0.05

7 days NI 11.7±1.3* 56±0.2* 2.1±0.2* 370±4 1.8±0.08*

I 8.6±0.6* 52±0.2* 1.7±0.1* 380±4 2.1±0.04*

14 days NI 11.6±0.9* 59±0.2 1.9±0.1* 390±2 1.8±0.03*

I 8.0±0.8* 52±0.2* 1.4±0.1* 400±1 2.2±0.03*,†

21 days NI 11.6±1.1*,† 63±0.1† 1.9±1.9* 440±6 1.9±0.03*

I 6.3±0.7*,† 52±0.2* 1.2±0.1*,† 480±5*,† 2.2±0.05*,†

28 days NI 8.7±0.8*,†,‡,§ 62±0.2† 1.4±0.1*,†,‡ 560±2*,†,‡,§ 2.2±0.09*,†,‡,§

I 6.2±0.4*,† 58±0.1*,†,‡,§ 1.1±0.1*,† 580±3*,†,‡,§ 2.3±0.06*,†

NI: left non-immobilized limb, I: right immobilized limb for BTX groups sacrificed at day 7, 14, 21 and 28 days. Baseline: mice sacrificed
at day 0 with microCT measurement done on left and right hindlimb. * P<0.05 vs. Baseline, †P<0.05 vs. 7 days, ‡P<0.05 vs. 14 days,
§P<0.05 vs. 21 days. The gray boxes indicate a significant difference vs. NI with P<0.05. Data are provided as mean ± SEM.
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tween each time point, we found a significant decrease of Ct.Ar
from the NI limb at 21 and 28 days versus baseline and 7 days.

Gene expression analysis

Quantitative PCR revealed modifications for 11 out of 12
genes analyzed. Results are summarized in Figures 2, 3 and 4.

Most of them (10 out of 12) were significantly modified as early
as 7 days: Alp, Tgfβ1, Lrp5, Dkk1, Sfrp2 which are considered
as formation indicators and Rankl, Tracp, Il1α, Il1β and Il6
which are considered as resorption indicators. Among the for-
mation markers, gene expression of Tgfβ1, a key differentiation
factor of osteoblast and gene expression of Alp, earlier osteoblast

Ct.Th (mm) Ct.Ar (mm2) Ps.Ar (mm2) Es.Ar (mm2) Porosity (%)

Baseline Left 0.158±0.006 0.167±0.007 0.274±0.014 0.106±0.007 2.97±0.62
Right 0.157±0.006 0.145±0.022 0.279±0.014 0.113±0.008 2.32±0.56

7 days NI 0.150±0.007 0.159±0.005 0.265±0.013 0.105±0.010 1.55±0.43
I 0.153±0.006 0.161±0.006 0.275±0.019 0.114±0.013 2.78±0.71

14 days NI 0.144±0.004 0.143±0.007 0.212±0.032 0.086±0.014 2.05±0.67
I 0.140±0.005 0.107±0.024 † 0.245±0.018 0.077±0.018 3.30±1.04

21 days NI 0.153±0.008 0.137±0.007 *,† 0.250±0.022 0.114±0.017 2.21±0.77
I 0.143±0.009 0.134±0.008 0.248±0.018 0.114±0.013 1.38±0.50

28 days NI 0.151±0.007 0.138±0.005 *,† 0.260±0.015 0.112±0.016 3.01±0.86
I 0.149±0.005 0.123±0.006 0.243±0.016 0.103±0.011 2.25±0.61

NI: left non-immobilized limb, I: right immobilized limb for BTX groups sacrificed at day 7, 14, 21 and 28 days. Baseline: mice sacrificed at day
0 with microCT measurement done on left and right hindlimb. * P<0.05 vs. Baseline, †P< 0.05 vs. 7 days. Data are provided as mean±SEM.

Table 4. 2D microCT measurements on cortical bone.

Figure 2. Expression of bone formation markers assessed by qPCR. I limbs for BTX groups (and right side for baseline group) are in black, NI
limbs (and left side for baseline group) are in white.
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Figure 3. Expression of bone resorption markers assessed by qPCR. I limbs for BTX groups (and right side for baseline group) are in black,
NI limbs (and left side for baseline group) are in white.

