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A unified framework for Certificate and
Compilation for QBF

Igor Stéphan and Benoit Da Mota

LERIA University of Angers, France
email: {damota, stephan}@info.univ-angers.fr

Abstract. We propose in this article a unified framework for certificate
and compilation for QBF. We provide a search-based algorithm to com-
pute a certificate for the validity of a QBF and a search-based algorithm
to compile a valid QBF in our unified framework.

1 Introduction

The quantified Boolean formula (QBF) validity problem is a generalisation of the
Boolean formulae satisfiability problem. While the complexity of Boolean satis-
fiability problem is NP-complete, it is PSPACE-complete for the QBF validity
problem. This is the price for a more concise representation of many classes of
formulae. Many important problems in several research fields have polynomial-
time translations to the QBF validity problem : AI planning [24, 1], Bounded
Model Construction [1], Formal Verification (see [5] for a survey).

Most of the recent decision procedures for QBF validity [11, 28, 19, 18] are
extensions of the search-based Davis-Putnam procedure [15] for Boolean satisfi-
ability. A search-based procedure for QBF chooses one Boolean variable, tries to
solve two simpler subproblems and combines the results according to the seman-
tics of the quantifier associated to the variable. Some other decision procedures
are based on resolution principle (as Q-resolution [9] which extends the resolu-
tion principle for Boolean formulae to QBF or Quantor [6] which combines ef-
ficiently Q-resolution and expansion), quantifier-elimination algorithms [23, 22],
or skolemization and SAT solvers [2].

Every finite two-player game can be modeled in QBF [17]. In this kind of
applications, a decision procedure (the formula is valid or not) is not sufficient
since a solution is needed. A solution of a QBF (a QBF model) is a set of
Boolean functions [10]. One possibility to represent them is to build a tree-
shape representation (called policy [13] or strategy [7]) but it is exponential in
worst case and unfortunately also in usual ones. With a search-based procedure,
it is very easy to build a solution of a QBF from the solutions of its two simpler
subproblems [13, 7].

When a QBF solver returns valid or non-valid, there is no way to check if
the answer is correct while in propositional logic the associated result to the
decision (a model) is easy to check. A certificate for a valid QBF is any piece of
information that provides self-supporting evidence of validity for that QBF [5].



A sat-certificate [4, 3] is a representation of a sequence of Boolean functions for
a QBF that certifies its validity. This approach seems to us promising since the
generated certificate is not linked to the representation of the input QBF but
only to its semantics. The computation of a sat-certificate is described in [2] in
the framework of sKizzo as a reconstruction from a trace. To the best of our
knowledge, there is no result of how to build a sat-certificate of a QBF from the
sat-certificates of its two simpler subproblems. It is an important issue since most
of the QBF solvers are search-based procedures. Our first contribution is double
(Section 4): we define an operator for sat-certificates in order to be able to build a
sat-certificate of a QBF from the sat-certificates of its two simpler subproblems
and we describe an algorithm which extends any search-based algorithm to build
a sat-certificate for a valid QBF during the decision process and not a posteriori
from a trace.

In general, a knowledge base is compiled off-line into a target language which
is then used on-line to answer some queries. In QBF case, seen as a two-player
game, one of the most useful query for the existential player is : what should I
play to still be sure to win? Our second contribution is a unified framework for
certificate and compilation of QBF (Section 3): the literal base representation
which is an extension of the sat-certificate representation. In order to extend
any search-based procedure to a QBF compiler, an important issue is how to
compute the compilation of a QBF from the result of the compilation of its two
simpler subproblems. Our third contribution is also double (Section 5): we define
an operator for literal bases in order to be able to compute the compilation of
a QBF from the literal bases of its two simpler subproblems and we describe an
algorithm which extends any search-based algorithm to compile a valid QBF.

Finally we discusse related work (Section 6) and we draw a conclusion (Sec-
tion 7).

2 Preliminaries

2.1 Propositional logic.

The set of propositional variables is denoted by V. Symbols ⊥ and > are the
propositional constants (> = ⊥ and ⊥ = >). Symbol ∧ stands for conjunction,
∨ for disjunction, ¬ for negation, → for implication and ↔ for bi-implication. A
literal is a propositional variable or the negation of a propositional variable. A
formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions
of literals. Definitions of the language of propositional formula PROP and se-
mantics of all the Boolean symbols are defined in standard way. A substitution is
a function from propositional variables to PROP. This definition is extended as
usual to a function from PROP to PROP: [x← F ](G) is the formula obtained
from G by replacing occurrences of the propositional variable x by the formula
F . This definition is also extended as usual for the substitution of a formula by
another formula. An interpretation v is a function from V to {true, false} ;
the extension to PROP is denoted v∗. To an interpretation v is associated a
set in the standard way and a substitution v as follows : if v(x) = true then



[x← >] is in v, if v(x) = false then [x← ⊥] is in v. Propositional satisfaction is
denoted |= (v |= F means v∗(F ) = true, the propositional formula F is satisfied
by v and v is a model of F ). Logical equivalence is denoted ≡. To a Boolean
function f (i.e. a function from {true, false}n to {true, false}) is associated a
propositional formula ψf on the variables {x1, . . . , xn} such that v∗(ψf ) = true
if and only if f(v(x1), . . . , v(xn)) = true for any interpretation v.

2.2 Quantified Boolean Formulae.

The symbol ∃ stands for the existential quantifier and ∀ stands for the universal
quantifier(q stands for any quantifier). A binder Q is a string q1x1 . . . qnxn with
x1, . . . , xn distinct propositional variables and q1 . . . qn quantifiers. It is assumed
that distinct quantifiers bind occurrences of distinct propositional variables. The
empty string is denoted by ε. A (prenex) quantified Boolean formula (QBF) is
constituted of a binder and a propositional formula called the matrix (only closed
formulae are considered: each variable in the matrix is also in the binder). A QBF
is in conjunctive normal form if its matrix is in conjunctive normal form. The
semantics of QBF is defined as follows: for every propositional variable y and
every QBF QM

∃yQM = (Q[y ← >](M)∨Q[y ← ⊥](M))

and
∀yQM = (Q[y ← >](M)∧Q[y ← ⊥](M)).

A QBF F is valid if F ≡ >. If y is an existentially quantified variable preceded
by the universally quantified variables x1, . . . , xn we denote ŷx1...xn

its Skolem
function from {true, false}n to {true, false}. A model for a valid QBF QM is a
sequence ψŷ1 ; . . . ;ψŷp such that [y1 ← ψŷ1 ] . . . [yp ← ψŷp ](M) is a tautology [10]
(y1, . . . , yp the existentially quantified variables of QM). For example, the QBF
∃a∃b∀c((a∨b)↔c) (since ∃a∃b∀c((a∨b)↔c) ≡ ∃a∃b(((a∨b)↔>)∧((a∨b)↔⊥)) ≡
⊥) but the QBF ∀c∃a∃b((a∨b)↔c) is valid and one of its possible model is ψâ;ψb̂
with ψâ = c and ψb̂ = ⊥ (since [a ← ψâ][b ← ψb̂]((b∨a)↔c) = ((⊥∨c)↔c) is a
tautology). A (Boolean) model of an unquantified Boolean formula corresponds
exactly to a (QBF) model of its existential closure. A QBF is valid if and only
if there exists a model. An interpretation v is said to be in a model ψŷ1 ; . . . ;ψŷp

if for every i, 1 ≤ i ≤ n, v∗(ψŷi
) = v(yi); for example the interpretation v =

{c, a,¬b} is in the above model since v∗(ψâ) = true = v(a) and v∗(ψb̂) =
false = v(b) but v′ = {¬c, a,¬b} is not in it since v′∗(ψâ) = false 6= v′(a). Model-
equivalence for QBF is defined in [25] as follows : Two QBF F and F ′ are model-
equivalent (denoted F ∼= F ′) if every model of F is a model of F ′ and conversely;
this equivalence is about preservation of models and not only preservation of
validity; for example, ∀c∃a∃b((a∨b)↔c) ≡ > but ∀c∃a∃b((a∨b)↔c) 6∼= >.

2.3 sat-certificate.

