
HAL Id: hal-03256752
https://univ-angers.hal.science/hal-03256752

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Decomposition Approach for Discovering
Discriminative Motifs in a Sequence Database

David Lesaint, Deepak Mehta, Barry O’Sullivan, Vincent Vigneron

To cite this version:
David Lesaint, Deepak Mehta, Barry O’Sullivan, Vincent Vigneron. A Decomposition Approach for
Discovering Discriminative Motifs in a Sequence Database. ICTAI 2014 - 26th IEEE International
Conference on Tools with Artificial Intelligence, 2014, Limassol, Cyprus. pp.544-551, �10.1109/IC-
TAI.2014.88�. �hal-03256752�

https://univ-angers.hal.science/hal-03256752
https://hal.archives-ouvertes.fr

A Decomposition Approach for Discovering
Discriminative Motifs in a Sequence Database

David Lesaint�, Deepak Mehta:, Barry O’Sullivan: and Vincent Vigneron�
�LERIA Université d’Angers

2, bd Lavoisier
49045 Angers cedex 01 France

Email: {lesaint,vigneron}@info.univ-angers.fr
:Insight Centre for Data Analytics

University College Cork, Ireland
Email: {deepak.mehta,barry.osullivan}@insight-centre.org

Abstract—Considerable effort has been invested over the years
in ad-hoc algorithms for itemset and pattern mining. Constraint
programming has recently been proposed as a means to tackle
itemset mining tasks within a general modelling framework. We
follow this approach to address the discovery of discriminative
n-ary motifs in databases of labeled sequences. We define a n-
ary motif as a mapping of n patterns to n class-wide embeddings
and we restrict the interpretation of constraints on a motif to the
sequences embedding all patterns. We formulate core constraints
that minimize redundancy between motifs and introduce a gen-
eral constraint optimization framework to compute common and
exclusive motifs. We cast the discovery of closed and replication-
free motifs in this framework for which we propose a two-stage
approach based on constraint programming. Experimental results
on datasets of protein sequences demonstrate the efficiency of the
approach.

I. INTRODUCTION

Pattern mining is of critical importance in domains ranging
from Bioinformatics to Cybersecurity. Patterns help character-
ize data sets and many algorithms have been proposed for
various mining tasks (e.g., concept learning, clustering) over
different datatypes (e.g., item-sets or sequences, labeled or
unlabeled data). These algorithms are typically ad-hoc and
dedicated to a particular mining task or application domain
which makes them hard to adapt when requirements evolve.
Knowledge representation frameworks based on constraint pro-
gramming (CP) have been proposed to address this issue [1]–
[3]. CP provides constraint languages to express requirements
in a modular way together with generic constraint satisfaction
algorithms to solve the resulting problems efficiently. Using
CP for data mining aims to facilitate reuse and evolvability
without sacrificing computational performances.

This paper introduces a constraint optimization approach
for mining discriminative motifs in databases of labelled
sequences. Without loss of generality, we shall only consider
bipartitioned databases consisting of a “positive class” and a
“negative class”. In this context, we are interested in computing
an n-ary motif that is common and exclusive to the positive
class. A n-ary motif consists of n patterns and associates to
each pattern a class-wide embedding called a c-block. Every
pattern is a sequence of solid characters possibly interspersed
with free characters called hash. We require that every c-block
preserves the positioning of hashs in its pattern across the pos-

itive class, that is, a c-block is a common subsequence subject
to gap consistency constraints across positive sequences. This
constraint is paramount to tackling alignment problems such
as protein sequence alignment where hashs are interpreted as
evolutionary point mutations.

On this basis, we adapt closure and coverage constraints
on motifs which have been cast in CP frameworks for different
data mining problems (singleton [1] and n-ary motifs [2] made
of item-sets, singleton motifs of sequential patterns over a
single sequence [4], [5] or multiple sequences [6]). We also
introduce new constraints, namely, non-inclusion and non-
replication between the c-blocks of a motif. These constraints
help to reduce redundancy, speed up computation or meet
domain-specific requirements. We then propose a framework
for motif discovery problems (MDP) that gives full flexibility
in the choice and distribution of constraints to satisfy on
the positive class or to falsify on the negative class. The
framework handles exclusivity as an optimization criterion and
uses lexicographic ordering to accommodate additional criteria
(motif cardinality, slack, etc).

We cast one particular problem in this framework, namely,
the discovery of exclusive, closed and replication-free motifs.
The Replication-free MDP (RMDP) enforces motif closure and
non-replication over the positive class and minimum coverage
of the negative class. This problem is novel from computational
and bioinformatics point of views, the closest attempts being
those related to the computation of non-sequential motifs for
item-sets, singleton and non-discriminative sequential motifs
or multiple protein sequence alignments. We introduce a two-
stage approach to RMDP when the objective is to maximize
exclusivity before minimizing slack and cardinality. This ap-
proach assembles closed c-blocks from minimal blocks before
determining solution motifs using constraint optimization. In
this last stage, minimizing cardinality reduces to a minimum
set covering problem. We report experiments on two datasets
of protein sequences [7]–[9] that demonstrate the efficiency of
the approach.

The paper is organized as follows. Section II presents
background definitions, the MDP framework and the RMDP
problem. Section III introduces the two-stage approach and
constraint optimization method used to solve RMDP. Section
IV reports and discusses experimental results. Section V con-

cludes.

