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A unified framework for Certificate and Compilation for QBF

We propose in this article a unified framework for certificate and compilation for QBF. We provide a search-based algorithm to compute a certificate for the validity of a QBF and a search-based algorithm to compile a valid QBF in our unified framework.

Introduction

The quantified Boolean formula (QBF) validity problem is a generalisation of the Boolean formulae satisfiability problem. While the complexity of Boolean satisfiability problem is NP-complete, it is PSPACE-complete for the QBF validity problem. This is the price for a more concise representation of many classes of formulae. Many important problems in several research fields have polynomialtime translations to the QBF validity problem : AI planning [START_REF] Rintanen | Constructing conditional plans by a theorem-prover[END_REF][START_REF] Ayari | Qubos: Deciding quantified boolean logic using propositional satisfiability solvers[END_REF], Bounded Model Construction [START_REF] Ayari | Qubos: Deciding quantified boolean logic using propositional satisfiability solvers[END_REF], Formal Verification (see [START_REF] Benedetti | Experience and perspectives in qbf-based formal verification[END_REF] for a survey).

Most of the recent decision procedures for QBF validity [START_REF] Cadoli | An algorithm to evaluate quantified boolean formulae and its experimental evaluation[END_REF][START_REF] Zhang | Solving QBF with combined conjunctive and disjunctive normal form[END_REF][START_REF] Bacchus | Using SAT in QBF[END_REF][START_REF] Giunchiglia | Clause/term resolution and learning in the evaluation of quantified boolean formulas[END_REF] are extensions of the search-based Davis-Putnam procedure [START_REF] Davis | A machine program for theoremproving[END_REF] for Boolean satisfiability. A search-based procedure for QBF chooses one Boolean variable, tries to solve two simpler subproblems and combines the results according to the semantics of the quantifier associated to the variable. Some other decision procedures are based on resolution principle (as Q-resolution [START_REF] Büning | Resolution for quantified boolean formulas[END_REF] which extends the resolution principle for Boolean formulae to QBF or Quantor [START_REF] Biere | Resolve and Expand[END_REF] which combines efficiently Q-resolution and expansion), quantifier-elimination algorithms [START_REF] Plaisted | A satisfiability procedure for quantified Boolean formulae[END_REF][START_REF] Pan | Symbolic Decision Procedures for QBF[END_REF], or skolemization and SAT solvers [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF].

Every finite two-player game can be modeled in QBF [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]. In this kind of applications, a decision procedure (the formula is valid or not) is not sufficient since a solution is needed. A solution of a QBF (a QBF model) is a set of Boolean functions [START_REF] Büning | Boolean functions as models for quantified boolean formulas[END_REF]. One possibility to represent them is to build a treeshape representation (called policy [START_REF] Coste-Marquis | Representing policies for quantified boolean formulae[END_REF] or strategy [START_REF] Bordeaux | Boolean and interval propagation for quantified constraints[END_REF]) but it is exponential in worst case and unfortunately also in usual ones. With a search-based procedure, it is very easy to build a solution of a QBF from the solutions of its two simpler subproblems [START_REF] Coste-Marquis | Representing policies for quantified boolean formulae[END_REF][START_REF] Bordeaux | Boolean and interval propagation for quantified constraints[END_REF].

When a QBF solver returns valid or non-valid, there is no way to check if the answer is correct while in propositional logic the associated result to the decision (a model) is easy to check. A certificate for a valid QBF is any piece of information that provides self-supporting evidence of validity for that QBF [START_REF] Benedetti | Experience and perspectives in qbf-based formal verification[END_REF].

A sat-certificate [START_REF] Benedetti | skizzo: a suite to evaluate and certify QBFs[END_REF][START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF] is a representation of a sequence of Boolean functions for a QBF that certifies its validity. This approach seems to us promising since the generated certificate is not linked to the representation of the input QBF but only to its semantics. The computation of a sat-certificate is described in [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] in the framework of sKizzo as a reconstruction from a trace. To the best of our knowledge, there is no result of how to build a sat-certificate of a QBF from the sat-certificates of its two simpler subproblems. It is an important issue since most of the QBF solvers are search-based procedures. Our first contribution is double (Section 4): we define an operator for sat-certificates in order to be able to build a sat-certificate of a QBF from the sat-certificates of its two simpler subproblems and we describe an algorithm which extends any search-based algorithm to build a sat-certificate for a valid QBF during the decision process and not a posteriori from a trace.

In general, a knowledge base is compiled off-line into a target language which is then used on-line to answer some queries. In QBF case, seen as a two-player game, one of the most useful query for the existential player is : what should I play to still be sure to win? Our second contribution is a unified framework for certificate and compilation of QBF (Section 3): the literal base representation which is an extension of the sat-certificate representation. In order to extend any search-based procedure to a QBF compiler, an important issue is how to compute the compilation of a QBF from the result of the compilation of its two simpler subproblems. Our third contribution is also double (Section 5): we define an operator for literal bases in order to be able to compute the compilation of a QBF from the literal bases of its two simpler subproblems and we describe an algorithm which extends any search-based algorithm to compile a valid QBF.

Finally we discusse related work (Section 6) and we draw a conclusion (Section 7).

Preliminaries

Propositional logic.