A sat-certificate [3] for a QBF F , with y1, . . . , yp its existentially quantified
variables, is a sequence of pairs of formulae (φ1, ν1); . . . ; (φp, νp), φi and νi de-



fined over the universally quantified variables of F preceding the variable yi,
1 ≤ i ≤ p. It is defined in [3] only for CNF QBF with sequences of pairs of
binary decision diagrams (BDD) [8]. A sat-certificate is consistent if for every
i, 1 ≤ i ≤ p, (φi∧νi) ≡ ⊥. If a sat-certificate is consistent then φ1; . . . ;φp and
¬ν1; . . . ;¬νp are two models of the certified QBF (not necessarily the same).
To certify the validity of a CNF QBF QM with a sat-certificate (φ1, ν1); . . . ;
(φp, νp) we have to check if [¬x1 ← ν1][x1 ← φ1] . . . [¬xp ← νp][xp ← φp](M)
is a tautology. If the verification fails either the QBF is non valid or the sat-
certificate is not correct; conversely, if the verification succeeds then the QBF
is valid and the sat-certificate encodes a model [3]. For example, from [3], the
sequence of pairs of formulae (φc, νc); (φe, νe); (φf , νf ) with φc = ¬a, νc = a,
φe = (a∧b∧d)∨(¬a∧¬d), νe = (¬a∧d)∨(a∧¬d), φf = (a∧b∧¬d)∨(¬a∧b∧d) and
νf = (¬a∧¬d) is a sat-certificate for the CNF QBF

ξ = ∀a∀b∃c∀d∃e∃fµ (1)

with

µ = [(¬b∨e∨f)∧(a∨c∨f)∧(a∨d∨e)∧(¬a∨¬b∨¬d∨e)∧(¬a∨b∨¬c)
∧(¬a∨¬c∨¬f)∧(a∨¬d∨¬e)∧(¬a∨d∨¬e)∧(a∨¬e∨¬f)].

This sat-certificate certifies the validity of this CNF QBF since [¬c← νc][c←
φc][¬e ← νe] [e ← φe][¬f ← νf ][f ← φf ](M) is a tautology. One can remark
that this sat-certificate is consistent and that

φc;φe;φf = ¬a; (a∧b∧d)∨(¬a∧¬d); (a∧b∧¬d)∨(¬a∧b∧d) (2)

and ¬νc;¬νe;¬νf = ¬a;¬(¬a∧d)∨(a∧¬d);¬(¬a∧¬d) are a two different models
for the QBF ξ.

3 Literal Base

In this section we present formally our proposal for a unified framework for
certificate and compilation for QBF: the literal base representation. This repre-
sentation extends the sat-certificate representation of [3].

Definition 1 (Literal base). A literal base is a pair (Q,G) constituted

– either of Q = ε and G = > or G = ⊥ ;
– either of a binder Q = q1x1 . . . qnxn, n > 0, and a sequence of pairs of

formulae G = (P1, N1); . . . ; (Pn, Nn) such that the formulae Pk and Nk,
called guards, are only built on the variables {x1, . . . , xk−1} (or > or ⊥
when k = 1).

We denote BQ the set of the literal bases for a binder Q, LB =
⋃
Q BQ the

literal base language and define the function grds such that grds((Q,G)) = G.



A literal base is an explicit representation in the order of the binder of the
dependencies that have to exist between an existentially quantified variable and
the variables preceding it.

By the latter definition:

– if Q = ε then Bε = {(ε,>), (ε,⊥)} ;
– if Q = qx then Bqx = {(qx, (>,>)), (qx, (>,⊥)), (qx, (⊥,>)), (qx, (⊥,⊥))}

If n is the number of variables of a binder Q then the size of BQ is 22...2︸ ︷︷ ︸
n+1

.

We interpret a literal base language as a representation for a subset of the
QBF language.

Definition 2 (Interpretation of a literal base). The interpretation function
is a function from LB to QBF denoted (.)∗ and is defined as follows :

– if lb = (ε,G) then lb∗ = G ;
– if lb = (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)), n > 0, then

lb∗ = q1x1 . . . qnxn
∧
k≤n

((¬xk∨Pk)∧(xk∨Nk))

If X is a subset of BL then X∗ denotes {lb∗|lb ∈ X}. From here non valid
denotes a literal base whose interpretation is non valid and we extend the latter
definition by non valid∗ = ⊥.

Clearly enough from Defintion 2, if a literal base (Q, (P1, N1); . . . ; (Pn, Nn)) is
such that its interpretation is valid then necessarily for every universally quanti-
fied variable xi, Pi and Ni can be replaced in the literal base by >. The following
literal base

β = (∀a∀b∃c∀d∃e∃f, (>,>); (>,>); (Pc, Nc); (>,>); (Pe, Ne); (Pf , Nf )) (3)

with Pc = ¬a, Nc = a, Pe = (¬d∧c∧¬a)∨(d∧¬c∧a),

Ne = (d∧c∧¬a)∨(¬c∧¬b∧a)∨(¬d∧¬c∧a),

Pf = (¬e∧d∧c∧¬a)∨(¬e∧¬c∧¬b∧a)∨
(d∧¬c∧¬b∧a)∨(¬e∧¬d∧¬c∧a)∨(e∧d∧¬c∧a)

and
Nf = (¬e∧d∧c∧¬b∧¬a)∨(e∧¬d∧c∧¬a)∨
(¬e∧¬c∧¬b∧a)∨(d∧¬c∧¬b∧a)∨(e∧d∧¬c∧a),

is such that its interpretation is model-equivalent to (1) (i.e. β∗ ∼= F ).
The following theorem establishes that for every QBF there exists a literal

base such that its interpretation is model-equivalent to the QBF. By this theorem
the literal base language may be considered as a target compilation language for
QBF.



Theorem 1 (Completeness of LB). Let QM be a QBF. Then there exists a
literal base lb ∈ BQ such that lb∗ ∼= QM .

A sat-certificate for a QBF is easily extended to a literal base: we add the
binder of the QBF and in the sequence of the sat-certificate for each universally
quantified variable we add a couple (>,>). Hence, the interpretation of the sat-
certificate considered as a literal base has only one model which is the model of
the QBF. In a sat-certificate (φ1, ν1); . . . ; (φp, νp) formulae φi and νi, 1 ≤ i ≤ p,
only depend on the preceding universally quantified variables while in a literal
base (Q, (P1, N1); . . . ; (Pn, Nn)) formulae Pi and Ni, 1 ≤ i ≤ n, may depend on
all the preceding variables.

The propositional fragment in which the propositional formulae of the lit-
eral bases are defined needs only to be complete and may be chosen w.r.t. its
succinctness (see [14] for a survey on properties of propositional fragments).

When a QBF is considered to model a finite two-player game, the validity
of the QBF means that the “existential” player is sure to win if he follows the
moves obtained from the (sequence of formulae of the) model. We are interested
in the following question: since until now I have followed a (sequence of formulae
of a) model, can I change my mind for the next move? We call this problem the
“next move choice problem” and we define it formally.

Definition 3 (Next move choice problem for a subset X of QBF).

– Instance : A formula q1x1 . . . qnxnM from a subset X of QBF, a sequence of
substitutions [x1 ← C1] . . . [xi ← Ci] obtained from a (sequence of formulae
of a) model for q1x1 . . . qnxnM with qi = ∃ and C1, . . . , Ci ∈ {>,⊥}.

– Query: Does there exist a model for
qi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← Ci](M).

Clearly enough, the next move choice problem is still PSPACE-complete if
we consider X = QBF .

Considering again the QBF (1) and one of its model (2), we know that
∀d∃e∃f [a ← >][b ← >][c ← ⊥](µ) is valid (since [a ← >][b ← >](φc) ≡ ⊥) but
is ∀d∃e∃f [a← >][b← >][c← >](µ) also valid?

We introduce a new property, called “optimality”, for literal bases in order
to exhibit a QBF fragment in which the next move choice problem is polytime
w.r.t the size of the literal base.

Definition 4 (Optimality of a literal base). Let lb be a literal base such
that lb = (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)) and lb∗ = q1x1 . . . qnxnG. The
literal base lb is optimal if the following holds. For all i, 1 ≤ i ≤ n, let [x1 ←
C1] . . . [xi−1 ← Ci−1] be an interpretation such that for all k, 1 ≤ k < i if
Ck = > then |= [x1 ← C1] . . . [xk−1 ← Ck−1](Pk) else |= [x1 ← C1] . . . [xk−1 ←
Ck−1](Nk).