Figure 4. Summary of the kinetic expression of the 11 genes showing a modified expression (Opg was not illustrated, because not modified).
Black boxes indicate an increase in gene expression, hatched boxes indicate a decrease gene expression.
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marker, were significantly decreased in the I limb (Figure 2). The
decrease expression was transient as no significant differences
were noticed from 14 days for Alp and 21 days for Tgfβ1. Mod-
ification of the Runx2 transcription factor was delayed; it de-
creased significantly from 14 until 21 days. Other modifications
concerned the Wnt pathway genes. Among them, expression of
Lrp5 was highly depressed from 7 days; such a lower expression
was maintained at each time point. Expression of Sfrp2, one of
the inhibitors of the Wnt pathway, was significantly increased
from 7 days and was maintained higher until 28 days. Expression
of the second inhibitor of the Wnt pathway, Dkk1, was firstly de-
creased at 7 days and secondarily increased from 21 days until
28 days. All resorption markers were significantly increased as
earlier as 7 days (Figure 3). Significant high expression of spe-
cific osteoclast marker, Tracp, and expression of Il6 were main-
tained for each time point. Rankl and Il1β expression returned to
NI level from 21 days. Il1α returned to NI level at 28 days. No
significant differences were observed for Opg. Figure 4 summa-
rized all results from PCR analysis which explained early trabec-
ular bone loss observed by microCT analysis.

Discussion

Localized paralysis induced by BTX injection in a hindlimb
quadriceps results in a rapid and significant trabecular bone
loss, trabecular microarchitecture deterioration without cortical
modifications in the diaphysis. Major differences between I
and NI limb were found at 21 days. These mice had completed
their rapid growth phase according the Harlan’s normogram.
There was no difference in the activity and weight body of the
animals meaning that mice did not suffer from the BTX injec-
tion as previously found in other studies. Trabecular bone loss
was associated with a major modification of local gene expres-
sion as earlier as 7 days. These modifications included an in-
crease in bone resorption gene markers (Rankl, Tracp, Il6,
Il1α, Il1β) and a decrease in bone formation gene markers
(Alp, Tgfβ1, Lrp5). Runx2 gene expression was decreased with
a delay of 1 week compared to other markers. The gene ex-
pression of the two inhibitors of bone formation (Dkk1 and
Sfrp2) was increased with a difference in kinetic; gene expres-
sion analysis would indicate that Dkk1 is a late indicator of
bone formation compared to Sfrp2. Moreover, Lrp5 was main-
tained at a low level and Sfrp2 at a high level all over the time
of the study. Our study revealed an early modification of gene
expression profile in the bone marrow microenvironment. 

In the present study, we have performed a kinetic study in
which we showed an early reduction in bone volume from 7
days. Maximal bone loss was found at 21 days, in accordance
with previous studies11. A profound degradation of bone was
observed by microCT, 21 days after BTX injection; a 54.3%
reduction in BV/TV was found in the proximal tibia metaph-
ysis. Other recent studies found similar results with a reduction
of BV/TV around 40% in 3 weeks in the mouse and 31% in
the rat9,19. Few kinetic studies have been previously reported
but they only presented bone tissue changes obtained by mi-
croCT and histomorphometry10,20. Bone loss was observed be-

fore 21 days and a 25.5% significant decrease in BV/TV was
reported as early as 3 days with a very high dose of BTX20.
Taken together, all these studies including ours, confirm that
muscle paralysis due to BTX injection causes a massive and
rapid bone loss. Surprisingly, we found no deterioration of cor-
tical bone in the diaphysis between I and NI limb; this result
is slightly different from other studies where deteriorations of
cortical were found around 3-4 weeks post BTX injec-
tion10,11,20. In a recent study in the growing rat, we found no ef-
fect of BTX on the growth in length of the tibia nor on the
mean curvature21. These discrepancies could be explained by
the use of different strain of mice and also because mice in our
study were 5-6 weeks youngers. Our findings permit to under-
stand the pathophysiological mechanisms of bone loss with a
removal of trabeculae (as evidenced by a significant Tb.N re-
duction), indicating an increase in osteoclast activity. Such a
mechanism has previously been described by our group in the
BTX rat and confirmed by serum TRAcP dosage and osteo-
clast count of histological sections (after histochemical iden-
tification by TRAcP staining)8. Similar findings have been
confirmed histomorphometrically by others either in the rat or
the mouse shown an increase bone resorption associated with
a depressed bone formation8,11,19. The tendency for Tb.Sp to a
non-significant decrease has also been found in a previous ki-
netic study performed in mice injected with BTX10. Interest-
ingly, we found a simultaneous reduction in Tb.Th which
appeared later on the I hindlimb. Parfitt has previously shown,
in man, that an increase in osteoclast activity is responsible for
trabecular perforations and micro-architectural deterioration
and these findings have been constitutively reported in post-
menopausal osteoporosis22-24. On the contrary, osteoporosis
with reduction in Tb.Th is due to the reduction in the os-
teoblastic function (e.g., in glucocorticoid-induced osteoporo-
sis)25-27. In our model we evidenced both mechanisms of bone
loss leading to severe architectural changes.