The set of propositional variables is denoted by V. Symbols ⊥ and are the propositional constants ( = ⊥ and ⊥ = ). Symbol ∧ stands for conjunction, ∨ for disjunction, ¬ for negation, → for implication and ↔ for bi-implication. A literal is a propositional variable or the negation of a propositional variable. A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. Definitions of the language of propositional formula PROP and semantics of all the Boolean symbols are defined in standard way. A substitution is a function from propositional variables to PROP. This definition is extended as usual to a function from PROP to PROP: [x ← F ](G) is the formula obtained from G by replacing occurrences of the propositional variable x by the formula F . This definition is also extended as usual for the substitution of a formula by another formula. An interpretation v is a function from V to {true, false} ; the extension to PROP is denoted v * . To an interpretation v is associated a set in the standard way and a substitution v as follows : if v(x) = true then

[x ← ] is in v, if v(x) = false then [x ← ⊥] is in v. Propositional satisfaction is denoted |= (v |= F means v * (F ) = true,
the propositional formula F is satisfied by v and v is a model of F ). Logical equivalence is denoted ≡. To a Boolean function f (i.e. a function from {true, false} n to {true, false}) is associated a propositional formula ψ f on the variables {x 1 , . . . , x n } such that v * (ψ f ) = true if and only if f (v(x 1 ), . . . , v(x n )) = true for any interpretation v.

Quantified Boolean Formulae.

The symbol ∃ stands for the existential quantifier and ∀ stands for the universal quantifier(q stands for any quantifier). A binder Q is a string q 1 x 1 . . . q n x n with x 1 , . . . , x n distinct propositional variables and q 1 . . . q n quantifiers. It is assumed that distinct quantifiers bind occurrences of distinct propositional variables. The empty string is denoted by . A (prenex) quantified Boolean formula (QBF) is constituted of a binder and a propositional formula called the matrix (only closed formulae are considered: each variable in the matrix is also in the binder). A QBF is in conjunctive normal form if its matrix is in conjunctive normal form. The semantics of QBF is defined as follows: for every propositional variable y and every QBF QM (y 1 , . . . , y p the existentially quantified variables of QM ). For example, the QBF ∃a∃b∀c((a∨b)↔c) (since ∃a∃b∀c((a∨b)↔c) ≡ ∃a∃b(((a∨b)↔ )∧((a∨b)↔⊥)) ≡ ⊥) but the QBF ∀c∃a∃b((a∨b)↔c) is valid and one of its possible model is

∃yQM = (Q[y ← ](M )∨Q[y ← ⊥](M )) and ∀yQM = (Q[y ← ](M )∧Q[y ← ⊥](M )). A QBF F is valid if F ≡ . If
ψ â; ψ b with ψ â = c and ψ b = ⊥ (since [a ← ψ â][b ← ψ b]((b∨a)↔c) = ((⊥∨c)↔c) is a tautology).
A (Boolean) model of an unquantified Boolean formula corresponds exactly to a (QBF) model of its existential closure. A QBF is valid if and only if there exists a model. An interpretation v is said to be in a model ψ ŷ1 ; . . . ; ψ ŷp if for every i,

1 ≤ i ≤ n, v * (ψ ŷi ) = v(y i ); for example the interpretation v = {c, a, ¬b} is in the above model since v * (ψ â) = true = v(a) and v * (ψ b) = false = v(b) but v = {¬c, a, ¬b} is not in it since v * (ψ â) = false = v (a)
. Modelequivalence for QBF is defined in [START_REF] Stéphan | Finding models for quantified boolean formulae[END_REF] as follows : Two QBF F and F are modelequivalent (denoted

F ∼ = F ) if every model of F is a model of F and conversely;
this equivalence is about preservation of models and not only preservation of validity; for example, ∀c∃a∃b((a∨b)↔c) ≡ but ∀c∃a∃b((a∨b)↔c) ∼ = .

sat-certificate.

A sat-certificate [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF] for a QBF F , with y 1 , . . . , y p its existentially quantified variables, is a sequence of pairs of formulae (φ 1 , ν 1 ); . . . ; (φ p , ν p ), φ i and ν i de-fined over the universally quantified variables of F preceding the variable y i , 1 ≤ i ≤ p. It is defined in [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF] only for CNF QBF with sequences of pairs of binary decision diagrams (BDD) [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF]. A sat-certificate is consistent if for every i, 1 ≤ i ≤ p, (φ i ∧ν i ) ≡ ⊥. If a sat-certificate is consistent then φ 1 ; . . . ; φ p and ¬ν 1 ; . . . ; ¬ν p are two models of the certified QBF (not necessarily the same).

To certify the validity of a CNF QBF QM with a sat-certificate (φ 1 , ν 1 ); . . .

; (φ p , ν p ) we have to check if [¬x 1 ← ν 1 ][x 1 ← φ 1 ] . . . [¬x p ← ν p ][x p ← φ p ](M )
is a tautology. If the verification fails either the QBF is non valid or the satcertificate is not correct; conversely, if the verification succeeds then the QBF is valid and the sat-certificate encodes a model [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF]. For example, from [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF], the sequence of pairs of formulae (φ c , ν c ); (φ e , ν e ); (φ f , ν f ) with φ c = ¬a, ν c = a, φ e = (a∧b∧d)∨(¬a∧¬d), ν e = (¬a∧d)∨(a∧¬d), φ f = (a∧b∧¬d)∨(¬a∧b∧d) and

ν f = (¬a∧¬d) is a sat-certificate for the CNF QBF ξ = ∀a∀b∃c∀d∃e∃f µ (1) 
with

µ = [(¬b∨e∨f )∧(a∨c∨f )∧(a∨d∨e)∧(¬a∨¬b∨¬d∨e)∧(¬a∨b∨¬c) ∧(¬a∨¬c∨¬f )∧(a∨¬d∨¬e)∧(¬a∨d∨¬e)∧(a∨¬e∨¬f )].
This sat-certificate certifies the validity of this CNF QBF since [¬c

← ν c ][c ← φ c ][¬e ← ν e ] [e ← φ e ][¬f ← ν f ][f ← φ f ](M )
is a tautology. One can remark that this sat-certificate is consistent and that φ c ; φ e ; φ f = ¬a; (a∧b∧d)∨(¬a∧¬d); (a∧b∧¬d)∨(¬a∧b∧d) [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] and ¬ν c ; ¬ν e ; ¬ν f = ¬a; ¬(¬a∧d)∨(a∧¬d); ¬(¬a∧¬d) are a two different models for the QBF ξ.