Then

|= [x1 ← C1] . . . [xi−1 ← Ci−1](Pi)
if and only if there exists a model for
qi+1xi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← >](G)



and
|= [x1 ← C1] . . . [xi−1 ← Ci−1](Ni)
if and only if there exists a model for
qi+1xi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← ⊥](G).

We denote by OBL the set of optimal literal bases.
Considering again (3), β is an optimal literal base. Since the interpretation of

β is model-equivalent to (2) (i.e. ∀a∀b∃c∀d∃e∃fµ) and [a← >][b← >](Nc) ≡ ⊥
the QBF ∀d∃e∃f [a← >][b← >][c← >](µ) is not valid.

The most important property of optimal literal bases is that the next move
choice problem is polytime and no more PSPACE-complete.

Theorem 2. The next move choice problem for OBL∗ is polytime.

If a QBF modeling a finite two-player game is compiled off-line in an optimal
literal base, the computation of any sequence of moves leading to victory is
polytime. An optimal literal base may be seen as a dynamic decision tree. The
property of optimality of a literal base is linked with the property of minimality
of a QBF which expresses that the QBF matrix contains only the models needed
by the (QBF) models.

Definition 5 (Minimality of a QBF). A QBF is minimal if all the (propo-
sitional) models of the matrix are (at least) in one of its (QBF) model.

For example, the QBF ∃a∀b((a∧b)∨(a∧¬b)∨(¬a∧b)) is not minimal since the
(Boolean) model {¬a, b} of the matrix is not in the only one model ψâ = >.

Theorem 3. Let lb be an optimal literal base. Then lb∗ is a minimal QBF.

The converse of Theorem 3 is false: The literal base (∃a∀b, (>,>), (a, a)) is
not optimal (since there is no model with ψâ = ⊥) but its interpretation is
minimal.

4 Literal base and sat-certificate for search-based
algorithms

In this section we are interested in the following problem: how to extend a
search-based procedure in order to compute directly the sat-certificate and not
a posteriori from a trace. To do this we define an operator for literal bases in
order to be able to build a sat-certificate from the sat-certificates of its two
simpler subproblems.

Definition 6. The operator ◦x : BQ × BQ → B∀xQ is defined as follows :

(Q, (P1, N1); . . . ; (Pn, Nn)) ◦x (Q, (P ′1, N
′
1); . . . ; (P ′n, N

′
n))

= ( ∀xQ, (>,>);
(((¬x∨P1)∧(x∨P ′1)), ((¬x∨N1)∧(x∨N ′1))); . . . ;
(((¬x∨Pn)∧(x∨P ′n)), ((¬x∨Nn)∧(x∨N ′n))))



In this definition, if x is interpreted to true (resp. false) then for all i, 1 ≤ i ≤
n, ((¬x∨Pi)∧(x∨P ′i )) ≡ Pi (resp. P ′i ) and ((¬x∨Ni)∧(x∨N ′i)) ≡ Ni (resp. N ′i).
If (Q, (P1, N1); . . . ; (Pn, Nn)) and (Q, (P ′1, N

′
1); . . . ; (P ′n, N

′
n)) are sat-certificates

and Q = q1x1 . . . qnxn with qi = ∀ then clearly enough ((¬x∨Pi)∧(x∨P ′i )) ≡
> ≡ ((¬x∨Ni)∧(x∨N ′i)).

We establish by the following theorem that the ◦ operator composes two
sat-certificates in a new sat-certificate.

Theorem 4. Let ∀xQM be a QBF. If lb> is a sat-certificate for Q[x← >](M)
and lb⊥ is a sat-certificate for Q[x← ⊥](M) then (lb>◦x lb⊥) is a sat-certificate
for ∀xQM .

Algorithm 1 search certif qbf

In: Q : a binder of a QBF
In: M : a matrix of a QBF
Out: a sat-certificate or non valid

if Q = qx then
if q = ∃ then
switch M do
case > : return (∃x, (>,⊥))
case ⊥ : return non valid
case x : return (∃x, (>,⊥))
case ¬x : return (∃x, (⊥,>))

end switch
else
if M ≡ > then return (∀x, (>,>)) else return non valid end if

end if
else
Q = qxQ′

lb+ := search certif qbf(Q′, M [x← >])
if lb+ = non valid then
if q = ∃ then
lb− := search certif qbf(Q′, M [x← ⊥])
if lb− = non valid then return non valid
else return ((Q, (⊥,>) ; grds(lb−)) end if

else
return non valid

end if
else
if q = ∃ then
return (Q, (>,⊥) ; grds(lb+))

else
lb− := search certif qbf(Q′, M [x← ⊥])
if lb− = non valid then return non valid else return (lb+ ◦x lb−) end if

end if
end if

end if



We are now able to present the search-based algorithm search certif qbf
which computes a sat-certificate for a QBF. The search certif qbf algorithm
checks first if the binder is reduced to a single quantifier with its variable. In this
case, if it is an existential quantifier four cases are possible, corresponding, in the
order of the algorithm, to : ∃x> ≡ ∃xx1, ∃x⊥ ≡ ⊥, ∃xx ∼= ∃x((¬x∨>)∧(x∨⊥))
and ∃x¬x ∼= ∃x((¬x∨⊥)∧(x∨>)). If the quantifier is universal then if M ≡ >
then ∀xM ≡ > else ∀xx ≡ ∀x¬x ≡ ∀x⊥ ≡ ⊥. If there are some quantifiers, since
the algorithm is a search-based one, the most external quantifier is considered. If
this quantifier is existential then if one of the recursive calls for the substitution
by > (resp. ⊥) for the variable x is different to non valid the returned sat-
certificate is (Q, (>,⊥); grds(lb+)) (resp. (Q, (⊥,>); grds(lb−))) which expresses
that x must be true (resp. false). If the quantifier is universal then if at least
one recursive call for the substitution by > or by ⊥ for the variable x returns
non valid then non valid is returned otherwise the Skolem functions of the two
sat-certificates have to be combined to integrate the new argument x by (lb+ ◦x
lb−) before this new sat-certificate is returned.

Theorem 5 (Correctness of search certif qbf). Let QM be a QBF.
search certif qbf(Q,M) returns a sat-certificate for QM if the QBF is valid
and non valid otherwise.

In case of search-based algorithms for CNF QBF, unit propagation and
monotone literal propagation [11] may be easily added the search certif qbf
algorithm.

5 Literal bases and QBF compilation for search-based
algorithms

Since Theorem 1 establishes the completeness of the literal base language, LB
may be considered as a target language for the compilation of a QBF. In this
section we are interested in the following problem: how to extend a search-based
procedure in order to compile a QBF in an optimal literal base. To do this we
define an operator for literal bases which compile a QBF by the combination of
the results of the compilation of its two simpler subproblems.

Definition 7. Let Q′ = q2x2 . . . qnxn and Q = q1x1Q
′ be two binders and

lb, lb′ ∈ BQ. The operator ⊕ : BQ × BQ → BQ is defined as follows :
If Q = ε then (lb⊕ lb′) = (lb∗∨lb′∗) else

(Q, (P1, N1); . . . ; (Pn, Nn))⊕ (Q, (P ′1, N
′
1); . . . ; (P ′n, N

′
n))

= (Q, ((P1∨P ′1), (N1∨N ′1));
(P2∧(P ′2∨X )∧(P2∨X ′), N2∧(N ′2∨X )∧(N2∨X ′)); . . . ;
(Pn∧(P ′n∨X )∧(Pn∨X ′), Nn∧(N ′n∨X )∧(Nn∨X ′)))

1 Since we need one solution, we privilege the interpretation of x to true



with X = ((¬x1∨P1)∧(x1∨N1)), X ′ = ((¬x1∨P ′1)∧(x1∨N ′1)) and the recursive
call:

(Q′, (P2,N2); . . . ; (Pn,Nn)) =
(Q′, (P2, N2); . . . ; (Pn, Nn))⊕ (Q′, (P ′2, N

′
2); . . . ; (P ′n, N

′
n))

This operator is the counterpart of the disjunction for the QBF. In the pre-
vious definition when n = 1,