II. DEFINITIONS

Let Σ be an alphabet which is a finite set of symbols called
solid characters. A sequence over Σ is a sequence s1 . . . sn P
Σn for some n P N�. The length of a sequence s is denoted
by |s|. A bipartitioned database D over Σ is the union of
two disjoint sets D� and D� of sequences over Σ (D �
Σ� and D � D� Y� D�). D� (respectively, D�) is called
the positive (resp. negative) class and its elements the positive
(resp., negative) sequences of D. A hash is a special character
denoted # that is not in Σ (# R Σ). A pattern is a sequence
over Σ Y t#u of length greater or equal to 2 that starts and
ends with a solid character. The following definitions refer to
a database D over an alphabet Σ. We shall denote by rns the
range ti | 1 ¤ i ¤ nu for n P N, and by rts the range r|t|s for
a sequence, pattern or set t.

Definition 1 (Pattern): A pattern is a sequence p P Σ.pΣY
t#uq�.Σ. pi denotes the i-th character of p for all i P rps,
πppq � tk | pk � #u denotes the set of positions of solid
characters in p, and πppqpiq denotes the position of the i-th
solid character in p for all i P rπppqs.

A pattern may be embedded more than once in a sequence.
For instance, sequence ADACDCEC embeds pattern A##C#C at
locations 1 and 3. A pattern may also be embedded in different
sequences of a database, the set of which is called the cover of
the pattern. We say that a pattern is positive if every positive
sequence embeds it.

Definition 2 (Pattern embedding and cover): A pattern p
is embedded in a sequence s at location l P rss, denoted p �l s,
if pk � sl�k�1 or pk � # for all k P rps. The cover of p,
denoted ϕppq, is the set ϕppq � ts P D | Dl P rss, p �l su.

A block corresponds to the embedding of a pattern in
a sequence. A c-block corresponds to the embedding of a
positive pattern over its whole cover, that is, it is the choice of
one block per sequence in the pattern cover. A motif is a non-
empty set of c-blocks and the intersection of their (pattern)
covers defines the cover of the motif.

Definition 3 (Block, c-block and motif): A block is a triple
pp, l, sq such that s is a sequence of D and p is a pattern
embedded in s at location l. A c-block is a pair pp, δq such
that p is a positive pattern and δ is a function embedding p
over its cover: D� � ϕppq, δ P pϕppq Ñ N�) and pp, δpsq, sq
is a block for all s P ϕppq. The cover of a c-block c � pp, δq
is ϕpcq � ϕppq. A motif Π is a non-empty set of c-blocks and
the cover of Π is ϕpΠq �

�
cPΠ

ϕpcq.

Figure 1 shows patterns and blocks for a database
of three sequences. For instance, AA is a positive
pattern. pAA, 6, s1q, pAA, 8, s2q and pAA, 1, s3q are
blocks and pAA, t6, 8, 1uq a c-block for this pattern.1
pAAC#E, t1, 1uq is another c-block but pYE, t4uq is not
since pattern YE is not positive. A possible motif is tpA#C,
t1, 1, 1uq, pAAC, t1, 1, 1uq, pAAC#E, t1, 1uq, pAA, t6, 8, 1uqu
and its cover is D�.

1We represent the embedding function of a c-block by ordering its image
consistently with the ordering ts1, s2, s3u.

s1 s2 s3
Sequences AACYEAA AACZEZZAA AAC
Blocks A#C A#C A#C

AAC AAC AAC
AAC#E AAC#E

AA AA AA

Fig. 1. Examples of blocks for a database D� � ts1, s2u and D� � ts3u.

We are interested in discovering motifs that are common
and exclusive to the positive class, that is, motifs satisfying
the prescribed constraints on the positive class (commonality)
and falsifying some of the constraints when extended to
negative sequences (exclusivity). A motif constraint may then
be interpreted over different sets of sequences based on the
computation task, i.e., over the positive class for checking com-
monality or over supersets of the positive class for checking
exclusivity.

Definition 4 (Motif constraint): Let C be the set of c-
blocks associated to database D. A motif constraint is a
mapping r P p2D � 2C Ñ tfalse, trueuq. A motif Π � C
satisfies r over X � D if rpX,Πq � true.

We now introduce motif constraints, namely, non-
replication, non-inclusion, closure and coverage whose aim is
to eliminate redundant motifs. Motif constraints quantify if the
c-blocks of a motif satisfy a given property. Such properties
differ in scope, e.g., closure and coverage are checked for
each c-block whereas non-replication and non-inclusion are
checked for each pair of c-blocks. Properties also differ based
on whether they apply to patterns or blocks of c-blocks.

Replication is a pattern subsumption constraint. Informally,
a pattern p replicates a pattern p1 if p is obtained from p1 by
replacing hashs with solid characters and/or by adding solid
characters and possibly hashs left and/or right. For instance,
pattern AAC#E replicates AAC which itself replicates A#C. We
say that replication holds between two c-blocks if replication
holds between their patterns.

Definition 5 (c-block replication): Let p and p1 be two
patterns. p replicates p1, denoted p © p1, if Dl P N, @i P rp1s,
p1i � # ñ p1i � pi�l. Let c � pp, δq and c1 � pp1, δ1q be two
c-blocks. c replicates c1, denoted c © c1, if p © p1.

Inclusion is a block subsumption constraint. Informally,
a block b includes a block b1 if b and b1 are associated to
the same sequence s and every solid character in the pattern
of b1 is found in the pattern of b with the same embedding
in s. Note that replication subsumes inclusion. For instance,
block pAAC#E, 1, s1q in Fig.1 includes pAAC, 1, s1q which
itself includes pA#C, 1, s1q. However, block pAA, 1, s1q does
not include pAA, 6, s1q. We say that inclusion holds between
two c-blocks over X � D if they have a common sequence
in X over which block inclusion holds.