Literal Base

In this section we present formally our proposal for a unified framework for certificate and compilation for QBF: the literal base representation. This representation extends the sat-certificate representation of [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF]. We denote B Q the set of the literal bases for a binder Q, LB = Q B Q the literal base language and define the function grds such that grds((Q, G)) = G.

Definition 1 (Literal base). A literal base is a pair (Q, G) constituted -either of Q = and G = or G = ⊥ ; -either of a binder Q = q 1 x 1 . . . q n x n , n > 0,
A literal base is an explicit representation in the order of the binder of the dependencies that have to exist between an existentially quantified variable and the variables preceding it.

By the latter definition:

-if Q = then B = {( , ), ( , ⊥)} ; -if Q = qx then B qx = {(qx, ( , )), (qx, ( , ⊥)), (qx, (⊥, )), (qx, (⊥, ⊥))} If n is the number of variables of a binder Q then the size of B Q is 2 2 ... 2 n+1
.

We interpret a literal base language as a representation for a subset of the QBF language.

Definition 2 (Interpretation of a literal base). The interpretation function is a function from LB to QBF denoted (.) * and is defined as follows :

-if lb = ( , G) then lb * = G ; -if lb = (q 1 x 1 . . . q n x n , (P 1 , N 1 ); . . . ; (P n , N n )), n > 0, then lb * = q 1 x 1 . . . q n x n k≤n ((¬x k ∨P k )∧(x k ∨N k ))
If X is a subset of BL then X * denotes {lb * |lb ∈ X}. From here non valid denotes a literal base whose interpretation is non valid and we extend the latter definition by non valid * = ⊥.

Clearly enough from Defintion 2, if a literal base (Q, (P 1 , N 1 ); . . . ; (P n , N n )) is such that its interpretation is valid then necessarily for every universally quantified variable x i , P i and N i can be replaced in the literal base by . The following literal base β = (∀a∀b∃c∀d∃e∃f, ( , ); ( , ); (P c , N c ); ( , ); (P e , N e ); (P f , N f )) [START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF] with P c = ¬a, N c = a, P e = (¬d∧c∧¬a)∨(d∧¬c∧a), N e = (d∧c∧¬a)∨(¬c∧¬b∧a)∨(¬d∧¬c∧a),

P f = (¬e∧d∧c∧¬a)∨(¬e∧¬c∧¬b∧a)∨ (d∧¬c∧¬b∧a)∨(¬e∧¬d∧¬c∧a)∨(e∧d∧¬c∧a)
and

N f = (¬e∧d∧c∧¬b∧¬a)∨(e∧¬d∧c∧¬a)∨ (¬e∧¬c∧¬b∧a)∨(d∧¬c∧¬b∧a)∨(e∧d∧¬c∧a),
is such that its interpretation is model-equivalent to (1) (i.e. β * ∼ = F ).

The following theorem establishes that for every QBF there exists a literal base such that its interpretation is model-equivalent to the QBF. By this theorem the literal base language may be considered as a target compilation language for QBF.

Theorem 1 (Completeness of LB). Let QM be a QBF. Then there exists a literal base lb ∈ B Q such that lb * ∼ = QM .

A sat-certificate for a QBF is easily extended to a literal base: we add the binder of the QBF and in the sequence of the sat-certificate for each universally quantified variable we add a couple ( , ). Hence, the interpretation of the satcertificate considered as a literal base has only one model which is the model of the QBF. In a sat-certificate (φ 1 , ν 1 ); . . . ; (φ p , ν p ) formulae φ i and ν i , 1 ≤ i ≤ p, only depend on the preceding universally quantified variables while in a literal base (Q, (P 1 , N 1 ); . . . ; (P n , N n )) formulae P i and N i , 1 ≤ i ≤ n, may depend on all the preceding variables.

The propositional fragment in which the propositional formulae of the literal bases are defined needs only to be complete and may be chosen w.r.t. its succinctness (see [START_REF] Darwiche | A knowledge compilation map[END_REF] for a survey on properties of propositional fragments).

When a QBF is considered to model a finite two-player game, the validity of the QBF means that the "existential" player is sure to win if he follows the moves obtained from the (sequence of formulae of the) model. We are interested in the following question: since until now I have followed a (sequence of formulae of a) model, can I change my mind for the next move? We call this problem the "next move choice problem" and we define it formally.

Definition 3 (Next move choice problem for a subset X of QBF).

-Instance : A formula q 1 x 1 . . . q n x n M from a subset X of QBF, a sequence of substitutions

[x 1 ← C 1 ] . . . [x i ← C i ]
obtained from a (sequence of formulae of a) model for q 1 x 1 . . . q n x n M with q i = ∃ and C 1 , . . . , C i ∈ { , ⊥}. -Query: Does there exist a model for q i+1 . . .

q n x n [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ][x i ← C i ](M ).
Clearly enough, the next move choice problem is still PSPACE-complete if we consider X = QBF .

Considering again the QBF (1) and one of its model (2), we know that ∀d∃e∃f

[a ← ][b ← ][c ← ⊥](µ) is valid (since [a ← ][b ← ](φ c ) ≡ ⊥) but is ∀d∃e∃f [a ← ][b ← ][c ← ](µ) also valid?
We introduce a new property, called "optimality", for literal bases in order to exhibit a QBF fragment in which the next move choice problem is polytime w.r.t the size of the literal base.