(q1x1, (P1, N1))⊕ (q1x1, (P ′1, N
′
1)) = (q1x1, ((P1∨P ′1), (N1∨N ′1)))

which defines the base case of recursivity of ⊕. We develop for the case n = 2 the
disjunction of the matrices of the interpretation of two literal bases and show
how we can find back Definition 7: Since (q2x2, (P2, N2)) ⊕ (q2x2, (P ′2, N

′
2)) =

(q2x2, ((P2∨P ′2), (N2∨N ′2))), P2 = (P2∨P ′2) and N2 = (N2∨N ′2) then

((¬x1∨P1)∧(x1∨N1))∧((¬x2∨P2)∧(x2∨N2))∨
((¬x1∨P ′1)∧(x1∨N ′1))∧((¬x2∨P ′2)∧(x2∨N ′2))
≡ (¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1))∧

(¬x2∨((P2∨P ′2)∧(P ′2∨((¬x1∨P1)∧(x1∨N1)))∧(P2∨((¬x1∨P ′1)∧(x1∨N ′1)))))∧
(¬x2∨((N2∨N ′2)∧(N ′2∨((¬x1∨P1)∧(x1∨N1)))∧(N2∨((¬x1∨P ′1)∧(x1∨N ′1)))))

≡ (¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1))∧
(¬x2∨(P2∧(P ′2∨X )∧(P2∨X ′)))∧(¬x2∨(N2∧(N ′2∨X )∧(N2∨X ′)))

Definition 7 may be improved with no cost by applying as simplification
rules some usual logical equivalences: (x∧x) ≡ x, (x∨x) ≡ x, (x∧¬x) ≡ ⊥
and (x∨¬x) ≡ > with x a propositional variable; (H∧>) ≡ H, (H∧⊥) ≡ ⊥,
(H∨>) ≡ > and (H∨⊥) ≡ H with H a propositional formula.

Theorem 6. Let Q be a binder and lb, lb′ ∈ BQ such that lb∗ = QM and
lb′∗ = QM ′. Then (lb⊕ lb′)∗ = QM⊕ with M⊕ ≡ (M∨M ′).

We are now able to present the search-based algorithm search comp qbf
which compiles a QBF into an optimal literal base. The search comp qbf algo-
rithm checks first if the binder is reduced to a single quantifier with its variable.
If it is the case and if M ≡ >, conversely to search certif qbf algorithm, (>,>)
is returned (since ∃x> ∼= ∃x((¬x∨>)∧(x∨>))) in order to compose the two pos-
sibilities. If there are some quantifiers, since the algorithm is a search-based one,
the first one is considered. Following semantics of QBF, if there is no model
for one (resp. both) recursive call then there is no model for the QBF if the
quantifier is universal (resp. existential) ; if there are models for both recursive
calls then, for both quantifiers, (Q, (>,⊥) ; grds(lb+))⊕ (Q, (⊥,>) ; grds(lb−)
is returned.

Literal bases generated by the search comp qbf compilation algorithm may
be in worst case of exponential size.

Theorem 7 (Correctness of search comp qbf). Let QM be a QBF.
search comp qbf(Q,M) returns a literal base lb such that lb∗ ∼= QM if QM is
valid and returns non valid otherwise.



Algorithm 2 search comp qbf

In: Q : a binder of a QBF
In: M : a matrix of a QBF
Out: an optimal literal base or non valid

if Q = qx then
if q = ∃ then
switch M do
case > : return (∃x, (>,>))
case ⊥ : return non valid
case x : return (∃x, (>,⊥))
case ¬x : return (∃x, (⊥,>))

end switch
else
if M = > then return (∀x, (>,>)) else return non valid end if

end if
else
Q = qxQ′

lb+ := search comp qbf(Q′, M [x← >])
lb− := search comp qbf(Q′, M [x← ⊥])
if q = ∃ then
if lb+ = non valid and lb− = non valid then return non valid end if
if lb+ = non valid then return (Q, (⊥,>) ; grds(lb−)) end if
if lb− = non valid then return (Q, (>,⊥) ; grds(lb+)) end if
return (Q, (>,⊥) ; grds(lb+))⊕ (Q, (⊥,>) ; grds(lb−))

else
if lb+ = non valid or lb− = non valid then
return non valid

else
return (Q, (>,⊥) ; grds(lb+))⊕ (Q, (⊥,>) ; grds(lb−))

end if
end if

end if

We can now establish that the literal base generated by the search comp qbf
algorithm is optimal.

Theorem 8 (Optimality of search comp qbf). Let QM be a valid QBF.
Then search comp qbf(Q,M) is optimal.

In case of search-based algorithms for CNF QBF, unit propagation may be
easily added ; but, conversely to search certif qbf algorithm, monotone literal
propagation can not be applied to the search comp qbf algorithm since it does
not preserve all the models.



6 Related work

QBF certificates. To the best of our knowledge, there exist only two suggestions
for QBF certificates and methods to generate them2. The first approach [20] is
a method to generate a list of pairs of the form (v, fv) where fv are the Skolem
functions for fresh variables v from the classical extension rule for propositional
logic [26]. The second approach proposed in [4, 3] introduces the sat-certificate.
It is described independently of any algorithm, but with binary decision diagrams
(BDD) [8] and only for formulae in CNF. The computation of a sat-certificate
is described in [2] in the framework of sKizzo as a reconstruction from a trace:
the “inference log”. An external certifier application (ozziKs) is charged with
interpreting the content of the log in order to construct certificates [4]. Since
the solver can choose between five different inference strategies there are many
different kinds of instructions in the inference logs. It results in the need for a
heavyweight proof checker. This approach is based on a trace of what the solver
is doing and it probably does not scale well because of the growth of this trace.
It can take more time to generate the sat-certificate from the trace than it took
to generate the model [4].

QBF compilation. Knowledge compilation with a subset of the propositional
language as a target language has been widely study (see [14] for a “knowledge
compilation map”), but it is not the case for QBF compilation: [16] focuses on
selected propositional fragments and quantifier elimination while [12] focuses
on complexity of QBF built on the same selected propositional fragments. The
compiler for CNF QBF proposed in [25] extends a quantifier-elimination de-
cision procedure [22] as follows: for a CNF QBF q1x1 . . . qn−1xn−1qnxnM , we
compute the formulae Mn, Pn and Nn defined on {x1, . . . , xn−1} such that M ≡
(Mn∧((¬xn∨Pn)∧(xn∨Nn))); if qn = ∃ then the process is recursively called on
q1x1 . . . qn−1xn−1(Mn∧(Pn∨Nn)) otherwise the process is recursively called on
q1x1 . . . qn−1xn−1(Mn∧(Pn∧Nn)). The target language of this approach is simi-
lar to the literal base language: (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)) is a literal
base. Since (Pn∨Nn) is not CNF, the expansion of the existential quantifier for
CNF is involved with a quadratic size increase of the formula [21]. Clearly enough
the literal base generated by this quantifier-elimination compiler is optimal and
it is usually smaller than the literal base generated by the search comp qbf with
out simplifications.

7 Concluding remarks

We have described in this article a unified framework for sat-certificate and
compilation of QBF. We have proposed a search-based procedure to compute
2 The approach proposed in [27] is a method to generate a subset of the clauses of a

QBF formula in prenex normal form which is non-valid from traces of search-based
solvers. Since this approach is focused on non-validity, it is out of the scope of this
paper which is focused on validity.



sat-certificates which is very useful since most QBF solvers are search-based
decision procedures.

Literal bases generated by the search comp qbf compilation algorithm may
be in worst case of exponential size what complies with complexity results [13].
Anyway, we think that compilation is useful since all the solutions are kept and
decision over existentially quantified variables may be not fully described in the
QBF. In that case, for each existentially quantified variable, the two different
possibilities are computed in polynomial time thanks to optimality and if both
substitutions take part of a solution, the choice is left to the user, following its
preferences.

