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Adaptive Operator Selection and Management 
in Evolutionary Algorithms

Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer,

Frédéric Lardeux, and Michèle Sebag

7.1 Introduction

Evolutionary Algorithms (EAs) constitute efficient solving methods for general op-

timization problems. From an operational point of view, they can be considered as

basic computational processes that select and apply variation operators over a set

of possible configurations of the problem to be solved, guided by the Darwinian

“survival of the fittest” paradigm.

In order to efficiently apply an EA to an optimization problem, there are many

choices that need to be made. Firstly, the design of the general skeleton of the al-

gorithm must include the selection of a suitable encoding for the search space at

hand, the management of the population (i.e., size setting, selection and replace-

ment processes, and so on), and the definitions of the variation operators that will be

used, namely the mutation and recombination operators. These components can be
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considered as the structural parameters of the algorithms that define its operational

architecture. However, once the structure is defined, a difficult and crucial task re-

mains: how to control the general computation process? This control is usually em-

bedded in a set of behavioral parameters that can be related to the data structures or

to the computation steps, e.g., the application rate of each variation operator.

All these parameters should then be tuned, depending on the problem at hand.

In the early days of Evolutionary Computation, these numerous possible choices

were in fact considered as richness, providing very useful flexibility to EAs, that

could indeed be applied to a very wide range of scientific fields. Nowadays, the

contemporary view of EAs acknowledges that specific problems require specific

setups in order to obtain satisfactory performance [13]. In other words, when

it comes to solving a given problem, all practitioners know that parameter set-

ting is in fact the Achilles’ heel of EAs (together with their high computational

cost).

As the efficiency of Evolutionary Algorithms has already been experimentally

demonstrated on many difficult problems out of the reach of other optimization

methods, more and more scientists (researchers, engineers) are trying them out on

their specific problems. However, they very often fail in getting interesting results

precisely because there is a lack of general methods for tuning at least some of

the involved parameters (and also because they are not, and do not want to be-

come, “Evolutionary Engineers”). Of course, the specialization of an EA to a given

problem has an impact on its performance on other problems (according to the No

Free Lunch Theorems for Optimization [44]). In fact, through parameter setting, the

main challenge is to set (or select) the right algorithm for the given problem, which

is an old problem in computer science [39]. Therefore, it is time that we Cross the

Chasm [33], bringing the benefits of EAs to the whole scientific community without

its main burden, that of parameter setting.

A current trend in EA is to focus on the definition of more autonomous solving

processes, which aim at allowing the basic user to benefit from a more efficient

and easy-to-use algorithmic framework. Parameter setting in EAs is a major issue

that has received much attention in recent years [14], and its research is still very

active nowadays, as a book recently published [27], and from the numerous recent

references cited in this document. This subject is not limited to EAs, being also

investigated in operations research and constraint programming communities, where

the current solving technologies that are included in efficient solvers require huge

expertise to be fully used (see, for instance, [4]).

Parameter setting in EAs may be considered at two complementary levels as

follows [36]:

Design: In many application domains that directly pertain to standard representa-

tions, users who are not EA experts can simply use off-the-shelf EAs with classic

(and thus non-specialized) variation operators to solve their problems. However, the

same users will encounter great difficulties when faced with problems outside the

basic frameworks. Even if standard variation operators exist in the literature (such

as the uniform crossover [40]), the achievement of acceptable results depends nec-

essarily on the specialization of the algorithmic scheme, which usually requires the
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definition of appropriate operators. The design of problem-specific operators re-

quires much expertise, though some advanced tools are now available [11]. In any

case, the impact on the computation process of problem-specific operators is even

more difficult to forecast than of well-known operators, and thus their associated

parameters are harder to correctly estimate a priori.

Behavior: Once the general architecture of the algorithm has been defined, the user

needs to configure the behavior of these components through parameters. This has

a direct impact on the performance and reliability of the algorithms. Indeed, its

efficiency is strongly related to the way the Exploration versus Exploitation (EvE)

dilemma is addressed, determining the ability of the EA to escape from local optima

in order to sparsely visit interesting areas, while also focus on the most promis-

ing ones, to thus reaching global solutions. However, it is known that more explo-

ration of the search space is necessary in the initial generations, while more ex-

ploitation should be done when the search is approaching to the optimum; thus, a

static definition of the application rates for each operator will be always subopti-

mal.

We propose transparently including these two possible levels of control into the

basic algorithmic process, as illustrated in Figure 7.1. Firstly, at the design level, the

Adaptive Operator Management (AOM) aims at handling the suitable subset of op-

erators that is made available to the algorithm, excluding the useless operators and

including possibly useful ones. These operators are extracted from a set of poten-

tial operators (either automatically generated or predefined). Based on such subset

of available operators, defined and maintained by the AOM, the Adaptive Opera-

tor Selection (AOS) is used to control the behavior of the algorithm, handling the

problem of selecting the operators to be applied at every instant of the search. It

clearly appears that the concepts of AOM and AOS are fully complementary, and

very useful for making an EA more autonomous. Within the combination of both

approaches, the design and the behavior of the algorithm are automatically adapted

while solving the problem, from continuous observation of the performance of the

operators during the search, based on its needs with regard to exploration and ex-

ploitation.

Fig. 7.1: General scheme of the controller, depicting its two main components,

Adaptive Operator Selection and Adaptive Operator Management
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This chapter will focus on these control mechanisms, by reviewing existing solu-

tions previously proposed by the authors, and providing examples of their possible

applications by means of cases studies. Firstly, an overview of the current state of

the art in parameter setting in EAs and, more specifically, in adaptive control of

operators, is presented in Section 7.2. Then, some efficient AOS combinations are

presented in Section 7.3. A case study of the application of an AOM technique, com-

bined with the AOS, is presented in Section 7.4. In both cases, experimental results

are presented, applying the adaptive EA to the solution of SAT problems. Finally,

conclusions and possible paths for further research are drawn in Section 7.5.

7.2 Parameter Setting in Evolutionary Algorithms

Slightly departing from the point of view adopted in previous surveys [14, 13], we

shall firstly distinguish here between external tuning and internal control of the

parameters.

Methods that perform external tuning consider the algorithm as a black box:

some external process is run (e.g., another optimization algorithm, or some standard

statistical analysis), to determine a good (range of) value(s) for the parameters at

hand. Most of these methods are not limited to Evolutionary Algorithms and can

be applied to any type of algorithm, although some of them have been designed

in the evolutionary framework. The most straightforward approach is the complete

factorial Design of Experiments, in which the same number of runs is executed for

each setting, and the one that achieves the best performance on average is selected

for the algorithm. Other approaches have been recently proposed, such as the SPO

[3], in which the optimal values are refined after a few runs; the Racing methods

[6, 46], in which settings are discarded once proven worst than others ***; and the

recent Meta-EA approaches [8], in which some runs are actually stopped at some

point of the evolution, and some of their parameters are modified before they are

restarted.

On the other hand, internal control methods work directly on the values of the

parameters while solving the problem, i.e., on-line. Such kind of mechanisms for

modifying parameters during an algorithm execution were invented early in EC his-

tory, and most of them are still being investigated nowadays. Indeed, there are at

least two strong arguments to support the idea of changing the parameters during an

Evolutionary Algorithms run:

• As evolution proceeds, more information about the landscape is known by the

algorithm, so it should be possible to take advantage of it. This applies to global

properties (for example, knowing how rugged the landscape is) and to local ones

(for example, knowing whether a solution has been improved lately or not).