Bone remodeling is a physiological complex mechanism
that maintains bone mechanically competent by constantly re-
placing old bone by new bone structure units. It always starts
with osteoclastic resorption followed by production of a new
bone structure unit by osteoblasts28,29. Disuse is associated with
an unbalanced bone remodeling caused by an increase in re-
sorption and a decrease in formation30. However, most studies
are mainly based on histomorphometric data or on serum level
bone turnover markers31. In the BTX model, we studied for the
first time the kinetic evolution of genes involved in bone re-
modeling. We found an early expression of genes favoring os-
teoclastogenesis and a simultaneous depression of
osteoblastogenesis genes responsible for a rapid bone loss. To
our knowledge, only one study reported a molecular analysis
of only six genes in a mouse model of disuse caused by im-
mobilization by plaster cast32. A marked alteration of both os-
teoblastic and osteoclastic markers was found as early at 3
days for osteoclastic markers. Tracp remained at high level
until 21 days of immobilization which is in accordance with
our results; other resorption genes had a transient increase like
cathepsin K. Although we did not assess the expression of this
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gene, we also found a transient increase for 3 other resorption
genes: Rankl, Il1α and Il1β. A transient resorption was also re-
ported by measuring TRAcP in the serum of BTX and or-
chidectomized rats8. An increase of RANK-L has been
observed in osteoblasts obtained from spinal cord injured
rats33. The effect of the inflammatory cytokines IL1 and IL6
has extensively been investigated since IL6 increases osteo-
clastogenesis indirectly by upregulating RANKL34. Little is
known about the influence of disuse on Il1 or Il6 expression.
In contrast to our results, a decrease in IL6 has been shown in
mice submitted to suspension35. 

In the present study, osteoblastic gene markers were altered
as early as 7 days except for Runx2. Disruption of the Runx2
gene in mice leads to a complete lack of bone formation and to
the inhibition of osteoblast maturation36. Thus, the decrease in
Runx2 observed in BTX animals could reflect a decrease in ma-
ture osteoblast number. Our findings are in accordance with
previous in vitro studies showing an inhibition of the osteoblast
phenotype associated with a reduction of more than 60% in
Runx2 in cultured cells submitted to low gravity37. In contrast,
hypergravity strongly increases Runx2 expression in os-
teoblast38. As mature osteoblasts seem to be decreased due to
low Runx2 expression level, it is not surprising to observe a de-
crease in Alp, a major osteoblastic marker. Similar results were
obtained in cells culture under hypogravity37. The decrease in
these markers was not observed in the spinal cord injury model
and remained at a normal level33. Transient Tgfβ decrease could
reflect also a depression of the osteoblastic function. Our results
are in accordance with previous studies that observed a role for
TGFβ in osteoclast apoptosis and in the recruitment and pro-
liferation of osteoblast precursors cells in the BMU (Basic mul-
ticellular unit)39,40. A low level of Tgfβ mRNA expression is
found in unloaded bones from tail suspension rat model; in con-
trast, an increase is observed following mechanical loading41,42.
Among the analyzed bone formation genes, those from the Wnt
pathway (Lrp5 and Sfrp2) were maintained altered from 7 days
to 28 days. It has been shown that the lack of LRP5 in mice in-
duces an inhibition of osteoblast function associated with a de-
crease in osteoblast number43. Moreover, LRP5 is expressed by
cells from the osteoblast lineage; thus, its low expression, as-
sociated with an increased expression of Sfrp, would reflect an
alteration in osteoblastic function. Interestingly, we observed a
2 phases evolution of Dkk1 including a decrease followed by
an increased expression. DKK1 has been extensively studied
in different bone disorders where osteoblast function is re-
duced14,44. To our knowledge, only one study reported that the
Wnt pathway, including Lrp5, is down-regulated in the spinal
cord injury model45. Although spinal cord injury is not strictly
similar to disuse, these results are in accordance with our data.
In contrast, Wnt pathway and more specifically Sclerostin
(Sost) expression have been extensively studied in loading con-
dition; loading inducing a decreased expression of SOST by
osteocytes46-48.

A primary limitation of this study is that we did not have
data on SOST expression. In a preliminary study, we could not
detect expression of Sost and this is easily explained by the

fact that SOST is expressed in osteocytes deeply buried inside
the bone matrix. Also, no histomorphometric data on osteoclast
and osteoblast activities are presented in the present study that
would have confirmed qPCR results. However, histomor-
phometry has been extensively described by our group (and
other teams) to characterize the BTX model and this study has
focused on the expression of gene that support these find-
ings8,11. Another limitation is that we were not able to differ-
entiate genes expressed from hematopoeitic or stromal cells,
however it is now known that both types of cells interact and
contribute to the microenvironment in contact with mature
bone cells.

In conclusion, we have shown the molecular changes impli-
cated in the increased bone resorption and decreased bone for-
mation associated with bone loss due to BTX-induced
disuse30,49. Both events were rapid and explained the severity of
the bone loss since formation and resorption are simultaneously
concerned. We showed a strong implication of the Wnt pathway:
the inhibitory marker of bone formation sFRP2 appeared more
sensible to disuse than DKK1. This study evidenced the need of
therapeutic counter-measures that trigger both the increased
bone resorption and the decreased bone formation.
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