Non stationary operator selection with island models
Résumé
The purpose of adaptive operator selection is to choose dynamically the most suitable variation operator of an evolutionary algorithm at each iteration of the search process. These variation operators are applied on individuals of a population which evolves, according to an evolutionary process, in order to find an optimal solution. Of course the efficiency of an operator may change during the search and therefore its application should be precisely controlled. In this paper, we use dynamic island models as operator selection mechanisms. A sub-population is associated to each operators and individuals are allowed to migrate from one sub-population to another one. In order to evaluate the performance of this adaptive selection mechanism, we propose an abstract operator representation using fitness improvement distributions that allow us to define non stationary operators with mutual interactions. Our purpose is to show that the adaptive selection is able to identify not only good operators but also suitable sequences of operators.