• As the algorithm proceeds from a global (early) exploration of the landscape to

a more focused, exploitation-like behavior, the parameters should be adjusted to

take care of this new reality. This is quite obvious, and it has been empirically

and theoretically demonstrated that different values of parameters might be op-
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timal at different stages of the search process (see [13, p. 21] and references

therein).

The different approaches that have been proposed to internally adapt the parame-

ters can be classified into three categories, depending on the type of information that

is used to adjust the parameters during the search (such classification, used by many

authors in the 1990s, has been made in [14] and republished in the corresponding

chapter of [13]).

Deterministic parameter control implements a set of deterministic rules, with-

out any feedback from the search. This is, in general, hard to achieve, because of

a simple reason: it relies heavily on knowing beforehand how long it will take to

achieve a given target solution with the running algorithm and, obviously, this can-

not be easily predictable. But even if it were, the way to balance exploration and

exploitation can hardly be guessed. This situation is worsened by two facts: first,

there is usually a big variance between different runs on the very same problem; and

second, these methods often require additional parameters that are used to tune the

deterministic parameter (starting with the total number of generations the algorithm

will run), and even though these parameters can be considered second-order, their

influence is nevertheless critical.

Since our knowledge about the way the search should behave is always limited,

it is sometimes possible, and advantageous, to let evolution itself tune some of the

parameters: such a Self-Adaptive parameter control adjusts parameters “for free”,

i.e., without any direct specification from the user. In other words, individuals in the

population might contain “regulatory genes” that control some of the parameters,

e.g., the mutation and recombination rates; and these regulatory genes are subject

to the same evolutionary processes as the rest of the genome [23]. For quite some

time in the 1990s, self-adaptation was considered as the royal road to success in

Evolutionary Computation. First of all, the idea that the parameters are adapted for

free is very appealing, and its parallel with the behavior of self-regulated genes is

another appealing argument. On the practical side, as self-adaptive methods require

little knowledge about the problem and, “what is probably more important”, about

the way the search should proceed, they sometimes are the only way to go when

nothing is actually known about the problem at hand. However, by using such an ap-

proach, the algorithm needs to explore, in parallel, the search space of the variables

of the problem and also the search space of the parameter values, which potentially

increases the complexity of the search.

Then, it is clear that, whenever some decisions can be made to help the search

follow an efficient path, this should be done. Adaptive or Feedback-based methods

follow this rationale, being the most successful approaches today in on-line param-

eter control. These methods are based on the monitoring of particular properties of

the evolutionary process, and use changes in these properties as an input signal to

change the parameter values. The controllers presented in this work are included in

this category.

Adaptive Operator Selection (AOS), presented in Section 7.3, is used to au-

tonomously select which operator, among the available ones, should be applied by

the EA at a given instant, based on how they have performed in the search so far. The
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set of operators available to the EA is usually static, defined a priori by an expert

or an off-line method. However, since the performance of operators is continuously

changing during the search, useless operators might be deleted, while possibly use-

ful ones might be inserted in such a set. This is the underlying idea proposed by the

Adaptive Operator Management (AOM), presented in Section 7.4.

To achieve the goals associated with AOS, two components are defined (as shown

in Fig. 7.1): the Credit Assignment - how to assess the performance of each operator

based on the impact of its application on the progress of the search; and the Operator

Selection rule - how to select between the different operators based on the rewards

that they have received so far. The rest of this section will survey existing AOS

methods, looking at how they address each of these issues.

7.2.1 Learning by Credit Assignment

The AOS learns the performance of each operator based on a performance measure,

assessed by what is usually referred to as the Credit Assignment mechanism. Starting

with the initial work in AOS, from the late 1980’s [12], several methods have been

proposed to do this, with different ways of transforming the impact of the operator

application into a quality measure.

Most of the methods use only the fitness improvement as a reward, i.e., the qual-

ity gain of the newborn offspring compared to a base individual, which might be (i)

its parent [26, 42, 2], (ii) the current best individual [12], (iii) or the median indi-

vidual [24] of the current population. If no improvement is achieved, usually a null

credit is assigned to the operator.

Regarding which operator should be credited after the achievement of a given

fitness improvement, the most common approach is to assign a credit to the oper-

ator that was directly responsible for the creation of the newborn offspring. Some

authors, however, propose assigning credit to the operators used to generate the

ancestors of the current individual (e.g., using some bucket brigade-like algorithm

[12, 24]), based on the claim that the existence of efficient parents is indeed as

important as the creation of improved offspring. Others, however, do not consider

ancestors at all ([26, 42]), and some even suggest that this sometimes degrades the

results [2].

The existing approaches also differ in the statistics that are considered in order to

define the numerical reward. Most of the methods calculate their rewards based just

on the most recent operator application, while others use the average of the quality

achieved over a few applications. More recently, in [43], the utilization of extreme

values over a few applications was proposed (statistical outliers), based on the idea

that highly beneficial but rare events might be better for the search than regular but

smaller improvements. The reported comparative results with other Credit Assign-

ment mechanisms show the superiority of this approach over a set of continuous

benchmark problems. Though used in a different context, the methods presented in

this paper are also based on this idea.
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 7.2.2 Adaptation by Operator Selection Rule

The most common and straightforward way of doing Operator Selection is the so-

called Probability Matching (PM) [20, 26, 2]. In brief, each operator is selected by a

roulette-wheel-like process with a probability that is proportional to its known em-

pirical quality (as defined by the Credit Assignment mechanism, e.g., the average of

the received rewards). A user-defined α parameter might be used to introduce some

relaxation in the update of this empirical estimation. Besides, a minimal probability

(pmin) is usually applied, so that no operator is “lost” during the process: one opera-

tor that is currently bad might become useful at some further stage of the search. If

an operator receives just null rewards (or the maximal reward) for some time, its ex-

pected reward will go to pmin (or pmax = 1−K ∗ pmin). However, this convergence is

very slow, and, experimentally, mildly relevant operators keep being selected, which

badly affects the performance of the algorithm [41].

Originally proposed for learning automata, Adaptive Pursuit (AP) [41] is an Op-

erator Selection technique that partly addresses this drawback by implementing a

winner-take-all strategy. Another user-defined parameter, β , is used to control the

greediness of the strategy, i.e., how fast the probability of selecting the current best

individual will converge to pmax while that of selecting the others will go to pmin.

In its original proposal for the AOS problem [41], AP was applied in a set of artifi-

cial scenarios, in which the operator qualities were changing every ∆ t applications,

achieving significant improvements over the performance of PM.

Different approaches, such as APGAIN [45], propose an Operator Selection di-

vided into two periods. During a first learning stage (which is repeated several times

during the run, so the changes can be followed), the operators are randomly selected,

and the rewards gathered are used to extract initial knowledge about them. In a later

stage, such knowledge is exploited by the technique in order to efficiently select the

operators. The main drawback in this case is that roughly a quarter of the genera-

tions are dedicated to the learning, thus doing random selection, which may strongly

affect the performance of the algorithm if disruptive operators are present in the set.

7.2.3 Meta-Parameters vs. Original Parameters

Clearly, the main objective of parameter setting in EAs is to automate some of the

choices that should be made by the user. What happens in reality is that, although

some of the parameters are efficiently defined by these autonomous controllers, the

controllers themselves also have their own parameters that need to be tuned. This

section considers this issue.

