
HAL Id: hal-03255570
https://univ-angers.hal.science/hal-03255570v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling behavioral and structural parameters in
evolutionary algorithms

Jorge Maturana, Frédéric Lardeux, Frédéric Saubion

To cite this version:
Jorge Maturana, Frédéric Lardeux, Frédéric Saubion. Controlling behavioral and structural parame-
ters in evolutionary algorithms. Artifical Evolution, Oct 2010, Non spécifié, France. �10.1007/978-3-
642-14156-0�. �hal-03255570�

https://univ-angers.hal.science/hal-03255570v1
https://hal.archives-ouvertes.fr

Controlling Behavioral and Structural

Parameters in Evolutionary Algorithms

Jorge Maturana, Frédéric Lardeux, and Frédéric Saubion

Université d’Angers, France

{maturana,lardeux,saubion}@info.univ-angers.fr

Abstract. Evolutionary algorithms have been efficiently used for solv-
ing combinatorial problems. However a successful application rely on a
good definition of the algorithm structure and a correct search guidance.
Similarly to the majority of metaheuristic methods, the performance of
an evolutionary algorithm is intrinsically linked to its ability to prop-
erly manage the balance between the exploitation and the exploration of
the search space. Recently, new approaches have emerged to make these
algorithms more independent, especially by automating the setting of
parameters. We propose a new approach whose objective is twofold: (1)
to manage an important set of potential operators, whose performances
are a priori unknown, and (2) to dynamically control the behavior of
operators in a evolutionary algorithm, thanks to their probabilities of
application.

1 Introduction

Two main phases can be distinguished when implementing Evolutionary Al-
gorithms (EA). The first one is related with the algorithm design, where the
components of the algorithm (mainly the operators to be used) are defined. The
second phase has to do with the correct execution of the EA, by adjusting its be-
haviour during the run. Both tasks –design and behaviour control– may be done
by means of parameterization. From this perspective, we can intuitively recog-
nize two general classes of parameters: behavioral ones, that guides the search
without changing the structure of the EA itself (mainly operator application
rates or population size), and structural parameters, that could eventually turn
an algorithm into a different one (e.g., encoding and choice of operators).

Behavioral parameters have been widely studied [8]. Typically, the adjust-
ment of parameters relies on a series of time consuming experiences. This ap-
proach leads to ad-hoc settings, hardly applicable to other problems. Another
approach is to adjust parameter values during the execution of the EA, using a
mechanism based on a previously acquired knowledge.

Besides behavioral parameters, the choice of structural components of the EA
also requires expertise from the user. Even though standard variation operators
(such as uniform crossover or swap mutation) have been conscientiously studied,
acceptable performances for applied problems often require the specialization of
both the algorithmic scheme and the operators.

In order to asses the control of the algorithm in a general way, its operational
process must be abstracted by considering general measures –common to all
EAs– that reflect the current state of search. We have previously considered
two measures, the average quality of the population and its genetic diversity
(entropy) [10] to evaluate the algorithm and to allow the controller to adjust
parameter values.

Many previous studies have addressed the problem of parameter setting for
evolutionary algorithms. We refer the reader to [8] for a survey. Parameter setting
can be addressed, using the taxonomy initially proposed by Eiben et al. [2].

In this paper, we present a method that, in addition to controlling behavioral
parameters (i.e., operators application rates), may automate the EA design,
by deciding dynamically which operators, from a set of available ones, will be
included in the algorithm.

Therefore, our goal is twofold: (1) Show that the controller can autonomously
adapt the EA structure, adapting it to the current state of the search and,
(2) Show that, using this scheme and without any prior knowledge, we can
obtain comparable results as those obtained with an specific algorithm, obtained
through an exhaustive analysis of the best possible operators. Experiments will
be conducted on the well-known Boolean satisfiability problem (SAT).

2 Controller description

This section presents the general control mechanism, whose architecture is de-
picted by figure 1. Two main components can be distinguished. The first one
is the Adaptive Operator Selection (AOS) [9]. AOS communicates with the EA
in order to decide which operator would be applied. AOS also receives feedback
from the algorithm, in order to update the credit registry, that stores the re-
wards assigned to each operator. This component performs the control of the
behavioral parameters, which correspond to application rates of the operators
that are currently available to the algorithm.

Fig. 1. General scheme of the controller, depicting its two main components, AOS and
Blacksmith

The second component, presented in this work, is called Blacksmith, and deals
with the structural parameters of the EA. Blacksmith is the “operator manager”

that decides which operators will be available to the AOS (and therefore included
in the EA) at each moment of the search. The operators are built according to
a specification that may result from a combination of different basic parts of
an operator (as performed in this work) or simply taken from a list of operator
names.