Definition 6 (c-block inclusion): Let s P D and let b �
pp, l, sq and b1 � pp1, l1, sq be two blocks. b includes b1, denoted
b � b1, if tk�l | k P πppqu � tk�l1 | k P πpp1qu. Let c � pp, δq
and c1 � pp1, δ1q be two c-blocks. c includes c1 over X � D,
denoted c �X c1, if Ds P X X ϕpcq X ϕpc1q, pp, δpsq, sq �
pp1, δ1psq, sq.

Closure is a unary constraint on c-blocks that ensures one
cannot replicate the pattern of a c-block while preserving its

blocks. Informally, a c-block is closed over X � D if there is
no other c-block including it in each sequence common to X
and its cover. For instance, c-block pAAC, t1, 1, 1uq in Fig.1 is
not closed over D� as pAAC#E, t1, 1, 1uq includes it on each
positive sequence but it is closed over D.

Definition 7 (c-block closure): A c-block pp, δq is closed
over X � D if there is no c-block pp1, δ1q such that p1 � p
and pp1, δ1psq, sq � pp, δpsq, sq for all s P X X ϕppp, δqq X
ϕppp1, δ1qq.

We now define motif constraints relatively to some set X �
D. First, a motif covers X if its cover includes X . It is closed
over X if its c-blocks are closed over X . It is replication-
free over X if there is no replication between its c-blocks. It
is inclusion-free over X if there is no inclusion between its
c-blocks over X . Formally,2

coverageXpΠq ô X � ϕpΠq (1)
closureXpΠq ô @c P Π, c is closed over X (2)

non� replicationXpΠq ô @c, c1 P Π, c © c1 ñ c � c1 (3)
non� inclusionXpΠq ô @c, c1 P Π, c �X c1 ñ c � c1 (4)

In Fig.1, motif tpAAC, t1, 1, 1uq, pAAC#E, t1, 1uqu covers
D� but not D and it is neither inclusion-free nor closed
over its cover. tpAAC, t1, 1, 1uq, pAA, t6, 8, 1uqu covers D and
is inclusion-free but neither replication-free nor closed over
D�. tpAAC#E, t1, 1uq, pAA, t6, 8, 1uqu covers D� and is both
inclusion-free and closed over its cover but it is not replication-
free.

Many other constraints may be considered which we dis-
cuss briefly. These include pattern constraints (e.g., prohibiting
some solid characters, bounding the number of hashs and,
more generally, enforcing regular expression constraints [6]),
constraints on individual c-blocks (e.g., requiring that the set
of solid characters mapping to a hash fit into predefined classes
of interchangeability), and constraints between c-blocks (e.g.,
cardinality constraints on pattern replications or duplications).
As opposed to itemsets, pattern motifs also lend themselves
to positioning or ordering constraints. Blocks indeed map to
position intervals and point or interval algebras may be used
to enforce a consistent ordering between the c-blocks of a
motif. For instance, one may search for “sequential motifs”
by imposing a total ordering on c-blocks by the means of
precedence constraints on blocks.

We now present the MDP framework to compute discrimi-
nating motifs. A MDP is parameterized by a set of constraints
and requires that a solution motif satisfy all constraints over
the positive class and exclude the largest number of negative
sequences. A motif excludes a negative sequence if it cannot be
“extended” to that sequence without falsifying some constraint,
i.e., any motif sharing the same family of patterns and blocks
over the positive class falsifies some constraint when interpre-
tation extends to the negative sequence. In Fig.1 for instance,
motif tpAAC, t1, 1, 1uq, pAA, t6, 8, 1uqu satisfies non-inclusion
over the positive class and excludes negative sequence s3 with
this constraint.

2We abuse notation by using rXpΠq to mean rpX,Πq � true and
 rXpΠq to mean rpX,Πq � false for a motif constraint r.

Definition 8 (Exclusion and inclusion counts): Let Π and
Π1 be motifs. We denote Π �� Π1 if there exists a one-to-
one mapping f : Π Ñ Π1 such that @pp, δq P Π, fppp, δqq �
pp1, δ1q ñ pp � p1 ^ δ|D� � δ1|D�q. Let R be a set of motif
constraints. The exclusion count of Π for R is excRpΠq �
|ts P D� | @Π1 �� Π, Dr P R, rϕpΠqYtsupΠ

1qu| and the
inclusion count of Π for R is incRpΠq � |D�| � excRpΠq.

Note that some constraints can never be falsified on nega-
tive sequences if they hold over the positive class for a given
motif. This is the case of constraints that are monotonic for set
inclusion over sequence sets and constraints whose semantics
does not depend on motif cover. Examples include closure (a
motif closed over X is closed over all Y � X) and non-
replication (a replication-free motif over X is replication-free
over all sets of sequences). For this reason but also to clearly
separate commonality and exclusivity checks, constraints that
should not be checked for exclusivity are made explicit in the
MDP framework. While exclusion maximization is the main
objective, the MDP framework can accommodate secondary
objectives. This is achieved by the means of a user-defined
strict weak ordering.

Definition 9 (MDP): A motif discovery problem is a tuple
P � pD,R�, R�,Àq such that D � D� Y� D� is a biparti-
tioned sequence database, R� and R� are (possibly empty)
sets of motif constraints, and À is a strict weak ordering3

over motifs such that Π À Π1 ñ incR�pΠq ¤ incR�pΠ
1q.

A solution to P is a minimal motif for À that satisfies all
constraints of R� YR� over D�.

We present below two measures, namely motif cardinality
and slack, that may be combined with the inclusion count. The
slack of a motif is the maximum number of consecutive hashs
in its patterns.