If one wants to define “manually” (or by the use of some off-line tuning tech-

nique) the parameters of an EA related to the variation operators, several choices

need to be made. In addition to defining the list of operators that will be used by

the algorithm, we need at least one other parameter to define for each operator:

its application rate. Additionally, some operators also require some extra settings,
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e.g., the rate of flipping a bit in a bit-flip mutation operator, or the number of cross-

ing points that will be used by an n-point crossover operator. Thus, considering a

static definition of the operators and their respective rates, the number of original

parameters to be defined is a multiple of the number of operators that is used by the

EA.

All these parameters are automatically handled by the proposed adaptive con-

trollers while solving the problem. The list of operators is managed by the Adaptive

Operator Management, while the application rates are abstracted by the Adaptive

Operator Selection. The extra parameters are abstracted as well, by considering dif-

ferent variants of the same operator as different operators, e.g., 1-point and 2-point

crossover are treated as different operators instead of different (discrete) settings of

the same operator.

As previously mentioned, to be able to do this, the controllers also introduce

their own parameters, usually called hyper- or meta-parameters. But, firstly, there is

a fixed number of meta-parameters instead of a multiple of the number of operators;

secondly, these parameters are (supposed to be) less sensitive than the original ones;

and finally, they are adapted online according to the needs of the search, while a

static setting would always be suboptimal, as discussed in Section 7.2. For example,

concerning the Operator Selection techniques reviewed in Section 7.2.2, Probability

Matching needs the definition of the minimal probability pmin and the adaptation

rate α; while the Adaptive Pursuit needs the definition of a third parameter, the

learning rate β . For Credit Assignment, usually at least one parameter should be

considered: the number of operator applications that are taken into account to cal-

culate an empirical estimation that the controller keeps about each operator.

Even though the number of meta-parameters is fixed and small, given the initial

lack of knowledge about the behavior of the controllers and what would be a good

setting for them, off-line parameter tuning methods can be used to facilitate such

definitions.

The cost of acquiring information about parameters is variable: whereas some

parameters can be easily recognized as preponderant and easy to tune, others could

have little effect over the search (i.e., different parameter values do not significantly

affect the results), or could require many experiments to discover a correct value.

For example, information theory could be used to characterize the relevance of the

parameters, as in [34, 35]. The proposed method, called REVAC, uses Shannon and

differential entropies to find the parameters with higher impact on the efficiency of

the algorithm while estimating the utility of the possible parameters values.

Another possibility is the utilization of Racing methods: instead of performing

m runs on each of the n instances in order to find the best configuration (i.e., a

full factorial Design of Experiments), the candidate configurations are eliminated as

soon as there is enough statistical evidence that they are worse than the current best

one. Cycles of “execution/comparison/elimination” are repeated until there is only

one configuration left, or some other stopping criterion is achieved. So, instead of

wasting computing time to estimate with precision the performance of inferior can-

didates, Racing allocates the computational resources in a better way, by focusing

on the most promising ones and consequently achieving lower variance estimates
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for them. Racing typically requires 10-20% of the computing time of a complete

factorial Design of Experiments.

7.3 Adaptive Operator Selection

In this section, we review three AOS methods from our previous work. Compass

[31] (Section 7.3.1) presents a Credit Assignment mechanism able to efficiently

measure the impact of the operators application, while Ex-DMAB [15] (Section

7.3.2) proposes an Operator Selection that quickly adapts to the dynamics of the

search. These two elements were combined into ExCoDyMAB [28], which is de-

scribed and empirically compared to the original methods, respectively, in Sections

7.3.3 and 7.3.4.

7.3.1 Compass: Focusing on Credit Assignment

The Adaptive Operator Selection technique proposed in [31] uses a very simplis-

tic Operator Selection mechanism, Probability Matching. However, its Credit As-

signment mechanism is very efficient in measuring the impact of the operator’s ap-

plication, thus being the main contribution of this work. As is known, in case of

multimodal functions, fitness improvement is not the only important criterion for

the progress of the search; some level of diversity should also be maintained in the

population; otherwise the search will quite probably converge prematurely and get

trapped into a local optimum. Based on these assumptions, Compass provides a way

to encourage improvements for both criteria, and works as follows.

Firstly, each time an operator is applied, three measures are collected: the vari-

ations in the population diversity and in the mean fitness of the population, respec-

tively ∆D and ∆Q, and also its execution time T , as shown in Fig. 7.2(a). The

average performance of each operator w.r.t. ∆D and ∆Q over the last τ applications

is displayed in a “diversity vs. fitness” plot, represented by the points in Fig. 7.2(b).

A user-defined angle θ defines the compromise between obtaining good results and

maintaining diversity in the population, addressing the EvE dilemma. In practice,

such an angle defines the plane from which perpendicular distances to the points

are measured. Finally, these measures (δi) are divided by the operator’s execution

time to obtain the final aggregated evaluation of each one (Fig. 7.2(c)), which is the

reward used to update the selection preferences.

This approach was used to control a steady state evolutionary algorithm applied

to the well-known Boolean satisfiability problem (SAT) [9], automatically select-

ing from six ill-known operators. The SAT problem was chosen because it offers a

large variety of instances with different properties and search landscapes, besides

allowing the scaling of the instance difficulty. The experiments have demonstrated

that this AOS method is efficient and provides good results when compared to other
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Fig. 7.2: Compass credit assignment: Sliding windows of three measures are main-

tained (a). Average measures of ∆D and ∆Q are plotted and distance of those points

are measured from a plane with a slope of θ (b). Finally, those distances are divided

by the execution time, resulting in the reward assigned to the operator (c)

existing mechanisms, such as Adaptive Pursuit [41] and APGAIN [45], based on

the fitness improvement.

Such performance was achieved mainly due to the strength of the Credit Assign-

ment mechanism proposed, which provides a robust measurement of the impact of

the operator application by simultaneously considering several criteria. The Opera-

tor Selection rule used (PM) is rather simple, known being quite conservative and

slow w.r.t. the adaptation, as already discussed in Section 7.2.2.

7.3.2 Ex-DMAB: Focusing on Operator Selection

Adaptive Operator Selection proposed in [15], uses extreme fitness improvement

as Credit Assignment, based on the assumption that attention should be paid to ex-

treme, rather than average, events [43]. This is implemented simply by assigning as

a reward the maximum of the fitness improvements achieved by the application of a

given operator over the last κ applications.

Concerning the Operator Selection mechanism, the idea is that such a task might

be seen as another level of the Exploration vs. Exploitation (EvE) dilemma: there is

the need to apply as much as possible the operator known to have brought the best

results so far (exploitation), while nevertheless exploring the other options, as one

of them might become the best at a further stage of the search. The EvE dilemma

has been intensively studied in the context of Game Theory, and more specifically

within the so-called Multi-Armed Bandit (MAB) framework. Among the existent

MAB variants, the Upper Confidence Bound (UCB) [1] was chosen to be used as

it provides asymptotic optimality guarantees, although it is described as “Optimism

in front of the Unknown”.

More formally, the UCB algorithm works as follows. Each variation operator is

viewed as an arm of an MAB problem, and is associated with (i) its empirical reward

p̂ j, i.e., the average performance obtained by it so far; and (ii) a confidence interval,
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based on the number of times n j such an operator has been tried. At each time step t,

the algorithm selects the arm with the best upper bound w.r.t. the following quantity:

p̂ j,t +C

√

log∑k nk,t

n j,t

(7.1)

The first term of this equation favors the best empirical arm (exploitation) while

the second term ensures that each arm is selected infinitely often (exploration).