Definition 4 (Optimality of a literal base). Let lb be a literal base such that lb = (q 1 x 1 . . . q n x n , (P 1 , N 1 ); . . . ; (P n , N n )) and lb * = q 1 x 1 . . . q n x n G. The literal base lb is optimal if the following holds. For all i,

1 ≤ i ≤ n, let [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ] be an interpretation such that for all k, 1 ≤ k < i if C k = then |= [x 1 ← C 1 ] . . . [x k-1 ← C k-1 ](P k ) else |= [x 1 ← C 1 ] . . . [x k-1 ← C k-1 ](N k ).
Then

|= [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ](P i )
if and only if there exists a model for

q i+1 x i+1 . . . q n x n [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ][x i ← ](G)
and

|= [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ](N i )
if and only if there exists a model for

q i+1 x i+1 . . . q n x n [x 1 ← C 1 ] . . . [x i-1 ← C i-1 ][x i ← ⊥](G).
We denote by OBL the set of optimal literal bases.

Considering again (3), β is an optimal literal base. Since the interpretation of

β is model-equivalent to (2) (i.e. ∀a∀b∃c∀d∃e∃f µ) and [a ← ][b ← ](N c ) ≡ ⊥ the QBF ∀d∃e∃f [a ← ][b ← ][c ← ](µ) is not valid.
The most important property of optimal literal bases is that the next move choice problem is polytime and no more PSPACE-complete.

Theorem 2. The next move choice problem for OBL * is polytime.

If a QBF modeling a finite two-player game is compiled off-line in an optimal literal base, the computation of any sequence of moves leading to victory is polytime. An optimal literal base may be seen as a dynamic decision tree. The property of optimality of a literal base is linked with the property of minimality of a QBF which expresses that the QBF matrix contains only the models needed by the (QBF) models.

Definition 5 (Minimality of a QBF).

A QBF is minimal if all the (propositional) models of the matrix are (at least) in one of its (QBF) model.

For example, the QBF ∃a∀b((a∧b)∨(a∧¬b)∨(¬a∧b)) is not minimal since the (Boolean) model {¬a, b} of the matrix is not in the only one model ψ â = .

Theorem 3. Let lb be an optimal literal base. Then lb * is a minimal QBF.

The converse of Theorem 3 is false: The literal base (∃a∀b, ( , ), (a, a)) is not optimal (since there is no model with ψ â = ⊥) but its interpretation is minimal.

Literal base and sat-certificate for search-based algorithms

In this section we are interested in the following problem: how to extend a search-based procedure in order to compute directly the sat-certificate and not a posteriori from a trace. To do this we define an operator for literal bases in order to be able to build a sat-certificate from the sat-certificates of its two simpler subproblems. Definition 6. The operator 

• x : B Q × B Q → B
)∧(x∨P n )), ((¬x∨N n )∧(x∨N n ))))
In this definition, if x is interpreted to true (resp. false) then for all i, 1 ≤ i ≤ n, ((¬x∨P i )∧(x∨P i )) ≡ P i (resp. P i ) and ((¬x∨N i )∧(x∨N i )) ≡ N i (resp. N i ). If (Q, (P 1 , N 1 ); . . . ; (P n , N n )) and (Q, (P 1 , N 1 ); . . . ; (P n , N n )) are sat-certificates and Q = q 1 x 1 . . . q n x n with q i = ∀ then clearly enough ((¬x∨P i )∧(x∨P i )) ≡ ≡ ((¬x∨N i )∧(x∨N i )). We establish by the following theorem that the • operator composes two sat-certificates in a new sat-certificate.

Theorem 4. Let ∀xQM be a QBF. If lb is a sat-certificate for Q[x ← ](M ) and lb ⊥ is a sat-certificate for Q[x ← ⊥](M ) then (lb • x lb ⊥ ) is a sat-certificate for ∀xQM .

Algorithm 1 search certif qbf

In: Q : a binder of a QBF In: M : a matrix of a QBF Out: a sat-certificate or non valid

if Q = qx then if q = ∃ then switch M do case : return (∃x, ( , ⊥)) case ⊥ : return non valid case x : return (∃x, ( , ⊥)) case ¬x : return (∃x, (⊥, )) end switch else if M ≡ then return (∀x, ( , 
)) else return non valid end if end if else Q = qxQ lb + := search certif qbf (Q , M [x ← ]) if lb + = non valid then if q = ∃ then lb -:= search certif qbf (Q , M [x ← ⊥]) if lb -= non valid then return non valid else return ((Q, (⊥, ) ; grds(lb -)) end if else return non valid end if else if q = ∃ then return (Q, ( , ⊥) ; grds(lb + )) else lb -:= search certif qbf (Q , M [x ← ⊥]) if lb -= non valid then return non valid else return (lb + •x lb -) end if end if end if end if
We are now able to present the search-based algorithm search certif qbf which computes a sat-certificate for a QBF. The search certif qbf algorithm checks first if the binder is reduced to a single quantifier with its variable. In this case, if it is an existential quantifier four cases are possible, corresponding, in the order of the algorithm, to : ∃x ≡ ∃xx 1 , ∃x⊥ ≡ ⊥, ∃xx ∼ = ∃x((¬x∨ )∧(x∨⊥)) and ∃x¬x ∼ = ∃x((¬x∨⊥)∧(x∨ )). If the quantifier is universal then if M ≡ then ∀xM ≡ else ∀xx ≡ ∀x¬x ≡ ∀x⊥ ≡ ⊥. If there are some quantifiers, since the algorithm is a search-based one, the most external quantifier is considered. If this quantifier is existential then if one of the recursive calls for the substitution by (resp. ⊥) for the variable x is different to non valid the returned satcertificate is (Q, ( , ⊥); grds(lb + )) (resp. (Q, (⊥, ); grds(lb -))) which expresses that x must be true (resp. false). If the quantifier is universal then if at least one recursive call for the substitution by or by ⊥ for the variable x returns non valid then non valid is returned otherwise the Skolem functions of the two sat-certificates have to be combined to integrate the new argument x by (lb + • x lb -) before this new sat-certificate is returned.