Definition 10 (Measures): Let Π be a motif. cardpΠq �
|Π| is the cardinality of Π. slackpΠq � max

pp,δqPΠ,iPr|p|�1s
pπppqpi� 1q � πppqpiq � 1q is the slack of Π.

We now introduce the Replication-free MDP (RMDP)
which enforces motif closure and non-replication over the
positive class and minimal coverage of the negative class. That
is, a solution to a RMDP is a replication-free motif that is
closed over the positive class, that covers the smallest number
of negative sequences, and that is minimal for the additional
criteria if any.

Definition 11 (RMDP): A RMDP is a MDP
pD,R�, R�,Àq with R� � tclosure,non-replicationu
and R� � tcoverageu.

The next result shows that a careful choice of criteria allows
to restrict computation to a subset of c-blocks having “maxi-
mal” patterns. Let C denote the set of c-blocks associated to
a RMDP. We denote � the binary relation defined over C by
c � c1 iff c © c1 ^ c1 © c. Note that � is an equivalence
relation since © is a pre-order. We say that a c-block c P C
is maximal for replication or ©-maximal iff for all c1 P C,
c1 © c ñ c1 � c. � partitions the set of ©-maximal c-
blocks into equivalence classes. The choice of a representative

3A strict weak ordering is a strict partial ordering for which the incompa-
rability relation is transitive.

element in each class determines a representative set of ©-
maximal c-blocks which, under certain conditions on the
optimization criteria, necessarily includes a solution motif if
the problem is satisfiable. In particular, any representative set
of ©-maximal c-blocks includes a solution if inclusion count
minimization is the sole objective.

Theorem 1: Let P � pD,R�, R�,Àq be a satisfiable
RMDP, C be its set of c-blocks, C©max

be its set of ©-
maximal c-blocks, f : C Ñ C©max

be a function verifying
fpcq © c and fpcq � fpc1q ñ fpcq � fpc1q for all
c, c1 P C, and F : 2C Ñ 2C©max be the function defined
by F ptc1, . . . , ckuq � tfpc1q, . . . , fpckqu. If À is equal to ¤
or if F pΠq À Π for all Π P 2C then P has a solution in
F p2Cq.4

Proof: Let P be a satisfiable RMDP. Since C is finite
and © is a preorder, every c-block c P C may be mapped to at
least one c-block c1 P C©max s.t. c1 © c. Every ©-maximal
c-block may also be mapped to a particular representative
of its equivalence class. Therefore there exists a function
f : C Ñ C©max satisfying fpcq © c and fpcq � fpc1q ñ
fpcq � fpc1q for all c, c1 P C. Let F : 2C Ñ 2C©max s.t.
F ptc1, . . . , ckuq � tfpc1q, . . . , fpckqu and let Π P 2C . We
first show that (a) incR�pF pΠqq ¤ incR�pΠq and (b) F pΠq
satisfies all constraints of R� YR� over D�.

(a) Since R� � tcoverageu, excR�pΠq � |ts P
D� | @Π1 �� Π, coveragepϕpΠq Y tsu,Π1qu| = |ts P
D� | @Π1 �� Π, ϕpΠqYtsu � ϕpΠ1qu|. By definition of ��,
ϕpΠ1q � ϕpΠq for all Π1 �� Π so excR�pΠq � |DzϕpΠq|.
For all c, c1 P C, c1 © c implies ϕpc1q � ϕpcq. So
ϕpfpcqq � ϕpcq for all c P C. Since ϕpF pΠqq �

�
cPΠ

ϕpfpcqq,

ϕpF pΠqq � ϕpΠq. Therefore excR�pΠq ¤ excR�pF pΠqq
ie. incR�pF pΠqq ¤ incR�pΠq. (b) By definition, every ©-
maximal c-block is necessarily closed over D� and F pΠq �
2C©max so F pΠq is closed over D�. Let c, c1 P F pΠq s.t.
c © c1. c � c1 since c1 is ©-maximal. By definition of F ,
there exists a, a1 P C such that c � fpaq and c1 � fpa1q.
So fpaq � fpa1q which implies fpaq � fpa1q by definition
of f so c � c1. Therefore F pΠq is replication-free. Every c-
block covers D� and so does every motif so F pΠq covers D�.
Therefore F pΠq satisfies all constraints of R�YR� over D�.

Let Π be a solution to P . If À is equal to ¤ then (a)
implies F pΠq is minimal for À and (b) implies F pΠq satisfies
all constraints of R�YR� over D� so F pΠq is also a solution
to P . If F pΠ1q À Π1 for all Π1 P 2C then F pΠq is minimal for
À which together with (2) implies that F pΠq is also a solution
to P .

By definition, all motifs of F p2Cq are subsets of a rep-
resentative set of À-maximal c-blocks. This motivates a two-
stage approach when the conditions of the theorem hold on À.
Precisely, one may compute a representative set of À-maximal
c-blocks first before extracting an optimal motif through com-
binatorial optimization. Consider for instance motif cardinality
and slack which respectively decreases and increases through
function F (i.e., |F pΠq| ¤ |Π| and slackpF pΠqq ¥ slackpΠq).
Solution motifs may be found with this approach if the problem
is satisfiable and the additional objectives are to minimize
cardinality and/or maximize slack.

4F p2Cq denotes the image of F .

This is no longer true if motif cardinality has to be
maximized or slack minimized. The next section addresses
such a case. Specifically, the objective is to minimize both
cardinality and slack.