In the original setting [1], all rewards are Boolean, and hence their empirical

means p̂i,t are in [0,1]. As this is not the case in the context of AOS, a Scal-

ing factor C is needed in order to properly correct the balance between the two

terms.

The most important issue, however, is that the original MAB setting is static,

while the AOS scenario is dynamic, i.e., the quality of the operators is likely to vary

during the different stages of the search. Even though the exploration term in the

UCB algorithm ensures that all operators will be tried infinitely many times, in case

a change occurs (w.r.t. the operator’s performance), it might take a long time before

the new best operator catches up. To be able to efficiently follow the changes in

dynamic environments, it has been proposed [21] to combine a statistical test with

the UCB algorithm that efficiently detects changes in time series, the Page-Hinkley

(PH) test [37]. Basically, as soon as a change in the reward distribution is detected

(based on a threshold γ), e.g., the “best” operator is probably not the best anymore,

the UCB algorithm is restarted from scratch, thus being able to quickly rediscover

the new best operator.

The UCB algorithm involves one meta-parameter, the scaling factor C, while the

PH test involves two parameters, the threshold γ for the change detection, and δ ,

which enforces the robustness of the test when dealing with slowly varying envi-

ronments. Note that, according to initial experiments in [10], δ has been kept fixed

at 0.15. The UCB algorithm, coupled with the Scaling factor and the PH change-

detection test, has been termed as Dynamic MAB (DMAB), with the complete AOS

combination being denoted by Ex-DMAB.

Ex-DMAB has been used to adapt a (1+λ )-EA by efficiently choosing on-line

from four mutation operators to solve the OneMax problem [10], and has been tried

on yet another unimodal benchmark problem, the Long k-Path [16], this time ef-

fectively selecting from five mutation operators. In both cases, the optimal oper-

ator selection strategy was extracted by means of Monte Carlo simulations, and

Ex-DMAB was shown to perform statistically equivalently to it while significantly

improving over the naive (uniform selection) approach. It has also been used to

adapt a (100,100)-EA with four crossover operators and one mutation operators in

the Royal Road problem [17], also performing significantly better than the naive

approach. For the three problems, we have also used other AOS combinations as

baselines for comparison, namely Adaptive Pursuit, Probability Matching and static

MAB (UCB without restarts), coupled with Extreme or Average rewards. Ex-DMAB

was shown to be the best option.
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However, as its Credit Assignment considers only the fitness improvement, Ex-

DMAB would probably be less efficient on rougher landscapes, quickly converg-

ing to local optima. In order to solve multimodal problems, diversity should also

be considered somehow. Besides being problem-dependent, another drawback of

Ex-DMAB is that the variance of the fitness improvements changes as the search ad-

vances (in the beginning of the search larger improvements are more easily achieved,

while in the fine-tuning final stage only very small improvements are possible).

Thus, there do not exist any robust values for the meta-parameters C and γ that

make it likely to perform well during the whole search. A possible solution to this

is the utilization of comparison-based rewards (that, by definition, always keep the

same variance, no matter what the problem and the search stage), e.g., a credit based

on ranks or the use of some normalized measures.

7.3.3 ExCoDyMAB = Compass + Ex-DMAB : An Efficient AOS

Combination

The previous sections showed that the strengths and weaknesses of both Compass

and Ex-DMAB methods are complementary: Compass measures in a holistic way the

effects of the operator applications over the population, but the operator selection

rule is rather rudimentary, while DMAB has an effective way to adapt and select the

operators, but its credit assignment mechanism is probably too simplistic. It seems

hence natural to combine the Credit Assignment of the former with the Operator

Selection mechanism of the latter.

However, even though merging both modules seems to be straightforward, some

important issues need to be further explored:

• Compass uses sliding windows of size τ in the “measurement stage”, with a

unique reward value in its output, while Ex-DMAB stores in a sliding window

the last κ outputs (rewards) of its Credit Assignment module. Should we keep

both windows, or would it be redundant? And if only one is kept, which one

should it be? From here on, these two windows will be referred to as W1 for the

measurement window and W2 for the reward window.

• Another issue concerning the sliding windows is that of their usage: should the

algorithm use their average (A), extreme (E), or simply instantaneous (I) value

(equivalent to using no window at all)? The Extreme was shown to be stronger

in unimodal problems, but how do such results hold in this completely different

scenario?

• The last issue concerns the other meta-parameters. Besides tuning the size

and type of W1 and W2, we also need to tune the values of the angle θ
in Compass, and the scaling factor C and change detection threshold γ in

DMAB. Since the idea is not to simply replace some parameters (the oper-

ator application probabilities) by other ones at a higher level of abstraction,

we need to better understand their effects. One way to find answers to this
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Table 7.1: Racing survivors

Name W 1 type, size W2 type, size C γ
A Extreme, 10 Instantaneous 7 1

B Extreme, 10 Average, 10 7 1

C Extreme, 10 Average, 50 7 1

D Extreme, 10 Extreme, 10 7 3

questions is to experimentally study their influence on the performance of the

AOS in the situation, and propose some robust default values whenever possi-

ble.

To analyze such issues, an empirical study was done, considering the follow-

ing values for each of the meta-parameters: C ∈ {5,7,10}; γ ∈ {1,3,5}; and the

window type(size) combinations ∈ {A(10),A(50),E(10),E(50), I(1)} for both W1

and W2, summing up to a total of 225 possible configurations. The angle θ for

Compass was fixed at 0.25, based on preliminary experiments (see [28] for further

details). ExCoDyMAB was experimented within the same Evolutionary Algorithm

used in [31], with the objective of selecting from six ill-known variation opera-

tors while solving different instances of the well-known combinatorial SAT prob-

lem [9].

Given the high number of possible configurations and the initial lack of knowl-

edge about which values should be good for each of the mentioned meta-parameters,

an off-line tuning technique was used for their setting, the F-Race [6], a Racing

method that uses the Friedman’s two-way Analysis of Variance by Ranks as a sta-

tistical test to eliminate the candidates. The stopping criteria for the Racing was set

to 80 runs over all the instances (a “training set” of 7 instances was used), with

eliminations taking place after each run, starting from the 11th.

At the end of the Racing process, four configurations were still “alive”, pre-

sented in Table 7.1. This clearly indicates that the most important sliding window

is W1, and it should be used in its Extreme configuration with a size of 10 (i.e.,

taking as Compass inputs the maximal of the last ten values), no matter which

kind/size of W2 is being used. This fact emphasizes the need to identify rare but

good improvements, greatly supporting the idea raised in [15]. Besides, the size

of 10 for W1 could be interpreted as follows: with the Extreme policy, a larger

τ would produce high durability of the extreme values, even when the behavior

of the operator has changed. On the other hand, a smaller value τ = 1 (i.e., the

same as choosing Instantaneous policy) would forget those “rare but good” cases.