Theorem 5 (Correctness of search certif qbf ). Let QM be a QBF. search certif qbf (Q, M ) returns a sat-certificate for QM if the QBF is valid and non valid otherwise.

In case of search-based algorithms for CNF QBF, unit propagation and monotone literal propagation [START_REF] Cadoli | An algorithm to evaluate quantified boolean formulae and its experimental evaluation[END_REF] may be easily added the search certif qbf algorithm.

Literal bases and QBF compilation for search-based algorithms

Since Theorem 1 establishes the completeness of the literal base language, LB may be considered as a target language for the compilation of a QBF. In this section we are interested in the following problem: how to extend a search-based procedure in order to compile a QBF in an optimal literal base. To do this we define an operator for literal bases which compile a QBF by the combination of the results of the compilation of its two simpler subproblems.

Definition 7. Let Q = q 2 x 2 . . . q n x n and Q = q 1 x 1 Q be two binders and lb, lb ∈ B Q . The operator ⊕ : This operator is the counterpart of the disjunction for the QBF. In the previous definition when n = 1, (q 1 x 1 , (P 1 , N 1 )) ⊕ (q 1 x 1 , (P 1 , N 1 )) = (q 1 x 1 , ((P 1 ∨P 1 ), (N 1 ∨N 1 ))) which defines the base case of recursivity of ⊕. We develop for the case n = 2 the disjunction of the matrices of the interpretation of two literal bases and show how we can find back Definition 7: Since (q 2 x 2 , (P 2 , N 2 )) ⊕ (q 2 x 2 , (P 2 , N 2 )) = (q 2 x 2 , ((P 2 ∨P 2 ), (N 2 ∨N 2 ))), P 2 = (P 2 ∨P 2 ) and N 2 = (N 2 ∨N 2 ) then

B Q × B Q → B Q is defined as follows : If Q = then (lb ⊕ lb ) = (
((¬x 1 ∨P 1 )∧(x 1 ∨N 1 ))∧((¬x 2 ∨P 2 )∧(x 2 ∨N 2 ))∨ ((¬x 1 ∨P 1 )∧(x 1 ∨N 1 ))∧((¬x 2 ∨P 2 )∧(x 2 ∨N 2 )) ≡ (¬x 1 ∨(P 1 ∨P 1 ))∧(x 1 ∨(N 1 ∨N 1 ))∧ (¬x 2 ∨((P 2 ∨P 2 )∧(P 2 ∨((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )))∧(P 2 ∨((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )))))∧ (¬x 2 ∨((N 2 ∨N 2 )∧(N 2 ∨((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )))∧(N 2 ∨((¬x 1 ∨P 1 )∧(x 1 ∨N 1 ))))) ≡ (¬x 1 ∨(P 1 ∨P 1 ))∧(x 1 ∨(N 1 ∨N 1 ))∧ (¬x 2 ∨(P 2 ∧(P 2 ∨X )∧(P 2 ∨X )))∧(¬x 2 ∨(N 2 ∧(N 2 ∨X )∧(N 2 ∨X )))
Definition 7 may be improved with no cost by applying as simplification rules some usual logical equivalences: We are now able to present the search-based algorithm search comp qbf which compiles a QBF into an optimal literal base. The search comp qbf algorithm checks first if the binder is reduced to a single quantifier with its variable. If it is the case and if M ≡ , conversely to search certif qbf algorithm, ( , ) is returned (since ∃x ∼ = ∃x((¬x∨ )∧(x∨ ))) in order to compose the two possibilities. If there are some quantifiers, since the algorithm is a search-based one, the first one is considered. Following semantics of QBF, if there is no model for one (resp. both) recursive call then there is no model for the QBF if the quantifier is universal (resp. existential) ; if there are models for both recursive calls then, for both quantifiers, (Q, ( , ⊥) ; grds(lb + )) ⊕ (Q, (⊥, ) ; grds(lb -) is returned.

Literal bases generated by the search comp qbf compilation algorithm may be in worst case of exponential size.

Theorem 7 (Correctness of search comp qbf ). Let QM be a QBF. search comp qbf (Q, M ) returns a literal base lb such that lb * ∼ = QM if QM is valid and returns non valid otherwise. QBF certificates. To the best of our knowledge, there exist only two suggestions for QBF certificates and methods to generate them2 . The first approach [START_REF] Jussila | A first step towards a unified proof checker for qbf[END_REF] is a method to generate a list of pairs of the form (v, f v ) where f v are the Skolem functions for fresh variables v from the classical extension rule for propositional logic [START_REF] Tseitin | On the complexity of derivation in propositional calculus[END_REF]. The second approach proposed in [START_REF] Benedetti | skizzo: a suite to evaluate and certify QBFs[END_REF][START_REF] Benedetti | Extracting certificates from quantified boolean formulas[END_REF] introduces the sat-certificate. It is described independently of any algorithm, but with binary decision diagrams (BDD) [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF] and only for formulae in CNF. The computation of a sat-certificate is described in [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] in the framework of sKizzo as a reconstruction from a trace: the "inference log". An external certifier application (ozziKs) is charged with interpreting the content of the log in order to construct certificates [START_REF] Benedetti | skizzo: a suite to evaluate and certify QBFs[END_REF]. Since the solver can choose between five different inference strategies there are many different kinds of instructions in the inference logs. It results in the need for a heavyweight proof checker. This approach is based on a trace of what the solver is doing and it probably does not scale well because of the growth of this trace. It can take more time to generate the sat-certificate from the trace than it took to generate the model [START_REF] Benedetti | skizzo: a suite to evaluate and certify QBFs[END_REF].