III. A DECOMPOSITION APPROACH TO SOLVING RMDP

We describe an approach to solve RMDP where we con-
sider an additional constraint where slack is upper-bounded
by some predefined parameter. The lexicographic objective
is to first maximize exclusion then minimize slack and then
minimize cardinality. We also investigate a variant of the
problem where the minimal cardinality and slack criteria are
swapped in the lexicographic objective function.

Solving RMDP involves finding a motif consisting of
one or more c-blocks that are closed, replication-free and
exclusively covering D�. From a computational viewpoint,
the main bottleneck is that a solution motif may contain
an exponential number of c-blocks and this number is not
known a priori. This contrasts with itemset or single pattern
computation problems as in that case the size of the solu-
tion is bounded by the maximum number of items in any
transaction. However, in our case as the number of patterns
could be exponential modelling the whole problem as a giant
monolithic Constraint Optimization Problem (COP) is space-
wise challenging. Therefore, we propose a two-step approach
where first we compute all c-blocks over D� that are closed
and replication-free and then for each sequence in D� we
determine c-blocks that do not cover it and then compute an
optimal motif for D�.

As memory requirements may remain prohibitive, we im-
plement a lazy approach where the value of slack is incre-
mented only if required. More precisely, we vary the value
of slack starting from 0 to a maximum allowed value, and
compute the c-blocks and an optimal motif at each step. We
exit the loop as soon as all negative sequences are excluded.
We describe below the method for computing an optimal motif
for a given value of slack.

A. Computing Closed C-blocks

The pseudo-code for computing maximal c-blocks is shown
in Algorithm 1. We compute closed c-blocks in three succes-
sive steps:

1) We start by computing all “positive blocks” of length
2, i.e., blocks whose patterns are positive and only
have 2 solid characters We further enforce the con-
straint that the cover of the pattern of each block
is D�. This is done by first selecting the sequence
having the minimum length and then verifying for
each valid block of length 2 whether its pattern is
occurring in all the sequences or not. Once done,
we know all the minimal length blocks and their
locations in the smallest sequence of the positive class
(Lines 1–2). The pseudo-code for this task is depicted
in Algorithm 2.

2) We then compute all inclusion-maximal positive
blocks for the shortest sequence, i.e., positive blocks
that are not included in any other positive block. The
idea is to build a lattice of blocks bottom-up based
on the inclusion relation. The procedure is iterative

and starts with the minimal length positive blocks.
Each iteration merges every possible pair of blocks
verifying that the resulting block is positive and
within the allowed slack before eliminating any block
that is not inclusion-maximal in the set computed
so far. We remark that the number of non-inclusive
blocks defines a bound on number of non-inclusive
closed c-blocks. The pseudo-code for this task is
depicted in Algorithm 3.

3) We finally compute a set of inclusion-maximal closed
c-blocks (Line 4). The pseudo-code for this task is
depicted in Algorithm 4.

Algorithm 1
ComputeClosedCBlocks(D�,maxSlack)
Require: D� is the positive class
Require: maxSlack is the maximum allowed slack
1: sÐ arg mintPD� |t|
2: minbs Ð FindAllMinimalBlockspD�, s, maxSlackq
3: maxbs Ð FindAllMaximalBlockspD�, s, maxSlack, minbsq
4: maxcbs Ð FindMaximalCBlockspD�, s, maxbsq
5: return maxcbs

Algorithm 2 computes all minimal blocks of the sequence
s of class D�, denoted by minbs, such that the cover of
each pattern of each block is D�. For each allowed value of
slack (Line 2) and for each block of s having pattern p and
length 2 (Line 3), the algorithms checks if the cover of p is
D� (Line 4). If it finds such a block then the set minbs is
updated (Line 5). Let n � |D�|. Let d and d be the minimum
and maximum lengths of the sequences of D�. The maximum
value of slack is bounded by d� 2 as sequence s is smallest
in class D�. Also, the maximum number of minimal blocks
for any given slack value is bounded by d � 1. The task of
verifying whether the cover of the block is occurring is D�

is bounded by nd. Therefore, the worst-case complexity of
FindAllMinimalBlocks is Opnd2 dq.

Algorithm 2
FindAllMinimalBlocks(D�,s,maxSlack)
Require: D� is the positive class
Require: s is a positive sequence
Require: maxSlack is the maximum allowed slack
1: minbs Ð H
2: for all σ P rmaxSlacks do
3: for all b � pp, l, sq s.t. |πppq| � 2 ^ σ � slackppq do
4: if ϕppq � D� then
5: minbs Ð minbsY tbu
6: return minbs

Algorithm 3 computes all maximal blocks of sequence
s P D�, denoted by maxbs, such that the cover of the pattern
of each block is D� itself. The general idea is to build a
lattice of blocks based on inclusion relation. Initially, maxbs
is initialized to the given set of minimal blocks (Line 1). In
each iteration (Lines 2–17), the blocks of the current top layer,
denoted by oldbs, are considered to construct new blocks
for the next layer, denoted by newbs. Initially, oldbs is set
to maxbs and newbs is the empty set (Lines 3–4). Each
pair of blocks of the current layer (Line 5) are composed to
generate a new block b with pattern p (Line 6–7) and slack σ
(Line 8). If the value of the slack is less than the maximum
allowed slack and if the block b is new (Line 9) then the
algorithm checks whether the cover of the pattern p is D�

(Line 10). If it is true then the new block b is added to the set

newbs (Line 11). If at least one new block is found (Line 12)
then the algorithm checks for the maximality of the blocks
in oldbs. Therefore, the algorithm checks the inclusion
relation between the blocks of oldbs and those of newbs
(Lines 13–16). First, maxbs is set to newbs (Line 13) and a
block b P oldbs is added to maxbs if it is not included in
any block of oldbs (Line 15–16). The algorithm terminates
when it fails to find any new maximal c-block (Line 17).