Acknowledgement. We would like to thank the referees for their comments which
helped improve this paper.
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8 Proofs

By abuse of notation we define the interpretation function for guards as follows:

((P1, N1); . . . ; (Pn, Nn))∗ =
∧

1≤k≤n

((¬xk∨Pk)∧(xk∨Nk))

and the ⊕ operator only for guards as follows:

((P1, N1); . . . ; (Pn, Nn))⊕ ((P ′1, N
′
1); . . . ; (P ′n, N

′
n))

= ( ((P1∨P ′1), (N1∨N ′1));
(P2∧(P ′2∨X )∧(P2∨X ′), N2∧(N ′2∨X )∧(N2∨X ′)); . . . ;
(Pn∧(P ′n∨X )∧(Pn∨X ′), Nn∧(N ′n∨X )∧(Nn∨X ′)))

with X = ((¬x1∨P1)∧(x1∨N1)),X ′ = ((¬x1∨P ′1)∧(x1∨N ′1)) and

((P2,N2); . . . ; (Pn,Nn)) = ((P2, N2); . . . ; (Pn, Nn))⊕ ((P ′2, N
′
2); . . . ; (P ′n, N

′
n))

Theorem 1 Let QM be a QBF. Then there exists a literal base lb ∈ BQ such
that lb∗ ∼= QM .

Proof of Theorem 1. This theorem is direct since every formula is equivalent
to a conjunction of disjunctions of literals whose last variable can be distributed.
2

Theorem 2 The next move choice problem for OBL∗ is polytime.

Proof of Theorem 2. This theorem is a direct consequence of the definition
of optimality for literal bases. 2

Theorem 3 Let lb be an optimal literal base. Then lb∗ is a minimal QBF.

Proof of Theorem 3. If the interpretation of the literal base is not minimal
then there exists a (propositional) model for the matrix which is not in a sequence
of satisfying Skolem functions then there exists a sequence of guards satisfied by
this model but at least one of this guard should not be satisfied since the literal
base is not optimal.

2

Theorem 4 Let ∀xQM be a QBF. If lb> is a sat-certificate for Q[x← >](M)
and lb⊥ is a sat-certificate for Q[x← ⊥](M) then (lb>◦x lb⊥) is a sat-certificate
for ∀xQM .

Proof of Theorem 4. Let ∀x1q2x2 . . . qnxnM be a QBF.
Let B> = (Q, (P2, N2); . . . ; (Pn, Nn)) be a sat-certificate for Q[x← >](M) and
B⊥ = (Q, (P ′2, N

′
2); . . . ; (P ′n, N

′
n)) be a sat-certificate for Q[x ← ⊥](M). If xi,

2 ≤ i ≤ n, is a universally quantified variable then Pi = Ni = P ′i = N ′i = > then
((¬xi∨Pi)∧(xi∨P ′i )) ≡ > and ((¬xi∨Ni)∧(xi∨N ′i)) ≡ >. If xi, 2 ≤ i ≤ n, is



an existentially quantified variable with its associated function x̂>i for B> (the
sequence of these Boolean functions x̂>i satisfies Q[x← >](M)) and with its as-
sociated function x̂⊥i for B⊥ (the sequence of these Boolean functions x̂⊥i satisfies
Q[x ← ⊥](M)) then the interpretation v associated to the Boolean function x̂i
such that x̂i(true) = x̂>i and x̂i(false) = x̂⊥i verifies v∗(((¬xi∨Pi)∧(xi∨P ′i ))) =
true and v∗(((¬xi∨Ni)∧(xi∨N ′i))) = false. Moreover, the sequence of these
Boolean functions x̂i satisfies ∀x1q2x2 . . . qnxnM .

2

Theorem 5 Let QM be a QBF.
search certif qbf(Q,M) returns a sat-certificate for QM if the QBF is valid
and non valid otherwise.

Proof of Theorem 5.

– Base case: Let suppose that Q = ∃x.
• If M ≡ > then search certif qbf(∃x,M) returns B = (∃x, (>,⊥)) then
B∗ = ∃x((¬x∨>)∧(x∨⊥)) ∼= ∃xx ≡ ∃xM .

• If M ≡ ⊥ then ∃xM is not valid and search certif qbf(∃x,M) returns
non valid.

• If M ≡ x then search certif qbf(∃x,M) returns B = (∃x, (>,⊥)) then
B∗ = ∃x((¬x∨>)∧(x∨⊥)) ∼= ∃xx ≡ ∃xM .

• If M ≡ ¬x then search certif qbf(∃x,M) returns B = (∃x, (⊥,>)) then
B∗ = ∃x((¬x∨⊥)∧(x∨>)) ∼= ∃x¬x ≡ ∃xM .

Now Let suppose that Q = ∀x. If M ≡ > then search certif qbf(∀x,M)
returns B = (∀x, (>,>)) then B∗ = ∀x((¬x∨>)∧(x∨>)) ∼= ∀x> ∼= ∀xM .
Else ∀xM is not valid and search certif qbf(∀x,M) returns non valid.

– Induction case: Let suppose that Q = ∃xQ′.
Let

bl+ = search certif qbf(Q′, [x← >](M))

and
bl− = search certif qbf(Q′, [x← ⊥](M)).

• We suppose that bl+ = non valid and bl− = non valid then
search certif qbf(∃xQ′,M) returns non valid. By induction hypothesis
both QBF Q′[x ← >](M) and Q′[x ← ⊥](M) are not valid then by
definition ∃xQ′M is not valid.

• We suppose that bl+ 6= non valid (the case is similar for (bl+ = non valid
and bl− 6= non valid)) then by induction hypothesis
bl+ = search certif qbf(Q′, [x← >](M)) is a sat-certificate for Q′[x←
>](M) and (∃xQ′, (>,⊥), grds(bl+)) is a sat-certificate for ∃xQ′M .

Now let suppose that Q = ∀xQ′.
If

search certif qbf(Q′, [x← >](M)) returns non valid

or
search certif qbf(Q′, [x← >](M)) returns non valid



then
search certif qbf(∀xQ′,M) returns non valid.

By induction hypothesis one of the two QBF Q′[x ← >](M) or Q′[x ←
⊥](M) is not valid then by definition ∀xQ′M is not valid. Otherwise, by
induction hypothesis bl+ = search certif qbf(Q′, [x ← >](M)) is a sat-
certificate for Q′[x← >](M) and bl− = search certif qbf(Q′, [x← ⊥](M))
is a sat-certificate for Q′[x ← ⊥](M) then by Theorem 4 (bl+ ◦x bl−) is a
sat-certificate for ∀xQ′M .

2

We need also two technical lemmas in order to prove Theorem 6.

Lemma 1.

((A∨((P1, N1); . . . ; (Pn, Nn))∗)∧(B∨((P1, N1); . . . ; (Pn, Nn))∗))
≡ (((P1∨(A∧B)), (N1∨(A∧B))); . . . ; ((Pn∨(A∧B)), (Nn∨(A∧B))))∗

Proof of Lemma 1.

((A∨((P1, N1); . . . ; (Pn, Nn))∗)∧(B∨((P1, N1); . . . ; (Pn, Nn))∗))
≡ ((A∨

∧
1≤i≤n ((¬xi∨Pi)∧(xi∨Ni)))∧(B∨

∧
1≤i≤n ((¬xi∨Pi)∧(xi∨Ni))))

≡ ((A∧B)∨
∧

1≤i≤n ((¬xi∨Pi)∧(xi∨Ni)))
≡

∧
1≤i≤n (((¬xi∨Pi)∨(A∧B))∧((xi∨Ni)∨(A∧B)))

≡
∧

1≤i≤n ((¬xi∨(Pi∨(A∧B)))∧(xi∨(Ni∨(A∧B))))
≡ (((P1∨(A∧B)), (N1∨(A∧B))); . . . ; ((Pn∨(A∧B)), (Nn∨(A∧B))))∗

2

Lemma 2.

(((P1, N1); . . . ; (Pn, Nn))∗∧((P ′1, N
′
1); . . . ; (P ′n, N

′
n))∗)

≡ (((P1∧P ′1), (N1∧N ′1)); . . . ; ((Pn∧P ′n), (Nn∧N ′n)))∗

Proof of Lemma 2.