QBF compilation. Knowledge compilation with a subset of the propositional language as a target language has been widely study (see [START_REF] Darwiche | A knowledge compilation map[END_REF] for a "knowledge compilation map"), but it is not the case for QBF compilation: [START_REF] Fargier | On the use of partially ordered decision graphs in knowledge compilation and quantified boolean formulae[END_REF] focuses on selected propositional fragments and quantifier elimination while [START_REF] Coste-Marquis | Propositional fragments for knowledge compilation and quantified boolean formulae[END_REF] focuses on complexity of QBF built on the same selected propositional fragments. The compiler for CNF QBF proposed in [START_REF] Stéphan | Finding models for quantified boolean formulae[END_REF] extends a quantifier-elimination decision procedure [START_REF] Pan | Symbolic Decision Procedures for QBF[END_REF] as follows: for a CNF QBF q 1 x 1 . . . q n-1 x n-1 q n x n M , we compute the formulae M n , P n and N n defined on {x 1 , . . . , x n-1 } such that M ≡ (M n ∧((¬x n ∨P n )∧(x n ∨N n ))); if q n = ∃ then the process is recursively called on q 1 x 1 . . . q n-1 x n-1 (M n ∧(P n ∨N n )) otherwise the process is recursively called on q 1 x 1 . . . q n-1 x n-1 (M n ∧(P n ∧N n )). The target language of this approach is similar to the literal base language: (q 1 x 1 . . . q n x n , (P 1 , N 1 ); . . . ; (P n , N n )) is a literal base. Since (P n ∨N n ) is not CNF, the expansion of the existential quantifier for CNF is involved with a quadratic size increase of the formula [START_REF] Lonsing | Nenofex: Expanding NNF for QBF Solving[END_REF]. Clearly enough the literal base generated by this quantifier-elimination compiler is optimal and it is usually smaller than the literal base generated by the search comp qbf with out simplifications.

Concluding remarks

We have described in this article a unified framework for sat-certificate and compilation of QBF. We have proposed a search-based procedure to compute sat-certificates which is very useful since most QBF solvers are search-based decision procedures.

Literal bases generated by the search comp qbf compilation algorithm may be in worst case of exponential size what complies with complexity results [START_REF] Coste-Marquis | Representing policies for quantified boolean formulae[END_REF]. Anyway, we think that compilation is useful since all the solutions are kept and decision over existentially quantified variables may be not fully described in the QBF. In that case, for each existentially quantified variable, the two different possibilities are computed in polynomial time thanks to optimality and if both substitutions take part of a solution, the choice is left to the user, following its preferences.

  and a sequence of pairs of formulae G = (P 1 , N 1 ); . . . ; (P n , N n ) such that the formulae P k and N k , called guards, are only built on the variables {x 1 , . . . , x k-1 } (or or ⊥ when k = 1).

  (x∧x) ≡ x, (x∨x) ≡ x, (x∧¬x) ≡ ⊥ and (x∨¬x) ≡ with x a propositional variable; (H∧ ) ≡ H, (H∧⊥) ≡ ⊥, (H∨ ) ≡ and (H∨⊥) ≡ H with H a propositional formula. Theorem 6. Let Q be a binder and lb, lb ∈ B Q such that lb * = QM and lb * = QM . Then (lb ⊕ lb ) * = QM ⊕ with M ⊕ ≡ (M ∨M ).

  y is an existentially quantified variable preceded by the universally quantified variables x 1 , . . . , x n we denote ŷx1...xn its Skolem function from {true, false} n to {true, false}. A model for a valid QBF QM is a sequence ψ ŷ1 ; . . . ; ψ ŷp such that [y 1 ← ψ ŷ1 ] . . . [y p ← ψ ŷp ](M ) is a tautology[START_REF] Büning | Boolean functions as models for quantified boolean formulas[END_REF] 

  lb * ∨lb * ) else (Q, (P 1 , N 1 ); . . .; (P n , N n )) ⊕ (Q, (P 1 , N 1 ); . . . ; (P n , N n )) = (Q, ((P 1 ∨P 1 ), (N 1 ∨N 1 )); (P 2 ∧(P 2 ∨X )∧(P 2 ∨X ), N 2 ∧(N 2 ∨X )∧(N 2 ∨X )); . . . ; (P n ∧(P n ∨X )∧(P n ∨X ), N n ∧(N n ∨X )∧(N n ∨X )))1 Since we need one solution, we privilege the interpretation of x to true with X = ((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )), X = ((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )) and the recursive call:(Q , (P 2 , N 2 ); . . . ; (P n , N n )) = (Q , (P 2 , N 2 ); . . . ; (P n , N n )) ⊕ (Q , (P 2 , N 2 ); . . . ; (P n , N n ))

The approach proposed in[START_REF] Yu | Validating the result of a quantified boolean formula (QBF) solver: theory and practice[END_REF] is a method to generate a subset of the clauses of a QBF formula in prenex normal form which is non-valid from traces of search-based solvers. Since this approach is focused on non-validity, it is out of the scope of this paper which is focused on validity.

Acknowledgement. We would like to thank the referees for their comments which helped improve this paper.