Algorithm 3
FindAllMaximalBlocks(D�,s,maxSlack,minbs)
Require: D� is the positive class; s is a positive sequence; maxSlack is the maximum

allowed slack; minbs is the set of minimal blocks for s with positive cover.
1: maxbs Ð minbs
2: repeat
3: oldbs Ð maxbs
4: newbs Ð H
5: for all tb1 Ð pp1, l1, sq, b2 Ð pp2, l2, squ � oldbs do
6: {For a block b � pp, l, sq we denote µpbq � tl � k|k P πppqu}
7: bÐ pp,minpl1, l2q, sq such that µpbq � µpb1q Y µpb2q
8: σ Ð slackppq
9: if σ ¤ maxSlack^ b R newbs^ b R oldbs then

10: if ϕppq � D� then
11: newbs Ð newbsY tbu
12: if newbs � H then
13: maxbs Ð newbs
14: for all b P oldbs do
15: if Eb1 P newbs such that b � b1 then
16: maxbs Ð maxbsY tbu
17: until newbs � H
18: return maxbs

Complexity of FindAllMaximalBlocks. The number of
iterations performed by the loop in Line 2 is bounded by d. The
reason is that the maximum length of the blocks put in newbs
keeps on increasing at each iteration and d is the size of the
sequence for which we are computing all maximal blocks. Let
m be the maximum number of blocks found in any iteration.
The number of iterations performed by the loop in Line 5 is
therefore bounded by m2. The cost of checking if a given
block b already exists is m and the cost of checking if there
exists a block b in all the sequences of the class is nd. Thus,
the overall complexity is Opdm2pm� ndqq.

Algorithm 4 computes a set of inclusion-free closed c-
blocks of class D�, denoted by maxcbs. The maximum
number of c-blocks is bounded by |maxbs| as each b P maxbs
of the sequence p can be associated with at most one c-block.
Therefore, for each such block (Line 2), the algorithm tries to
find a c-block (Lines 3–12). It first creates an empty function δ
(Line 3) and then set the location l to for sequence s (Line 4). It
then tries to find a block in each sequence t such that its pattern
is equivalent to that of p and it is not included by any block
of any sequence of previously computed c-blocks (Line 6–7).
If it manages to find such an embedding function then the
set maxcbs is updated (Line 10–11). Let m � |maxbs| be
the maximum number of maximal blocks. The cost of finding
a given maximal block in each sequence is d and the task
of checking whether the block has already been discovered
before is m. Therefore, the complexity of the algorithm is
Opmn pd�mqq.

B. Computing Optimal Discriminative Motifs

Once we have a set of non-inclusive closed c-blocks for
a given value of maximum slack, we have to determine those

Algorithm 4 FindMaximalCBlocks(D�,s,maxbs)
Require: D� is the positive class; s is a positive sequence; maxbs is the set of

inclusion-maximal blocks amongst the blocks for s having positive cover.
1: maxcbs Ð H
2: for all pp, l, sq P maxbs do
3: @t P D� δptq Ð H
4: δpsq Ð l
5: cbFound Ð TRUE
6: for all t P D� such that t � s do
7: if Dpp, l1, tq such that

@pp1, δ1q P maxcbs pp, l1, tq � pp1, δ1ptq, tq then
8: δptq Ð l1

9: else
10: cbFound Ð FALSE
11: if cbFound then
12: maxcbs Ð maxcbsY tpp, δqu
13: return maxcbs

which are optimal and, in particular, discriminative. In other
words we have to extract a replication-free and optimal motif
from this set of c-blocks. We address this subproblem as a
constraint optimization problem.

a) Notations.: Let A be the set of the patterns associ-
ated with non-inclusive and closed c-blocks for a class D�.
Notice that A now contains replication free patterns. For each
sequence s P D�, we compute the subset Es of A that does not
cover s. This set is denoted by Es � A. The exclusion count
is computed by checking whether Es is empty or not. The
objective is to select a minimum number of patterns from A
such that at least one from each non-empty set Es is selected.

b) Variables and Constraints.: For each pattern of non-
inclusive and closed c-block j P A, a Boolean variable xj is
created that denotes whether j is part of the motif or not. For
each sequence i P D� such that Ei � H, we want to select at
least one pattern that does not cover i, i.e.,

°
jPEi

xj ¥ 1. The
slack of the motif is the maximum of the slacks of selected
patterns, i.e., slack � maxjPApσpjq.yjq where σpjq denotes
the slack of c-block j.

c) Objective.: The lexicographic objective is to mini-
mize the value of slack following by minimizing the number of
maximal c-blocks associated with the patterns that are selected
for class D�

min
¸

jPA

xj � α � slack

α is the coefficient whose value is set in such a way the it
first minimises the slack and then the cardinality of the motif.
Notice that the formulation is equivalent to that of a minimum
set covering problem.

C. An Example

In this section we illustrate the complete approach by
showing the trace for solving RMDP for a toy problem
instance. The instance containing 2 positive sequences and 2
negative sequences is shown in Table I.