(((P1, N1); . . . ; (Pn, Nn))∗∧((P ′1, N
′
1); . . . ; (P ′n, N

′
n))∗)

≡ (
∧

1≤i≤n ((¬xi∨Pi)∧(xi∨Ni))∧
∧

1≤i≤n ((¬xi∨P ′i )∧(xi∨N ′i)))
≡

∧
1≤i≤n (((¬xi∨Pi)∧(xi∨Ni))∧((¬xi∨P ′i )∧(xi∨N ′i)))

≡
∧

1≤i≤n (((¬xi∨Pi)∧(¬xi∨P ′i ))∧((xi∨Ni)∧(xi∨N ′i)))
≡

∧
1≤i≤n ((¬xi∨(Pi∧P ′i ))∧(xi∨(Ni∧N ′i)))

≡ (((P1∧P ′1), (N1∧N ′1)); . . . ; ((Pn∧P ′n), (Nn∧N ′n)))∗

2

Theorem 6 Let Q be a binder and lb, lb′ ∈ BQ such that lb∗ = QM and lb′∗ =
QM ′. Then (lb⊕ lb′)∗ = QM⊕ with M⊕ ≡ (M∨M ′).

Proof of Theorem 6. The theorem holds by definition for the case of an empty
binder. Theorem 6 is a direct consequence of the following lemma: Let Q be a
non empty binder and B,B′ ∈ BQ such that B = (Q,G) and B′ = (Q,G′) then
(G⊕G′)∗ ≡ (G∗∨G′∗).

The proof of this lemma is by induction.



– Base case: Q = q1x1.
Let B = (q1x1, (P1, N1)) and B′ = (q1x1, (P ′1, N

′
1)). Then

((P1, N1)∗∨(P ′1, N
′
1)∗)

= (((¬x1∨P1)∧(x1∨N1))∨((¬x1∨P ′1)∧(x1∨N ′1)))
≡ ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))

(1)

By definition ((P1, N1)⊕ (P ′1, N
′
1)) = ((P1∨P ′1), (N1∨N ′1)) then

((P1, N1)⊕ (P ′1, N
′
1))∗

= ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))
= ((P1, N1)∗∨(P ′1, N

′
1)∗)

– Induction case: Q = q1x1 . . . qnxn.
Let

B = (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn))

and
B′ = (q1x1 . . . qnxn, (P ′1, N

′
1); . . . ; (P ′n, N

′
n))

Then by Definition 2

((P1, N1) . . . (Pn, Nn))∗

=
∧

1≤k≤n ((¬xk∨Pk)∧(xk∨Nk))
= ((¬x1∨P1)∧(x1∨N1))∧[(P2, N2); . . . ; (Pn, Nn)]∗

(2)

and
((P ′1, N

′
1) . . . (P ′n, N

′
n))∗

=
∧

1≤k≤n ((¬xk∨P ′k)∧(xk∨N ′k))
= ((¬x1∨P ′1)∧(x1∨N ′1))∧[(P ′2, N

′
2); . . . ; (P ′n, N

′
n)]∗

(3)

Then from (2) and (3)

(((P1, N1); . . . ; (Pn, Nn))∗∨((P ′1, N
′
1); . . . ; (P ′n, N

′
n))∗)

≡ ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))∧
((¬x1∨P1)∨[(P ′2, N

′
2); . . . ; (P ′n, N

′
n)]∗)∧

((x1∨N1)∨[(P ′2, N
′
2); . . . ; (P ′n, N

′
n)]∗)∧

((¬x1∨P ′1)∨[(P2, N2); . . . ; (Pn, Nn)]∗)∧
((x1∨N ′1)∨[(P2, N2); . . . ; (Pn, Nn)]∗)∧
([(P2, N2); . . . ; (Pn, Nn)]∗∨[(P ′2, N

′
2); . . . ; (P ′n, N

′
n)]∗)

(4)

Let
X = ((¬x1∨P1)∧(x1∨N1)) (5)

and
X ′ = ((¬x1∨P ′1)∧(x1∨N ′1)) (6)

Then from (4), (5), (6) and Lemma 1



(((P1, N1); . . . ; (Pn, Nn))∗∨((P ′1, N
′
1); . . . ; (P ′n, N

′
n))∗)

≡ ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))∧
[((P ′2∨X ), (N ′2∨X )); . . . ; ((P ′n∨X ), (N ′n∨X ))]∗∧
[((P2∨X ′), (N2∨X ′)); . . . ; ((Pn∨X ′), (Nn∨X ′))]∗∧
([(P2, N2); . . . ; (Pn, Nn)]∗∨[(P ′2, N

′
2); . . . ; (P ′n, N

′
n)]∗)

(7)

Let
(P2,N2); . . . ; (Pn,Nn)
= ((P2, N2); . . . ; (Pn, Nn))⊕ ((P ′2, N

′
2); . . . ; (P ′n, N

′
n))

By induction hypothesis

[(P2,N2); . . . ; (Pn,Nn)]∗

= ([(P2, N2); . . . ; (Pn, Nn)]∗∨[(P ′2, N
′
2); . . . ; (P ′n, N

′
n)]∗) (8)

Then from (7), (8) and Lemma 2

(((P1, N1); . . . ; (Pn, Nn))∗∨((P ′1, N
′
1); . . . ; (P ′n, N

′
n))∗)

≡ ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))∧
[((P ′2∨X ), (N ′2∨X )); . . . ; ((P ′n∨X ), (N ′n∨X ))]∗∧
[((P2∨X ′), (N2∨X ′)); . . . ; ((Pn∨X ′), (Nn∨X ′))]∗∧
[(P2,N2); . . . ; (Pn,Nn)]∗

≡ ((¬x1∨(P1∨P ′1))∧(x1∨(N1∨N ′1)))∧
[((((P ′2∨X )∧(P2∨X ′))∧P2), (((N ′2∨X )∧(N2∨X ′))∧N2)); . . . ;
((((P ′n∨X )∧(Pn∨X ′))∧Pn), (((N ′n∨X )∧(Nn∨X ′))∧Nn))]∗

≡ (((P1, N1); . . . ; (Pn, Nn))⊕ ((P ′1, N
′
1); . . . ; (P ′n, N

′
n)))∗

2

Theorem 7 Let QM be a QBF.
search comp qbf(Q,M) returns a literal base lb such that lb∗ ∼= QM if QM is
valid and returns non valid otherwise.

Proof of Theorem 7.

– Base cases:
• We suppose that q = ∀.
∗ If M ≡ > then search comp qbf(∀x,M) = (∀x(>,>)) then

search comp qbf(∀x,M)∗ = ∀x((¬x∨>)∧(x∨>)) ∼= ∀x> ∼= ∀xM

∗ If M ≡ x (M ≡ ¬x and M ≡ ⊥ are similar) then ∀xM is not valid
and

search comp qbf(∀x,M) = non valid

• We suppose that q = ∃.
∗ If M ≡ > then

search comp qbf(∃x,M) = (∃x(>,>))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨>)∧(x∨>)) ∼= ∃x> ∼= ∃xM



∗ If M ≡ x then

search comp qbf(∃x,M) = (∃x(>,⊥))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨>)∧(x∨⊥)) ∼= ∃xx ∼= ∃xM

∗ If M ≡ ¬x then

search comp qbf(∃x,M) = (∃x(⊥,>))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨⊥)∧(x∨>)) ∼= ∃x¬x ∼= ∃xM

∗ If M ≡ ⊥ then ∃xM is not valid and

search comp qbf(∃x,M) = non valid

– Induction cases: Let Q = qxQ′ and

bl+ = search comp qbf(Q′, [x← >](M))

and
bl− = search comp qbf(Q′, [x← ⊥](M))

• We suppose that (bl+ = non valid) and (bl− = non valid). Then by
induction hypothesis Q′[x ← >](M) and Q′[x ← ⊥](M) are not valid
then QM is not valid and search comp qbf(Q,M) returns non valid.

• We suppose that (bl+ 6= non valid) and (bl− = non valid). By induction
hypothesis,

(bl+)∗ ∼= Q′[x← >](M) (1)

If q = ∀ it is similar to the case “(bl+ = non valid) and (bl− =
non valid)”. Otherwise q = ∃ and by induction hypothesis

Q′[x← ⊥](M) is not valid. (2)

Now let
QM+

= (Q, (>,⊥) ; grds(bl+))∗

= search comp qbf(Q,M)∗
(3)

and
Q′M+ = (bl+)∗ (4)

Since by Definition 2

M+ = (¬x∨>)∧(x∨⊥)∧M+



then
[x← >](M+) ≡M+ and [x← ⊥](M+) ≡ ⊥

then
Q′[x← >](M+) ∼= Q′M+ (5)

and
Q′[x← ⊥](M+) is not valid (6)

then with (5), (4) and (1)

Q′[x← >](M+) ∼= Q′[x← >](M)

then with (6) and (2)
QM+

∼= QM

then with (3)
search comp qbf(Q,M)∗ ∼= QM.