Algorithm 2 search comp qbf

In: Q : a binder of a QBF In: M : a matrix of a QBF Out: an optimal literal base or non valid if Q = qx then if q = ∃ then switch M do case : return (∃x, ( , )) case ⊥ : return non valid case x : return (∃x, ( , ⊥)) case ¬x : return (∃x, (⊥, )) end switch else if M = then return (∀x, ( , )) else return non valid end if end if else We can now establish that the literal base generated by the search comp qbf algorithm is optimal.

Theorem 8 (Optimality of search comp qbf ). Let QM be a valid QBF. Then search comp qbf (Q, M ) is optimal.

In case of search-based algorithms for CNF QBF, unit propagation may be easily added ; but, conversely to search certif qbf algorithm, monotone literal propagation can not be applied to the search comp qbf algorithm since it does not preserve all the models. By abuse of notation we define the interpretation function for guards as follows:

((P 1 , N 1 ); . . .

and the ⊕ operator only for guards as follows:

((P 1 , N 1 ); . . . ; (P n , N n )) ⊕ ((P 1 , N 1 ); . . . ; (P n , N n )) = ( ((P 1 ∨P 1 ), (N 1 ∨N 1 ));

(P 2 ∧(P 2 ∨X )∧(P 2 ∨X ), N 2 ∧(N 2 ∨X )∧(N 2 ∨X )); . . . ; (P n ∧(P n ∨X )∧(P n ∨X ),

with X = ((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )), X = ((¬x 1 ∨P 1 )∧(x 1 ∨N 1 )) and ((P 2 , N 2 ); . . . ; (P n , N n )) = ((P 2 , N 2 ); . . . ; (P n , N n )) ⊕ ((P 2 , N 2 ); . . .

Theorem 1 Let QM be a QBF. Then there exists a literal base lb ∈ B Q such that lb * ∼ = QM .

Proof of Theorem 1. This theorem is direct since every formula is equivalent to a conjunction of disjunctions of literals whose last variable can be distributed. 2

Theorem 2

The next move choice problem for OBL * is polytime.

Proof of Theorem 2. This theorem is a direct consequence of the definition of optimality for literal bases.

2

Theorem 3 Let lb be an optimal literal base. Then lb * is a minimal QBF.

Proof of Theorem 3. If the interpretation of the literal base is not minimal then there exists a (propositional) model for the matrix which is not in a sequence of satisfying Skolem functions then there exists a sequence of guards satisfied by this model but at least one of this guard should not be satisfied since the literal base is not optimal.

2

Proof of Theorem 4. Let ∀x 1 q 2 x 2 . . . q n x n M be a QBF. Let B = (Q, (P 2 , N 2 ); . . .

an existentially quantified variable with its associated function x i for B (the sequence of these Boolean functions x i satisfies Q[x ← ](M )) and with its associated function x⊥ i for B ⊥ (the sequence of these Boolean functions x⊥ i satisfies Q[x ← ⊥](M )) then the interpretation v associated to the Boolean function xi such that xi (true) = x i and xi (false

Moreover, the sequence of these Boolean functions xi satisfies ∀x 1 q 2 x 2 . . . q n x n M . 2

Theorem 5 Let QM be a QBF. search certif qbf (Q, M ) returns a sat-certificate for QM if the QBF is valid and non valid otherwise.

Proof of Theorem 5.

-Base case:

then search certif qbf (∀x, M ) returns B = (∀x, ( , )) then B * = ∀x((¬x∨ )∧(x∨ )) ∼ = ∀x ∼ = ∀xM . Else ∀xM is not valid and search certif qbf (∀x, M ) returns non valid.

-Induction case:

• We suppose that bl + = non valid and bl -= non valid then search certif qbf (∃xQ , M ) returns non valid. By induction hypothesis both QBF Q [x ← ](M ) and Q [x ← ⊥](M ) are not valid then by definition ∃xQ M is not valid. • We suppose that bl + = non valid (the case is similar for (bl + = non valid and bl -= non valid)) then by induction hypothesis bl 

2 We need also two technical lemmas in order to prove Theorem 6.

Lemma 1.

((A∨((P 1 , N 1 ); . . .

((A∨((P 1 , N 1 ); . . .

(((P 1 , N 1 ); . . . ; (P n , N n )) * ∧((P 1 , N 1 ); . . .

(((P 1 , N 1 ); . . .

Proof of Theorem 6. The theorem holds by definition for the case of an empty binder. Theorem 6 is a direct consequence of the following lemma: Let Q be a non empty binder and

The proof of this lemma is by induction.

-Base case: Q = q 1 x 1 .

Let B = (q 1 x 1 , (P 1 , N 1 )) and B = (q 1 x 1 , (P 1 , N 1 )). Then

By definition ((P 1 , N 1 ) ⊕ (P 1 , N 1 )) = ((P 1 ∨P 1 ), (N 1 ∨N 1 )) then

and B = (q 1 x 1 . . . q n x n , (P 1 , N 1 ); . . .

Then by Definition 2

and ((P 1 , N 1 ) . . .

Then from ( 2) and ( 3)

and

Then from (4), ( 5), [START_REF] Biere | Resolve and Expand[END_REF] 

Then from ( 7), ( 8) and Lemma 2 (((P 1 , N 1 ); . . .

Theorem 7 Let QM be a QBF. search comp qbf (Q, M ) returns a literal base lb such that lb * ∼ = QM if QM is valid and returns non valid otherwise.

Proof of Theorem 7.

-Base cases: 

If q = ∀ it is similar to the case "(bl + = non valid) and (bl -= non valid)". Otherwise q = ∃ and by induction hypothesis

Now let

and

Since by Definition 2

and

then with ( 5), ( 4) and ( 1)

then with ( 6) and ( 2)

• We suppose that (bl + = non valid) and (bl -= non valid).