TABLE I. A TOY PROBLEM INSTANCE

Class Sequence-id Sequence
D+ s1 AABAXCDDC
D+ s2 AACAYYCEEC
D- s3 AABA
D- s4 CDDC

The trace of the approach described in the earlier sections
for solving RMDP for the toy instance (Table I) is depicted in
Table II. There are three columns. The first column correspond
the maximum slack value, the second step denotes the name of
the step and last column is the output of the step. As we have
implemented a lazy approach the slack is incremented in step
of 1 if required. For each slack first the minimal set of blocks
of the shortest sequence is computed using Algorithm 2, the
maximal set of blocks of the shortest sequence is computed
using Algorithm 3, a set of maximal c-blocks is computed
using Algorithm 4, and an optimal motif is computed by
solving the COP using complete search. The optimal motif
is tc2, c3u is which excludes all the negative sequences. The
minimal slack of motif is 2 and its minimal cardinality is 2.
Note that tc1, c3u is also optimal as it has the same objective
value.

TABLE II. TRACE OF THE APPROACH FOR FINDING AN OPTIMAL
SOLUTION OF RMDP

Slack Step Description and Output

0

Algorithm 2 Computes block b1=AA for s1
Algorithm 3 Computes inclusion-maximal blocks b1=AA
Algorithm 4 Computes c-blocks c1=(AA,1,1)

COP Finds a motif containing c1 which does not
exclude s3

1

Algorithm 2 b1=AA and b2=A#A

Algorithm 3 b3=AA#A (AA and A#A are merged and then
eliminated)

Algorithm 4 c2=(AA#A,1,1)
COP Finds motif c2 that does not exclude s3

2

Algorithm 2 b1=AA, b2=A#A and b3=C##C

Algorithm 3 b4=AA#A (AA and A#A are merged and then
eliminated) and b3=C##C

Algorithm 4 c2=(AA#A,1,1) and c3=(C##C,6,7)

COP
Finds motif tc2, c3u which excludes all negative
sequences since c2 excludes s4 and c3 excludes
s3

IV. EMPIRICAL RESULTS

In this section, we present results to demonstrate the effec-
tiveness of our approach. We investigated with two databases:
Late Embryogenesis Abundant Proteins (LEAP) and Small
Heat Shock Proteins (SHSP). The LEAP database [7] contains
1066 proteins partitioned into 12 classes while the SHSP
database [8] contains 2244 proteins partitioned into 23 classes.
The results are presented in Tables III and IV, respectively.

All algorithms are written in Java. The experiments were
carried out on a Quad Core CPU running Linux with 3.8 GB
of RAM and 2.66 GHz processor. All the experiments were
run to completion. The lexicographic objective function was
to maximise the exclusion count followed by minimizing slack
and then minimise the cardinality of the motif. cid denotes
the id of the class, #proteins the number of proteins in
each class, d the minimum size of the protein while d denotes
the maximum size of the protein of a given class.

We found that there are no motifs that can exclude all
the foreign proteins (i.e., negative sequences) for 6 out of 12
classes of LEAP and 3 out of 23 classes of SHSP. In the
tables, nonexp denotes the number of foreign proteins that
an optimal motif was not able to discriminate for a given class
of a given database. For class 11 of SHSP, it was not possible
to discriminate any foreign protein. The slack, cardinality and
length measures of the motifs are also depicted in the columns
labelled as slack, card, and length. Computation time is

TABLE III. RESULTS OF LEAP PROTEINS OBTAINED USING RMPD

cid #proteins d d #nonexp card slack length time1 time2
1 177 117 507 35 13 14 29 66775 237
2 96 122 338 3 9 27 25 276043 402
3 29 86 186 0 1 0 6 92 124
4 83 81 625 690 1 3 2 6745 8
5 60 83 217 0 3 2 8 311 121
6 202 66 843 258 3 6 6 4079 18
7 53 95 341 0 1 4 4 127 23
8 184 136 411 84 2 1 4 7016 17
9 67 78 144 0 1 2 4 45 15
10 76 88 173 2 7 46 18 49962 674
11 24 159 278 0 5 1 13 358 292
12 15 71 117 0 2 0 6 55 57

TABLE IV. RESULTS OF SHSP PROTEINS OBTAINED USING RMPD

cid #proteins d d #nonexp card slack length time1 time2
1 237 130 163 0 10 10 20 4122 511
2 107 129 174 0 3 2 7 760 258
3 47 165 328 0 5 3 13 1215 388
4 16 119 173 0 3 0 10 251 226
5 14 172 203 0 2 0 6 356 275
6 65 127 248 0 7 8 15 3569 531
7 80 163 266 0 4 3 9 1112 412
8 15 115 146 0 6 1 14 597 357
9 146 121 170 0 4 2 10 236 437

10 294 120 498 1747 1 1 2 5471 9
11 295 130 316 1949 - - - 4815 0
12 257 149 269 0 8 25 16 3800 274
13 119 174 271 0 1 1 4 420 332
14 25 145 178 0 1 0 5 473 467
15 25 108 262 0 1 0 7 492 554
16 31 114 154 0 1 0 4 215 257
17 69 102 131 0 3 0 7 96 104
18 154 107 277 77 1 0 2 7765 36
19 23 194 220 0 4 1 9 665 483
20 90 214 298 0 9 3 18 656 251
21 96 161 344 0 3 1 6 217 149
22 13 332 453 0 2 0 7 1474 1392
23 26 79 127 0 2 1 5 342 161

given in milliseconds. The times for computing all maximal
c-blocks and an optimal motif for a given class are shown in
the columns time1 and time2, respectively.