One could suppose that an optimal size for W1 depends on the fitness landscape

and the operators used. Further research is needed to better understand the setting

of τ . The configuration “C” was found to be the best among them, and was thus

used in the empirical comparison with other techniques, presented in the follow-

ing.
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Table 7.2: Comparative results on the 22 SAT instances: average (std dev) 
number of false clauses (over 50 runs)

Method Compass Ex-DMAB Uniform

Problem Choice

4blocks 2.8 (0.9) 6 (0.9) 6.2 (0.9) 13.4 (0.6)

aim 1 (0) 1 (0) 1.2 (0.3) 3.6 (1.8)

f1000 10.3 (2.3) 30.9 (6.2) 16.4 (2.6) 55.8 (8.6)

CBS 0.6 (0.6) 0.4 (0.5) 1 (0.9) 7 (2.7)

Flat200 7.2 (1.7) 10.6 (2.1) 10.7 (2.2) 37.7 (5.5)

logistics 6.5 (1.3) 7.6 (0.5) 8.8 (1.5) 17.9 (4.1)

medium 1.5 (1.5) 0 (0) 1.8 (1.6) 8.8 (3.4)

Par16 15.2 (3.1) 64 (10.2) 24.1 (5.7) 131.1 (14.5)

sw100-p0 9.2 (1.2) 12.8 (1.4) 12.5 (1.7) 25.9 (3.4)

sw100-p1 0 (0) 0.5 (0.6) 1.1 (0.8) 11.3 (3.5)

Uf250 0.9 (0.7) 1.8 (0.9) 1.7 (0.8) 9.1 (3.3)

Uuf250 2.5 (1) 4.5 (1.2) 3.1 (1.1) 12.7 (3.2)

Color 48 (2.5) 61.3 (2.2) 49.3 (3.4) 80.4 (6.6)

G125 8.8 (1.3) 20.6 (2) 13.5 (1.7) 28.8 (4.6)

Goldb-heqc 72.9 (8.5) 112.2 (15.2) 133.2 (15.9) 609.7 (96.2)

Grieu-vmpc 16.7 (1.7) 15.2 (1.7) 19.6 (1.8) 24.1 (3.3)

Hoons-vbmc 69.7 (14.5) 268.1 (44.6) 248.3 (24.1) 784.5 (91.9)

Manol-pipe 163 (18.9) 389.6 (37.2) 321 (38.1) 1482.4 (181.5)

Schup 306.6 (26.9) 807.9 (81.8) 623.7 (48.5) 1639.5 (169.9)

Simon 29.6 (3.3) 43.5 (2.7) 35.3 (6.3) 72.6 (11.3)

Velev-eng 18.3 (5.2) 29.5 (7.3) 118 (37.1) 394 (75.8)

Velev-sss 2 (0.6) 4.6 (1) 5.9 (3.9) 62.7 (25.2)

Comparison - 18 - 2 21 - 0 22 - 0

7.3.4 Experimental Results

The performance of ExCoDyMAB (C) was compared with the baseline techniques,

the original Compass and Ex-DMAB, and also with the Uniform (naive) selection,

with 50 runs being performed on 22 SAT instances, obtained from [22] and from

the SAT Race 2006. A preliminary off-line tuning of the meta-parameters by means

of F-Race [6] was also done for the other techniques, in order to compare them at

their best (more details in [28]).

The results are presented in Table 7.2. The columns show the mean number of

false clauses after 5,000 function evaluations, averaged over 50 runs, and the stan-

dard deviation in parentheses, with the best results for each problem presented in

boldface. The last line of the table summarizes the comparison, by showing the

number of “wins - losses” of ExCoDyMAB compared to each of the baseline tech-

niques, according to a Student t-test with 95% confidence.

Note that the purpose of this work was not to build an amazing SAT solver, but

rather to experiment with a different AOS and validate ExCoDyMAB within an EA

solving a general, difficult combinatorial problem. The results of Table 7.2 show that
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a basic EA using rather naive operators can indeed solve some instances. The main

interesting result is that this set of benchmarks was difficult enough to highlight

the benefit of using the proposed combination of Compass and Ex-DMAB rather

than either separately – or a naive, blind choice. The deliberate choice of several

non-specialized operators was also important for validating the control ability of

ExCoDyMAB when facing variation operators of very different characteristics and

performance. Competing for SAT races implies using highly specialized operators,

such as the ones implemented in GASAT [25], and is left for further consideration.

This study highlights the importance of both control stages of AOS, namely

credit assignment and operator selection rules. Both features, Compass Credit As-

signmentcombined with DMAB Operator Selection, contribute to the overall per-

formance of the proposed autonomous control method, explaining the efficiency

gain over each previous method used alone. Additionally, using the Extreme values

from the aggregated performance measure allows the algorithm to identify occa-

sional but highly beneficial operators, while the inclusion of population diversity

with the traditional fitness improvement measure contributes to escaping from local

optima.

One main drawback of ExCoDyMAB is the tuning of its meta-parameters. Though

the normalization of fitness improvements and diversity by Compass might result in

a possible robust setting for the scaling parameter of the MAB balance (i.e., the

value found here using Racing), further work is needed for a deeper understanding

of how to tune the meta-parameter γ that triggers the change detection test. As pre-

viously mentioned, the off-line meta-parameter tuning using the F-Race paradigm

can be done in a fraction (15%) of the time needed for a complete factorial DOE,

but this is still quite costly.

Although its good performances rely expensive procedures, ExCoDyMAB was

found to outperform the main options available to the naive EA user, namely (i)

using a fixed or deterministic strategy (including the naive, uniform selection); and

(ii) using a different AOS strategy, including the combinations previously proposed

by the authors. Furthermore, ExCoDyMAB involves a fixed and limited number of

parameters, whereas the number of operator rates increases with the number of op-

erators, as discussed in Section 7.2.3.

7.4 Adaptive Operator Management

The design of the algorithm has great influence on the search performance. It can be

seen as a parameter setting at a higher level of abstraction: one must decide, from

several choices, the best configuration for the algorithm in order to maximize its

performance. However, in this case “structural” parameters are considered instead

of “behavioral” ones. In the case of operator control, instead of deciding on differ-

ent values for the application rate of a given operator, it decides whether a given

operator should be considered or not by the algorithm. It can be seen as a parameter

optimization problem over a search space composed of algorithms.
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This is usually done manually: the user decides, based mainly on his experience,

which operators should be included in the search algorithm; or he tries a few config-

urations, assessing their performance in order to set down the definitive algorithm.

As well as for the setting of the behavioral parameters, this design could also be as-

sisted by parameter setting techniques, such as Racing or REVAC (see Section 7.2).

While the utilization of off-line tuning techniques is straightforward, providing

the user a static “good” configuration, one might wonder how to do this in a dy-

namic way, while solving the problem. The motivations to do so would be the same

as those that led us to propose the AOS methods: the efficiency of the operators

changes according to the region of the search space that is currently being explored;

thus a useless operator might be excluded from the algorithmic framework, while

possibly useful ones might be included. The autonomous handling of the operators

included in the algorithm while solving the problem is what we refer to as Adap-

tive Operator Management (AOM). Besides being yet another approach of doing

parameter control, such an approach can also be described in the light of the recent

field of hyper-heuristics [7].

7.4.1 Basic Concepts for Operator Management

There exist several criteria to determine whether an operator must be included or

not in the search. The most straightforward one is the operator’s recent success: if

an operator has shown a good performance during the few last generations, it seems

reasonable to keep it and exclude another with a lower performance. Another crite-

rion could be based on a higher-level strategy of search, which encourages different

levels of exploration and exploitation, as needed by the search. The latter implies

the definition of a set of rules capable of guiding the search to efficiently balance

intensification and diversification.

Regardless the criteria chosen to handle the operators, in general we can dis-

tinguish between the three following possible states for each operator, shown in

Figure 7.3:

• Unborn, when the operators have never been used during the execution of the

algorithm, or no information about their performance is available from previous

runs.