The case is similar to the previous case. • We suppose that (bl + = non valid) and (bl -= non valid). By induction hypothesis, (bl

and (bl

Let QM + = (Q, ( , ⊥) ; grds(bl + )) *

QM -= (Q, (⊥, ) ; grds(bl -)) *

and

By Theorem 6,

and

By Definition 2, ( 9) and ( 13)

and

By Definition 2, ( 10) and ( 14)

and

Then from ( 12), ( 15) and ( 17)

and from ( 12), ( 16) and ( 18)

Then from ( 19)

and from ( 20)

Then from ( 21), ( 13) and ( 7)

and from ( 22), ( 14) and ( 8)

2 We need X lemmas in order to prove Theorem 8. In what follows Q i = q 1 x 1 . . . q i x i and Q i = q i x i . . . q n x n . Lemma 3. Let QM and QM be two QBF such that QM ∼ = QM , i be an integer, 1 ≤ i ≤ n, {y 1 , . . . , y p } be the existentially quantified variables of {x 1 , . . . ,

] be an interpretation such that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s for Q

Proof of Lemma 3.

-Base case: Obvious for i = 1.

-Induction case:

• q i = ∃. Let ŷ1 ; . . . ; ŷp ; xi ; s be a satisfying Skolem function sequence for

We suppose that xi for v i-1 is equal to true (the proof is similar with false). Then,

and v i is in ŷ1 ; . . . ; ŷp ; xi and

• q i = ∀. Let ŷ1 ; . . . ; ŷp ; s be such a satisfying Skolem function sequence for Q i-1 ∀x i Q i+1 M then by induction hypothesis

Then, ŷ1 ; . . . ; ŷp ; s is a satisfying Skolem function sequence for

and Let i be an integer, 1 ≤ i ≤ n, {y 1 , . . . , y p } be the existentially quantified variables of {x 1 , . . . , x i-1 } and

] be an interpretation such that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s for Q i-1 Q i M and v i-1 is in ŷ1 ; . . . ; ŷp and for all j, 1 ≤ j < i, if

Proof of Lemma 4. By Theorem 7

Then by Lemma 3

But, by definition of v i-1

From ( 1) and ( 2)

Lemma 5. Let QM be a valid QBF and

Let i be an integer, 1 ≤ i ≤ n, {y 1 , . . . , y p } be the existentially quantified variables of {x 1 , . . . ,

] be an interpretation such that there exists a satisfying Skolem function sequence ŷ1 ; . . . ; ŷp ; s

Then for all j, i ≤ j ≤ n, v i-1 (P j ) ≡ P i j and v i-1 (N j ) ≡ N i j .

Proof of Lemma 5. By Lemma 4,

By Theorem 7,

Then, by induction, for all j, i ≤ j ≤ n, v i-1 (P j ) ≡ P i j and v i-1 (N j ) ≡ N i j . 2 Theorem 8 Let QM be a valid QBF. Then search comp qbf (Q, M ) is optimal.

Proof of Theorem 8. We have to prove: Let Q 1 M be a QBF and (Q 1 , (P 1 , N 1 ); . . .

Then

if and only if there exists a sequence of satisfying Skolem functions for

and

if and only if there exists a sequence of satisfying Skolem functions for

By the properties of v i-1 , these consequences are equivalent to:

if and only if there exists a sequence of satisfying Skolem functions for

and

if and only if there exists a sequence of satisfying Skolem functions for

And, by Lemma 4, these consequences are equivalent to

if and only if there exists a sequence of satisfying Skolem functions for

and

if and only if there exists a sequence of satisfying Skolem functions for

We prove for [x i ← ⊥], the proof is similar for . By Theorem 7,

then, by definition of v i-1 ,

then there exists a sequence of satisfying Skolem functions for Q 1 v i-1 [x i ← ⊥](M ) if and only if there exists a sequence of satisfying Skolem functions for

if and only if |= v i-1 (N i ) and there exists a sequence of satisfying Skolem functions for

Theorem 9 Let QM be a valid QBF. Then search comp qbf (Q, M ) * is minimal.

Proof of Theorem ??.

-Base cases:

• We suppose that (bl + = non valid) and (bl -= non valid). Then by induction hypothesis Q [x ← ](M ) and Q [x ← ⊥](M ) are not valid then QM is not valid. • We suppose that (bl + = non valid) and (bl -= non valid). By induction hypothesis, (bl + ) * is minimal.

(1)

If q = ∀ it is similar to the case "(bl + = non valid) and (bl -= non valid)". Otherwise q = ∃ and by Theorem 7 

then from ( 5), ( 4) and (1) Q [x ← ](M + ) is minimal then with ( 6) and

(2) QM + is minimal then with (3) search comp qbf (Q, M ) * is minimal. • We suppose that (bl + = non valid) and (bl -= non valid).

The case is similar to the previous case. • We suppose that (bl + = non valid) and (bl -= non valid). By induction hypothesis, (bl + ) * is minimal [START_REF] Bordeaux | Boolean and interval propagation for quantified constraints[END_REF] and (bl -) * is minimal.

Let QM + = (Q, ( , ⊥) ; grds(bl + )) *

QM -= (Q, (⊥, ) ; grds(bl -)) * 

Then from ( 12), ( 15) and ( 17)

and from ( 12), ( 16) and ( 18)

Then from ( 19)

and from ( 20)

Then from ( 21), ( 13) and ( 7) Q [x ← ](M ⊕ ) is minimal and from ( 22), ( 14) and ( 8) Q [x ← ⊥](M ⊕ ) is also minimal then QM ⊕ is minimal then from [START_REF] Cadoli | An algorithm to evaluate quantified boolean formulae and its experimental evaluation[END_REF] search comp qbf (Q, M ) * ∼ = QM is minimal.