• We suppose that (bl+ = non valid) and (bl− 6= non valid).
The case is similar to the previous case.

• We suppose that (bl+ 6= non valid) and (bl− 6= non valid). By induction
hypothesis,

(bl+)∗ ∼= Q′[x← >](M) (7)

and
(bl−)∗ ∼= Q′[x← ⊥](M) (8)

Let
QM+ = (Q, (>,⊥) ; grds(bl+))∗ (9)

QM− = (Q, (⊥,>) ; grds(bl−))∗ (10)

and
QM⊕
= ((Q, (>,⊥) ; grds(bl+))⊕ (Q, (⊥,>) ; grds(bl−)))∗

= search comp qbf(Q,M)∗
(11)

By Theorem 6,
M⊕ ≡ (M+∨M−) (12)

Let
Q′M+ = (bl+)∗ (13)

and
Q′M− = (bl−)∗ (14)

By Definition 2, (9) and (13)

M+ = (¬x∨>)∧(x∨⊥)∧M+

then
[x← >](M+) ≡M+ (15)



and
[x← ⊥](M+) ≡ ⊥ (16)

By Definition 2, (10) and (14)

M− = (¬x∨⊥)∧(x∨>)∧M−

then
[x← >](M−) ≡ ⊥ (17)

and
[x← ⊥](M−) ≡M− (18)

Then from (12), (15) and (17)

[x← >](M⊕) ≡M+ (19)

and from (12), (16) and (18)

[x← ⊥](M⊕) ≡M− (20)

Then from (19)
Q′[x← >](M⊕) ∼= Q′M+ (21)

and from (20)
Q′[x← ⊥](M⊕) ∼= Q′M− (22)

Then from (21), (13) and (7)

Q′[x← >](M⊕) ∼= Q′[x← >](M)

and from (22), (14) and (8)

Q′[x← ⊥](M⊕) ∼= Q′[x← ⊥](M)

then
QM⊕ ∼= QM

then from (11)
search comp qbf(Q,M)∗ ∼= QM.

2

We need X lemmas in order to prove Theorem 8. In what follows Qi =
q1x1 . . . qixi and Qi = qixi . . . qnxn.

Lemma 3. Let QM and QM ′ be two QBF such that QM ∼= QM ′, i be an
integer, 1 ≤ i ≤ n, {y1, . . . , yp} be the existentially quantified variables of
{x1, . . . , xi−1}, vi−1 = [x1 ← C1] . . . [xi−1 ← Ci−1] be an interpretation such
that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s for Qi−1QiM
and vi−1 is in ŷ1 ; . . . ; ŷp . Then Qivi−1(M) ∼= Qivi−1(M ′).

Proof of Lemma 3.



– Base case: Obvious for i = 1.
– Induction case:
• qi = ∃. Let ŷ1 ; . . . ; ŷp ; x̂i ; s be a satisfying Skolem function sequence for
Qi−1∃xiQi+1M then by induction hypothesis

∃xiQi+1vi−1(M) ∼= ∃xiQi+1vi−1(M ′)

We suppose that x̂i for vi−1 is equal to true (the proof is similar with
false). Then, vi = [x1 ← C1] . . . [xi−1 ← Ci−1][xi ← >] is such that
ŷ1 ; . . . ; ŷp ; x̂i ; s is a satisfying Skolem function sequence forQi−1∃xiQi+1M
and vi is in ŷ1 ; . . . ; ŷp ; x̂i and

Qi+1vi−1[xi ← >](M) ∼= Qi+1vi−1[xi ← >](M ′)

• qi = ∀. Let ŷ1 ; . . . ; ŷp ; s be such a satisfying Skolem function sequence
for Qi−1∀xiQi+1M then by induction hypothesis

∀xiQi+1vi−1(M) ∼= ∀xiQi+1vi−1(M ′)

Then, ŷ1 ; . . . ; ŷp ; s is a satisfying Skolem function sequence forQi−1∀xiQi+1M ,

Qi+1vi−1[xi ← >](M) ∼= Qi+1vi−1[xi ← >](M ′)

and
Qi+1vi−1[xi ← ⊥](M) ∼= Qi+1vi−1[xi ← ⊥](M ′).

2

Lemma 4. Let QM be a valid QBF and

(Q, (P1, N1); . . . ; (Pn, Nn)) = search comp qbf(Q,M).

Let i be an integer, 1 ≤ i ≤ n, {y1, . . . , yp} be the existentially quantified vari-
ables of {x1, . . . , xi−1} and vi−1 = [x1 ← C1] . . . [xi−1 ← Ci−1] be an interpre-
tation such that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s
for Qi−1QiM and vi−1 is in ŷ1 ; . . . ; ŷp and for all j, 1 ≤ j < i, if Cj = > then
|= [x1 ← C1] . . . [xj−1 ← Cj−1](Pj) else |= [x1 ← C1] . . . [xj−1 ← Cj−1](Nj).

Then
search comp qbf(Qi, vi−1(M))∗
∼= Qi(

∧
i≤k≤n ((¬xk∨vi−1(Pk))∧(xk∨vi−1(Nk))))

Proof of Lemma 4.
By Theorem 7

search comp qbf(Q,M)∗ = Q
∧

i≤k≤n

((¬xk∨Pk)∧(xk∨Nk))) ∼= QM

Then by Lemma 3

Qivi−1(
∧

i≤k≤n

((¬xk∨Pk)∧(xk∨Nk))) ∼= Qivi−1(M) (1)



But, by definition of vi−1

vi−1(
∧

1≤k≤n

((¬xk∨Pk)∧(xk∨Nk)))

≡
∧
i≤k≤n ((¬xk∨vi−1(Pk))∧(xk∨vi−1(Nk)))

Then
Qivi−1(

∧
1≤k≤n

((¬xk∨Pk)∧(xk∨Nk)))

∼= Qi
∧
i≤k≤n ((¬xk∨vi−1(Pk))∧(xk∨vi−1(Nk)))

(2)

From (1) and (2)

search comp qbf(Qi, vi−1(M))∗
∼= Q1vi−1(M)
∼= Qi

∧
i≤k≤n ((¬xk∨vi−1(Pk))∧(xk∨vi−1(Nk)))

2

Lemma 5. Let QM be a valid QBF and

(Q, (P1, N1); . . . ; (Pn, Nn)) = search comp qbf(Q,M).

Let i be an integer, 1 ≤ i ≤ n, {y1, . . . , yp} be the existentially quantified vari-
ables of {x1, . . . , xi−1}, vi−1 = [x1 ← C1] . . . [xi−1 ← Ci−1] be an interpreta-
tion such that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s
for Qi−1QiM , vi−1 is in ŷ1 ; . . . ; ŷp and for all k, 1 ≤ k < i, if Ck = > then
|= [x1 ← C1] . . . [xk−1 ← Ck−1](Pk) else |= [x1 ← C1] . . . [xk−1 ← Ck−1](Nk).
Let

(Qi, (P ii , N
i
i ); . . . ; (P in, N

i
n)) = search comp qbf(Qi, vi−1(M)).

Then for all j, i ≤ j ≤ n, vi−1(Pj) ≡ P ij and vi−1(Nj) ≡ N i
j .

Proof of Lemma 5. By Lemma 4,

search comp qbf(Qi, vi−1(M))∗
∼= Qi(

∧
i≤k≤n ((¬xk∨vi−1(Pk))∧(xk∨vi−1(Nk))))

By Theorem 7,

search comp qbf(Qi, vi−1(M))∗

= Qi(
∧
i≤k≤n ((¬xk∨P ik)∧(xk∨N i

k)))

Then, by induction, for all j, i ≤ j ≤ n, vi−1(Pj) ≡ P ij and vi−1(Nj) ≡ N i
j .

2

Theorem 8 Let QM be a valid QBF. Then search comp qbf(Q,M) is optimal.