• Alive refers to the operators that are currently being used by the algorithm. In

this state, a trace of their performance is maintained.

• Dead, when the operators have been excluded from the search. The difference

between this state and the unborn one is that here the controller has had the

opportunity to assess the behavior of the operator; thus it could be eventually

re-included later, with a clue about the effect it could produce.

It is arguable whether the observed performance of a given dead operator can be

extrapolated to a later state of the search. Indeed, a dismissed “bad” operator could

become useful in a different stage of the search, i.e., when the characteristics of the

fitness landscape being currently explored by the population have changed and/or
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Fig. 7.3: Operator states

the placement of the population over the search space has changed. This could mean

that the information stored in the profiles of the dead operators is no longer useful;

thus there are only two states: dead and alive. Nevertheless, we prefer to consider

the tree-state model, which offers wider possibilities in terms of previous knowledge

inclusion.

Such states are linked by the following three transitions:

• Birth, when an operator is included for the first time into the search.

• Death, when an operator has been considered useless for the current state of the

search, and thus removed from it.

• Revival, when a previously dismissed operator is brought back to the search.

The core of Adaptive Operator Management lies in defining the conditions under

which the transitions must take place. These conditions correspond to the different

criteria described above, which define whether and when an operator should be in-

cluded and eliminated from the search.

7.4.2 Blacksmith: A Generic Framework for AOM

The framework presented here, Blacksmith, aims to control the design by modify-

ing the set of operators available to the algorithm during its execution. The struc-

ture of the entire controller is shown in Figure 7.4. In addition to comprising the

Adaptive Operator Selection component, Adaptive Operator Management is com-

posed of a set of operator definitions from which the operators are extracted. This

set could be simply a list of possible operators that can be included in the search,

or an entire module that mixes subcomponents to create operators in an intelligent

manner.

Blacksmith manages operator states by defining a couple of data structures that

are attached to the operator definition. The rules that define the transition from one

state to another can be summarized as follows:

1. Initially, when an operator is Unborn state, Blacksmith only knows its name.

2. Once operators are born (i.e., they pass from unborn to alive state) two data

structures are associated with the operator name: data, which stores recent mea-

sures of performance, and profile, which summarizes the information in data,

by calculating meaningful statistics. A fixed number of operators is kept in the

registry, and they are evaluated at regular intervals.

3. Operators that have been applied a sufficient number of times are considered

for elimination. This condition is required to ensure that the operator has low
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Fig. 7.4: Scheme of the controller used in this work, depicting its two main compo-

nents, Adaptive Operator Selection and Adaptive Operator Management

performance. The weakest of those “known enough” operators is deleted (pass-

ing to the dead state) and a new one is inserted in the registry. In order to give

all operators a chance to show their skills, all unborn operators are tried before

dead ones are revived.

4. When there is no unborn operator left, replacement of unsuccessful operators

is performed by including dead ones. Such reinsertion of the operator is not

performed in a blind way, since the profile of the dead operators is maintained

(data, in contrast, is dismissed).

Note that this implementation is generic enough to manage any operator: all that

the AOM knows about the operators is their name and a summary of their perfor-

mance.

In the implementation presented here, ten operators are kept concurrently in the

algorithm, and they are evaluated every 50 generations. An operator’s performance

is considered to be well known after five applications, and is thus eligible for dele-

tion. An operator is deleted if its performance lies in the lower third of the alive

operators. The performance is assessed by a Credit Assignment mechanism (indeed,

the same information is shared between the AOS and AOM), presented in the fol-

lowing section.

This approach was applied to control an evolutionary algorithm based on GASAT

[25], which solves the SAT problem [19, 5]. The controller deals with crossover

operators that are created by combining four different criteria, summing up to 307

possible crossover operators. The criteria are related to how the clauses are selected

and what action is performed on them, as follows (further details can be found in

[29]):

18



1. Selection of clauses that are false in both parents: select none, in chrono-

logical order, randomly, randomly from the smallest and randomly from the

biggest.

2. Action to perform on the selected clauses: either take no action or consider

one of four ways to flip variables with different criteria.

3. Selection of clauses that are true in both parents: same as in (1).

4. Action to perform on the selected clauses: same as in (2).

7.4.3 Credit Assignment

In order to improve the Credit Assignment, beyond Compass (described in Sec-

tion 7.3.1), we compare two other schemes of evaluation, both based on the con-

cept of Pareto dominance [38]. In n-dimensional space, we say that a point a =
(a1,a2, . . . ,an) dominates another point b = (b1,b2, . . . ,bn) if ai is better than

bi,∀i = 1 . . .n. Here the word “better” is used in the context of optimization: if we

consider a maximization problem in dimension i, then a dominates b if ai > bi; on

the other hand, if the objective is to minimize a given function, then a dominates b

if ai < bi. When neither of the two points dominates the other, they are said to be in-

comparable. In our case, we have a two-dimensional space (∆Diversity,∆Quality)
with two criteria that we want to maximize.

The first scheme is called Pareto Dominance (PD), and it counts the number of

operators dominated by other operators (see Figure 7.5(b)). The purpose here is to

obtain a high value. The second evaluation method, called Pareto Rank (PR), com-

putes the number of operators that dominate a given operator (Figure 7.5(c)). Here

the objective is to obtain low values. Operators with a PR value of 0 belong to the

Pareto frontier. There exists an important difference between these two evaluations:

whereas PR will prefer only operators which are not dominated, PD also rewards

operators which are in strong competition with the others.

Fig. 7.5: Credit Assignment schemes. Compass (a), Pareto Dominance (b), Pareto

Rank (c)

After the application of an operator, the values of ∆Diversity and ∆Quality are

sent to the controller. The credit assignment module computes then the evaluation
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(C, PD or PR, depending on the scheme selected), and normalizes the resulting val-

ues across all operators (normalization is achieved by dividing values by the highest

possible value). The normalized values are stored in the Credit Registry as the as-

signed rewards. A list of the last m rewards of each operator (corresponding to its

last m applications) is recorded in the registry in order to provide to the operator

selection module an updated history of the performances of each operator.

7.4.4 Operator Selection

The operator selection module selects the next operator to be applied based on its

past performances, but without neglecting an exploration of the possible available

operators. As mentioned in Section 7.3.2, Ex-DMAB is inspired by the multi-armed

bandit approach, used in game theory. The strategy always chooses the operator that

maximizes expression (7.1).

However, this expression relies on the assumption that all operators are present in

the evolutionary algorithm from the beginning of the run. If an operator is inserted

during execution, its value of ni,t would be so low that the bandit-based AOS would

have to apply it many times in order to adjust its exploration term with regards to

the rest of the operators.

Since we are interested in operators that enter and exit the evolutionary algo-

rithm during the search process, we have reformulated expression (7.1) in order

to deal with a dynamic set of operators. This is mainly achieved by replacing the

measure corresponding to the number of times that an operator has been applied

with another criterion that corresponds to the number of generations elapsed since

the last application of the operator (i.e., its idle time). This allows a new operator

to immediately increase its evaluation by applying it once. The new evaluation of

performance is then defined as follows:

MAB2o,t = ro,t +2× exp(p× io,t − p× x×NOt) (7.2)

where io,t is the idle time of operator o at time t, NOt is the number of operators

considered by the Operator Selection at time t, and x is the number of times the

controller must wait before compulsorily applying the operator o. The behavior of

the exploration component is better understood by looking at Figure 7.6. The value

stays close to zero except when io,t is close to x ×NOt . Since the values of ro,t

are normalized in [0,1], when an operator has not been applied for a long time, its

application becomes mandatory. p is a positive parameter that adjusts the slope of

the exponential.