Although one can compute all non-inclusive and closed c-
blocks with respect to a given value of maximum slack and
then compute an optimal motif using the COP formulation
presented in Section III, the memory requirement could be
huge. We therefore considered a lazy approach where the value
of slack was incremented only if required. More precisely, we
vary the value of slack starting from 0 to a given maximum
value of the slack, compute the c-blocks and an optimal
motif. We stop incrementing the value of slack as soon as
nonexp is 0. However, when the objective is cs, one can stop
incrementing slack when the value of nonexp is 0 and when
the length of the motif is 1. As there is a trade-off between
the cardinality of the motif and its slack, for some classes we
need to try more values of slacks when the objective function is
cs. Consequently, the total time requirement for computing all
maximal c-blocks for cs is more when compared to that of sc.
Currently, when the value of slack is incremented, the entire
problem procedure restarts from the beginning. Nevertheless, it
is possible to integrate the two sub-tasks in a more incremental
way which could reduce the total time. Overall, the results
suggest that the presented approach is indeed scalable for
handling large size instances.

As mentioned before creating a single COP model is

space-wise challenging. To verify this we also modelled the
problem using Minizinc [10] but the resulting models were
prohibitively huge and could only be applied to toy problem
instances. Tools like Miningzinc (CP for Data mining) were
also considered but they did not provide any specific string
computation functionalities to solve our problem.

We would like to remark that the solutions RMPD are
motifs that do not enforce a total order on c-blocks. Therefore,
they are more likely to compute discriminative motifs. To illus-
trate this a motif for one of the classes of the SHSP database is
depicted in Table V. Each column is a pattern followed by their
starting positions in the corresponding protein of the class. It is
clear that the c-blocks are not following any consistent ordering
throughout the proteins.

V. CONCLUSION

We have introduced a constraint optimization framework
to compute discriminative n-ary motifs in databases of la-
belled sequences. This problem is of particular interest in
bioinformatics to discover motifs in protein sequences or to
align sequences. The framework relies on the notion of c-
block to enforce consistency of pattern embeddings. It allows
to state constraints on motifs such as coverage, closure, non-
inclusion, or non-replication in order to minimize redundancy
or meet domain-specific requirements. The framework uses a
lexicographic optimization scheme to combine measures on

TABLE V. AN OPTIMAL MOTIF FOR CLASS 19th OF DATABASE SHSP.
THE CARDINALITY OF THE MOTIF IS 4, SLACK IS 1 AND LENGTH IS 9.

protein PE#V D#K Q#S CS
1 149 90 8 159
2 140 91 8 3
3 140 91 8 3
4 140 91 8 3
5 140 91 8 3
6 147 98 8 157
7 140 91 8 3
8 140 91 8 3
9 147 98 8 157

10 144 75 8 3
11 151 127 69 156
12 137 83 157 142
13 144 75 8 154
14 152 98 8 157
15 141 87 8 146
16 148 89 8 17
17 150 71 8 17
18 140 91 8 3
19 141 122 189 151
20 141 122 189 151
21 140 91 8 3
22 134 85 172 144
23 141 92 81 151

motifs such as slack or exclusion count. A replication-free
motif computation problem has been cast in this framework
and a two-stage method presented. Experimental results on
protein datasets have shown its efficiency.

Future work involves casting new types of constraints on
motifs, improving algorithmic efficiency and scalability (ded-
icated data structures, global constraints for exclusivity, etc.),
carrying out experimental comparisons with ad-hoc algorithms
in Bioinformatics (e.g., multiple sequence alignment), and
addressing other mining tasks (e.g., clustering).

ACKNOWLEDGMENT

This publication has emanated from research supported in
part from Ulysses 2013 research award. The Insight Centre
for Data Analytics is supported by Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

REFERENCES

[1] T. Guns, S. Nijssen, and L. D. Raedt, “Itemset mining: A constraint
programming perspective,” Artif. Intell., vol. 175, no. 12-13, pp. 1951–
1983, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2011.
05.002

[2] ——, “k-Pattern Set Mining under Constraints,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 2, pp. 402–418, 2013. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.204

[3] J. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, and S. Loudni, “A
constraint language for declarative pattern discovery,” in Proceedings of
the ACM Symposium on Applied Computing, SAC, 2012, pp. 119–125.
[Online]. Available: http://doi.acm.org/10.1145/2245276.2245302

[4] E. Coquery, S. Jabbour, L. Saı̈s, and Y. Salhi, “A SAT-Based
Approach for Discovering Frequent, Closed and Maximal Patterns
in a Sequence,” in ECAI, 2012, pp. 258–263. [Online]. Available:
http://dx.doi.org/10.3233/978-1-61499-098-7-258

[5] E. Coquery, S. Jabbour, and L. Sais, “A Constraint Programming
Approach for Enumerating Motifs in a Sequence,” in Data Mining
Workshops (ICDMW), 2011, pp. 1091–1097. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICDMW.2011.10

[6] J.-P. Métivier, S. Loudni, and T. Charnois, “A Constraint Programming
Approach for Mining Sequential Patterns in a Sequence Database,” in
Workshop Languages for Data Mining and Machine Learning of the
ECML/PKDD (LML’13), 2013, pp. 1–15.

[7] G. Hunault and E. Jaspard, “The Late Embryogenesis Abundant Proteins
Database,” 2013. [Online]. Available: http://forge.info.univ-angers.fr/
�gh/Leadb

[8] ——, “The Small Heat Shock Proteins Database,” 2013. [Online].
Available: http://forge.info.univ-angers.fr/�gh/Shspdb

[9] ——, “LEAPdb: a database for the late embryogenesis abundant
proteins,” BMC Genomics, vol. 11, no. 1, p. 221, Apr. 2010,
PMID: 20359361. [Online]. Available: http://www.biomedcentral.com/
1471-2164/11/221/abstract

[10] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “MiniZinc: Towards a Standard CP Modelling Language,”
in Principles and Practice of Constraint Programming - CP,
2007, pp. 529–543. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-74970-7 38