Proof of Theorem 8. We have to prove: Let Q1M be a QBF and

(Q1, (P1, N1); . . . ; (Pn, Nn)) = search comp qbf(Q1,M).

For all i, 1 ≤ i ≤ n, let vi−1 = [x1 ← C1] . . . [xi−1 ← Ci−1] be an interpretation
such that for all k, 1 ≤ k < i if Ck = > then |= [x1 ← C1] . . . [xk−1 ← Ck−1](Pk)
else |= [x1 ← C1] . . . [xk−1 ← Ck−1](Nk).

Then

|= vi−1(Pi)
if and only if there exists a sequence of satisfying Skolem functions for
Qi+1vi−1[xi ← >](

∧
1≤k≤n ((¬xk∨Pk)∧(xk∨Nk)))

and

|= vi−1(Ni)
if and only if there exists a sequence of satisfying Skolem functions for
Qi+1vi−1[xi ← ⊥](

∧
1≤k≤n ((¬xk∨Pk)∧(xk∨Nk))).

By the properties of vi−1, these consequences are equivalent to:

|= vi−1(Pi)
if and only if there exists a sequence of satisfying Skolem functions for
Qi+1

∧
i≤k≤n ((¬xk∨vi−1[xi ← >](Pk))∧(xk∨vi−1[xi ← >](Nk)))

and

|= vi−1(Ni)
if and only if there exists a sequence of satisfying Skolem functions for
Qi+1

∧
i≤k≤n ((¬xk∨vi−1[xi ← ⊥](Pk))∧(xk∨vi−1[xi ← ⊥](Nk))).

And, by Lemma 4, these consequences are equivalent to

|= vi−1(Pi)
if and only if there exists a sequence of satisfying Skolem functions for
search comp qbf(Qi+1, vi−1[xi ← >](M))

and

|= vi−1(Ni)
if and only if there exists a sequence of satisfying Skolem functions for
search comp qbf(Qi+1, vi−1[xi ← ⊥](M)).

We prove for [xi ← ⊥], the proof is similar for >.
By Theorem 7,

Q1M ∼= Q1

∧
1≤j≤n

((¬xj∨Pj)∧(xj∨Nj))

then
Qivi−1(M) ∼= Qivi−1(

∧
1≤j≤n

((¬xj∨Pj)∧(xj∨Nj)))



then, by definition of vi−1,

Qivi−1(M)
∼= Q1((¬xi∨vi−1(Pi))∧(xi∨vi−1(Ni)))
∧

∧
i+1≤j≤n ((¬xj∨vi−1(Pj))∧(xj∨vi−1(Nj)))

then there exists a sequence of satisfying Skolem functions for Q1vi−1[xi ←
⊥](M) if and only if there exists a sequence of satisfying Skolem functions for

Qi(vi−1(Ni)∧
∧

i+1≤j≤n

((¬xj∨vi−1[xi ← ⊥](Pj))∧(xj∨vi−1[xi ← ⊥](Nj))))

if and only if |= vi−1(Ni) and there exists a sequence of satisfying Skolem func-
tions for

Qi+1

∧
i+1≤j≤n

((¬xj∨vi−1[xi ← ⊥](Pj))∧(xj∨vi−1[xi ← ⊥](Nj)))

then if 6|= vi−1(Ni) then there is no sequence of satisfying Skolem functions
for Qi+1vi−1[xi ← ⊥](M) then if there exists a sequence of satisfying Skolem
functions for Qi+1vi−1[xi ← ⊥](M) then |= vi−1(Ni).

Now if there is no sequence of satisfying Skolem functions for Qi+1vi−1[xi ←
⊥](M) then, by Lemma 5 and definition of the algorithm search comp qbf ,
vi−1(Ni) = ⊥. 2

Theorem 9 Let QM be a valid QBF. Then search comp qbf(Q,M)∗ is mini-
mal.

Proof of Theorem ??.

– Base cases:
• We suppose that q = ∀.
∗ If M ≡ > then search comp qbf(∀x,M) = (∀x(>,>)) then

search comp qbf(∀x,M)∗ = ∀x((¬x∨>)∧(x∨>)) ∼= ∀x>

is minimal.
∗ If M ≡ x (M ≡ ¬x and M ≡ ⊥ are similar) then ∀xM is not valid.

• We suppose that q = ∃.
∗ If M ≡ > then

search comp qbf(∃x,M) = (∃x(>,>))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨>)∧(x∨>)) ∼= ∃x>

is minimal.



∗ If M ≡ x then

search comp qbf(∃x,M) = (∃x(>,⊥))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨>)∧(x∨⊥)) ∼= ∃xx

is minimal.
∗ If M ≡ ¬x then

search comp qbf(∃x,M) = (∃x(⊥,>))

then

search comp qbf(∃x,M)∗ = ∃x((¬x∨⊥)∧(x∨>)) ∼= ∃x¬x

is minimal.
∗ If M ≡ ⊥ then ∃xM is not valid.

– Induction cases: Let Q = qxQ′ and

bl+ = search comp qbf(Q′, [x← >](M))

and
bl− = search comp qbf(Q′, [x← ⊥](M))

• We suppose that (bl+ = non valid) and (bl− = non valid). Then by
induction hypothesis Q′[x ← >](M) and Q′[x ← ⊥](M) are not valid
then QM is not valid.

• We suppose that (bl+ 6= non valid) and (bl− = non valid). By induction
hypothesis,

(bl+)∗ is minimal. (1)

If q = ∀ it is similar to the case “(bl+ = non valid) and (bl− =
non valid)”. Otherwise q = ∃ and by Theorem 7

Q′[x← ⊥](M) is not valid. (2)

Now let
QM+

= (Q, (>,⊥) ; grds(bl+))∗

= search comp qbf(Q,M)∗
(3)

and
Q′M+ = (bl+)∗ (4)

Since by Definition 2

M+ = (¬x∨>)∧(x∨⊥)∧M+

then
[x← >](M+) ≡M+ and [x← ⊥](M+) ≡ ⊥



then

Q′[x← >](M+) is minimal if and only if Q′M+ is also minimal (5)

and
Q′[x← ⊥](M+) is not valid. (6)

then from (5), (4) and (1) Q′[x← >](M+) is minimal then with (6) and
(2) QM+ is minimal then with (3) search comp qbf(Q,M)∗ is minimal.

• We suppose that (bl+ = non valid) and (bl− 6= non valid).
The case is similar to the previous case.

• We suppose that (bl+ 6= non valid) and (bl− 6= non valid). By induction
hypothesis,

(bl+)∗ is minimal (7)

and
(bl−)∗ is minimal. (8)

Let
QM+ = (Q, (>,⊥) ; grds(bl+))∗ (9)

QM− = (Q, (⊥,>) ; grds(bl−))∗ (10)

and
QM⊕
= ((Q, (>,⊥) ; grds(bl+))⊕ (Q, (⊥,>) ; grds(bl−)))∗

= search comp qbf(Q,M)∗
(11)

By Theorem 6,
M⊕ ≡ (M+∨M−) (12)

Let
Q′M+ = (bl+)∗ (13)

and
Q′M− = (bl−)∗ (14)

By Definition 2, (9) and (13)

M+ = (¬x∨>)∧(x∨⊥)∧M+

then
[x← >](M+) ≡M+ (15)

and
[x← ⊥](M+) ≡ ⊥ (16)

By Definition 2, (10) and (14)

M− = (¬x∨⊥)∧(x∨>)∧M−

then
[x← >](M−) ≡ ⊥ (17)



and
[x← ⊥](M−) ≡M− (18)

Then from (12), (15) and (17)

[x← >](M⊕) ≡M+ (19)

and from (12), (16) and (18)

[x← ⊥](M⊕) ≡M− (20)

Then from (19)

Q′[x← >](M⊕) is minimal if and only if Q′M+ is minimal (21)

and from (20)

Q′[x← ⊥](M⊕) is minimal if and only if Q′M− is minimal. (22)

Then from (21), (13) and (7) Q′[x← >](M⊕) is minimal and from (22),
(14) and (8) Q′[x← ⊥](M⊕) is also minimal then QM⊕ is minimal then
from (11) search comp qbf(Q,M)∗ ∼= QM is minimal.
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