Besides MAB2, referred to as M2 from here on, the following three different

Operator Selection methods were also analyzed:

• Random (R), simply chooses randomly which among the operators currently

available in the EA.
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Fig. 7.6: behavior of exploratory component of expression (7.2)

• Probability Matching (PM), which chooses the operator with a probability

proportional to the reward values stored by the credit assignment module.

• MAB2 + Stuck detection (M2D), which adds to M2 a method in order to detect

the population is trapped in a local optimum. The detection is performed thanks

to the linear regression of the values of the mean quality of the population during

the last generations. If the value of the slope is close to zero and the difference

between the maximum and minimum values of mean quality is small enough

(i.e., almost a flat line), a diversification stage is performed, using only operators

that have an exploration profile. This diversification stage is maintained until

(i) the diversity reaches a range over the original value, or (ii) there are no

exploration operators, or (iii) a predefined number of generations has passed

without the desired diversity being reached.

7.4.5 Experimental Results

The combination of the three mentioned Credit Assignment mechanisms, namely

Compass (C), Pareto Dominance (PD) and Pareto Rank (PR), with the four consid-

ered Operator Selection techniques (R, PM, M2, M2D), resulted in a set of 12 Adap-

tive Operator Selection combinations to be coupled with the proposed Blacksmith

Adaptive Operator Management. These controllers were tested in the resolution of

the satisfiability problem SAT, with the AOM continuously managing the opera-

tional set of ten operators by including and excluding them from a superset of 307

operators (described in Section 7.4.2); and the AOS autonomously selecting from

this subset of ten available operators defined by the AOM which of them should

be applied at each time instant, with both using the same assessment information

provided by the Credit Assignment module.

The results were compared with state-of- the art crossovers FF, CC and CCTM

[25, 18]. Besides, the Uniform crossover and a controller that simply applies one of

the 307 possible combinations randomly (called R307) were used as baseline meth-

ods. Comparisons have been made on instances from different families and types

of benchmarks, including nine crafted, ten random-generated and seven industrial
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instances. One algorithm execution refers to 100,000 applications of crossover op-

erators.

These combinations are identified by the notation X −Y , where X ∈ {C,PD,PR}
denotes the Credit assignment mechanism used, and Y ∈ {M2,R,M2D,PM} is the

mechanism for operator selection. The parameters of the controller are those of

Blacksmith and those of M2 and M2D. The registry has a fixed size of 20 operators.

Every 50 generations1, the Analyzer is invoked in order to find a weak operator

to replace it with a fresh one. If an operator has been sufficiently applied (half of

the size of the registry, i.e., ten times) and if its reward is in the lower third of the

operators, it is selected to be deleted. The parameters of M2 are p = 0.2 and x = 1.5.

M2D uses the data of the last 100 generations to compute the linear regression. The

diversification stage is triggered when the value of the slope is within ±0.0001 and

the difference between maximal and minimal values is less than 0.001.

Figure 7.7 shows the convergence of the EA algorithm coupled with the different

controllers, as well as those of state-of-the-art and baseline crossovers, solving an

industrial instance. It can be seen that the worst performance is obtained by the

Uniform Crossover, and most of the 12 controllers do not overcome the state-of-

the-art crossovers CC and CCTM. However, two of them (PD-R and PD-PM) are

able to converge quite quickly to better solutions.

Fig. 7.7: Number of false clauses of best individual so far, obtained by different

controllers and state-of-the-art crossovers when solving an industrial instance

1 According to the usual taxonomy, this algorithm is a steady-state evolutionary algorithm; thus a

generation corresponds to the application of one operator.
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There is a clear advantage with Credit Assignment based on the Pareto Domi-

nance (PD), since it appears in the most efficient controllers, followed by C and PR.

One possible explanation is that PR considers equally all the operators placed on

the Pareto frontier (points in the Figure 7.5(c) with value 0). This induces a balance

between the exploration and the exploitation tendencies, thus preventing the evolu-

tionary algorithm from leaning to one side or to the other. A similar behavior could

be observed when using Compass according to its performance measure method.

On the other hand, when using PD, the better evaluation of the operators that fol-

low the general tendency (points in the Figure 7.5(b) with higher values) allows the

evolutionary algorithm to break the status quo and finally improve the quality of

the population. This “flexible balance” is the main asset of this Credit Assignment

method.

It is interesting to notice that the most exploratory Operator Selection methods

(PM and R) have produced some of the best results. It could seem surprising that

a random operator selection could be able to overcome sophisticated methods that

carefully try to balance EvE at the operator selection level, such as the bandit-based

approaches. A possible hypothesis for this could be that a mix of different crossover

operators works better than a single one due the diversity of behavior the former

can manifest; however, the poor results obtained by R307 show that simply mixing

different operators does not produce good results.

Another, more plausible, hypothesis is that an exploratory Operator Selection

method will provide updated information to AOM, since the rate of application of

“bad” operators is higher than when an exploitative Operator Selection method is

used. In this manner, R and PM rapidly produce the five applications needed to

evaluate the unsuccessful operators and move them from alive to dead state.

Another factor to consider is that Adaptive Operator Management uses the same

criterion as Adaptive Operator Selection to choose which operator will survive.

Since AOM continually dismisses the worst operators, an important part of exploita-

tion is done by AOM; thus AOS can focus exclusively on exploration. Differently

stated, AOS performs exploration among the operators that AOM has decided to

keep by using an exploitative criteria.

Table 7.3 shows the mean (standard deviation) of the performance of the algo-

rithms for each problem over 25 executions. We show here only the two most suc-

cessful controllers (PD-PM and PD-R). The best results (and those that are indistin-

guishable from them, using a Student t-test with 95% confidence) are in boldface.

Here we focus on the most successful controllers, PD-R and PD-PM.

PD-R obtained top results on 19 instances and PD-PM on 17, while CC and

CCTM were the best ones only five times. Even though the controller configura-

tions obtained the worst results on two industrial instances, we observed the best

improvements on this family of instances, especially on I5 and I6, in which the

adaptively controlled evolutionary algorithms obtained up to 260 times fewer false

clauses than the best state-of-the-art crossover. The results presented in this com-

parison show the generality of PD-PM and PD-R on different families and types

of instances. The overhead of this improvement is really moderate since the time

dedicated to control represents less that 10% of the total execution time.
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Table 7.3: Comparison of PD-PM and PD-R with state-of-the-art crossovers over

crafted, random and industrial instances. Number of false clauses and standard de-

viation

PD-PM PD-R FF CC CCTM

C1 35.4 (5.4) 34.8 (2.8) 503.2 (41.0) 44.7 (5.2) 42.1 (4.7)

C2 35.8 (2.6) 38.0 (4.2) 509.4 (31.6) 46.0 (4.4) 47.6 (4.9)

C3 35.4 (3.7) 35.6 (3.6) 490.0 (37.7) 48.4 (4.1) 47.1 (3.3)

C4 45.1 (3.8) 43.4 (4.6) 491.6 (36.5) 48.7 (3.0) 48.2 (3.4)

C5 10.5 (1.8) 9.8 (2.8) 47.9 (4.2) 11.6 (1.8) 10.2 (1.5)

C6 8.6 (1.9) 8.3 (1.7) 36.9 (3.3) 8.4 (1.6) 8.7 (1.4)

C7 8.8 (1.8) 8.0 (1.9) 38.7 (4.2) 8.4 (1.2) 8.7 (1.7)

C8 10.0 (2.4) 9.7 (2.5) 48.2 (4.1) 11.3 (1.4) 11.6 (1.6)

C9 150.9 (31.2) 123.3 (28.8) 973.2 (77.4) 214.7 (15.9) 217.0 (14.8)

R1 7.5 (1.5) 7.2 (1.1) 34.2 (5.4) 9.5 (1.9) 9.7 (1.8)

R2 6.4 (1.3) 5.7 (1.4) 30.6 (3.8) 7.3 (1.4) 7.7 (1.6)

R3 8.4 (1.4) 8.2 (1.5) 32.1 (3.8) 10.6 (1.6) 10.9 (1.9)

R4 4.2 (1.5) 3.5 (1.4) 26.3 (3.8) 7.4 (1.2) 7.4 (1.8)

R5 8.2 (2.1) 7.8 (1.8) 40.0 (6.0) 8.4 (1.5) 9.1 (1.4)

R6 6.7 (1.6) 7.9 (1.6) 44.2 (6.4) 8.7 (1.5) 8.8 (1.4)

R7 6.1 (1.7) 5.8 (2.1) 39.4 (5.5) 7.6 (1.6) 7.8 (1.4)

R8 9.0 (1.2) 8.8 (1.6) 49.2 (5.3) 10.3 (1.9) 9.9 (1.7)

R9 9.1 (1.6) 9.0 (1.7) 41.9 (5.7) 10.0 (1.7) 9.0 (1.5)

R10 110.1 (5.7) 115.1 (8.3) 654.0 (39.5) 153.0 (9.2) 150.0 (7.9)

I1 123.6 (11.4) 167.6 (32.3) 439.3 (27.3) 354.4 (11.4) 349.6 (11.7)

I2 99.7 (8.2) 134.7 (22.5) 469.1 (26.3) 372.0 (35.5) 367.8 (32.2)

I3 2.7 (2.9) 8.6 (7.7) 216.5 (18.9) 1.0 (0.0) 1.0 (0.0)

I4 2.8 (2.4) 6.3 (4.8) 116.2 (11.2) 1.0 (0.2) 1.1 (0.4)

I5 59.4 (98.5) 38.0 (1.4) 12567.6 (547.1) 10044.2 (384.4) 9928.1 (382.0)

I6 127.8 (317.1) 35.1 (1.5) 9736.2 (404.9) 7567.7 (238.0) 7521.2 (272.9)

I7 44.2 (1.3) 48.4 (2.2) 1877.6 (195.1) 61.8 (1.7) 61.6 (1.8)

7.5 Conclusions

Finding an appropriate parameter setting has a great effect on the performance of

search algorithms. This parameterization can be fixed during the whole execution,

or it can be continuously modified while the problem is being solved, adapting its

features to the needs of each stage of the search, which is commonly known as

parameter control.

Parameter control requires good knowledge of the mechanics of the search, and

in many cases of the details of the problem. Actually, it is mostly achieved in a

customized way, making it difficult to transfer the knowledge obtained through the

control of one algorithm to another one. As a consequence, one of the main issues

in parameter control lies in the creation of generic schemes that could be used trans-

parently by the user of a search algorithm, without requiring prior knowledge about

the problem scope and the details of the search algorithm.
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In an intuitive way, we can distinguish betweentwo main types of parameters:

those that control the behavior of the algorithm, such as the application rates of a

given variation operator, and those that affect the core structure of the algorithm it-

self, called structural. In this chapter, we have discussed two approaches for dealing

with both behavioral and structural parameters, namely Adaptive Operator Selection

and Adaptive Operator Management.

ExCoDyMAB AOS, presented in Section 7.3.3, combines Compass, an efficient

Credit Assignment approach proposed in [31] that associates two performance mea-

sures (quality and diversity) with a given operator, with Ex-DMAB, an engineered

Operator Selection mechanism based on the multi-armed bandit approach, origi-

nally proposed in [15]. Such an AOS combination has been shown to be very effi-

cient in selecting between ill-known operators within an EA applied to SAT prob-

lems. Although some meta-parameters still need to be tuned, off-line techniques

such as the F-Race [6] can be used, which reduces the tuning time to around 15% of

the total time that would be required by a complete factorial design of experiments.

To deal with structural parameters, we have defined a general framework in

which operators can be in one of the following three states: unborn, alive or dead.

The inclusion or exclusion of operators defines the transitions between these states.

We have presented an Adaptive Operator Management called Blacksmith, which

builds operators in a combinatorial way and attaches a profile to each one of them,

in order to evaluate whether an operator must be kept, dismissed or reincorporated

into the search. This AOM technique has been shown to have the ability to au-

tonomously and continuously manage an efficient set of ten operators within an EA

applied to SAT problems, extracted from a superset of 307 unknown operators. Even

if one well-performing static configuration could be found, such a definition if done

by hand would be very time-consuming.

Both AOS and AOM controllers are based on the same assessment of operators,

referred to as Credit Assignment. In order to attain generality with regard to the im-

plementation of the search algorithm, it is necessary to measure the performance of

the controlled items in a generic way. This measure must make sense to a wide set

of search algorithms and be compatible with the search itself. Two high-level crite-

ria are used to evaluate the performance of operators: mean fitness and population

diversity. These two measures are respectively aligned with exploitation and explo-

ration, that constitute the two main goals of any search algorithm. Note that even

though population diversity is closely related to population-based algorithms, an

equivalent measure of exploration, such as a time-diversity diversity measure (e.g.,

one considering the amount of exploration that the point has performed in recent

operations) could be used instead by single-point based algorithms.

Given this generality, the combination of both controllers, Adaptive Operator

Selection and Adaptive Operator Management, could be used as a framework to

manage and select variation operators not only for evolutionary algorithms, but for

search algorithms in general.

A possible improvement to the approach presented in this chapter would be the

inclusion of a high-level strategy to guide the behavior of both controllers. Notice

that both AOM and AOS currently consider the same criteria to guide their choices,
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i.e., Pareto optimality (or a similar idea) of both mean fitness and population diver-

sity. In the way it is currently being done, the same weight is given to both trends, the

exploration/diversification and the exploitation/intensification criteria; as is known,

the needs of the search w.r.t. such trends vary as the search goes on; thus keeping the

same balance might lead to overall suboptimal behavior. Intuitively, one idea would

be to consider some strategy that starts by encouraging the exploration behavior, and

gradually shifts to the exploitation; or one that searches for a certain compromise

level of EvE [30, 32].

Another path of further research concerns the identification of the best operators

used during one or more runs. Even though our approach can choose appropriate

operators given a search state, no information about this knowledge is delivered at

the end. This automatically extracted knowledge could be used to guide the selection

of the better operators for the next run, or to establish a map between operators and

the search states for which they are best suited.

Some further analysis should be done for both Adaptive Operator Selection and

Adaptive Operator Managementconcerning the relevance and sensitivity of their

meta-parameters, which would help us to better understand their behavior.

One could also remark that, in this architecture, bad operators should be tried

before assessing their poor performances. Another architecture could be envisaged

to separate the evaluation of the operators and their effective use. For instance, in

a distributed solving scheme, some controllers could be devoted to the evaluation

of the performance according to given state of the search while other controllers

could concentrate on the effective solving of the problem, the controllers exchanging

information about the current state of the search.
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