We want to highlight the conceptual difference between the two components
of the controller. Blacksmith actually “creates” the EA that the AOS manages.
In this approach, the decisions of the AOS depend on those of the Blacksmith.

2.1 Adaptive Operator Selection (AOS)

Given a set of operators, we want to select the best possible ones. However, this
“optimal” choice is complex, given the dynamic nature of EAs.

Two main considerations must be taken into account when choosing the
operator to apply. On one hand, it is desirable to apply “good” operators, that
have evidenced their quality in the recent past. On the other hand, less successful
operators must be tried occasionally, in order to discover if they have become
useful for the current state of the search. This situation is indeed a typical
Exploration vs Exploitation (EvE) dilemma, not at the EA level, but at AOS
level. AOS, and more specifically the Operator Selection module, must deal with
this problem.

The Credit Assignment (CA) module measures the performance of the
operator after their application. The method Compass (C) [9, 11] (Figure 2.a),
considers two criteria: variation of diversity (∆D) and variation of quality (∆Q).
The distance between a point (∆D, ∆Q), corresponding to the operator o, and a
line tilted with an angle of Θ = π/4 is measured. The higher and righter a point
is located in the plane, the better the corresponding operator will be rewarded.

In this article, two other schemes of evaluation were compared, both based
on the concept of Pareto dominance [12]. In an n-dimensional space, we say
that a point a = (a1, a2, . . . , an) dominates another point b = (b1, b2, . . . , bn)
if ∀i = 1 . . . n, ai is better than bi. Here “better” means greater than or less
than, depending on the nature of the problem (maximization or minimization,
respectively). When none of the two points dominate each other, they are said
incomparable. In our case, we have a 2-dimensional space (∆D, ∆Q) with two
criteria that we want to maximize.

The first scheme is called Pareto Dominance (PD), and evaluates the number
of operators that a given operator dominates (see figure 2.b). The purpose here
is to obtain a high value. The second scheme, Pareto Rank (PR), measures
the number of operators that dominate a given operator (figure 2.b). Here the
objective is to obtain low values. Operators with a PR value of 0 are said to
belong to the Pareto frontier. There exists an important difference between these
two evaluations: whereas PR will prefer only operators which are not dominated,
PD rewards also those which are in strong competition with others.

After an operator has been applied, measures of ∆D and ∆Q are sent to the
controller. The CA module computes the evaluation (C, PD or PR, depending

Fig. 2. Credit Assignment schemes. Compass (a), Pareto Dominance (b), Pareto Rank
(c)

on the selected scheme), and normalizes the resulting values considering all op-
erators. The normalized values are then stored into the Credit Registry as the
assigned rewards. A list of the last m rewards of each operator (corresponding to
their last m applications) is recorded in the registry, in order to provide updated
historical information about operators performance to the OS module.

The Operator Selection (OS) module chooses the operator to be applied
next, based on information stored in Credit Registry, without neglecting ex-
ploration at AOS level. The idea of the OS presented in [9], called Ex-DMAB,
is inspired by the methods of multi armed bandits used in game theory. The
strategy always chooses the most efficient operator, given by the expression:

MABo,t = ro,t + C

√

log
∑

k nk,t

no,t

(1)

where ro,t is the reward obtained by the operator o, at current time t, and
no,t is the number of times that the operator o has been applied so far. The
left term favors the use of the best operators, whereas the right term favors the
operators that have been applied less often. Additionally, the values of ro,t and
no,t are restarted when a change in the behavior of operators is detected, in
order to speed up the identification of better operators.

Note that expression 1 relies on the assumption that all operators are present
in the EA since beginning. If an operator k is included during the execution, its
value of no,t would be so low that the AOS would be forced to apply it many
times to level up the value of MABk,t with the remaining operators.

Since we are interested in operators that enter and exit the EA along the
search process, we have reformulated the expression 1, replacing no,t by the
number of elapsed generations since the last application of the operator (i.e., its
idle time). This allows a new operator to level up immediately by applying it
once. The new evaluation of performance is then defined as follows:

MAB2o,t = ro,t + 2 × exp(p × io,t − p × x × NOt) (2)

where io,t is the idle time of operator o at time t. NOt is the number of
operators considered by the AOS at time t, x expresses how many times NOt the
controller must wait before applying o compulsory.The value of the exploration

component stays close to zero except when io,t is close to x × NOt. Since the
values of ro,t are normalized in [0, 1], when an operator has not been applied for
a long time, its application becomes mandatory. p is a parameter that adjusts
the slope of the exponential.

This work compares four different OS modules:

– Random (R), that simply chooses randomly among the operators currently
available in the EA.

– Probability Matching (PM), that chooses the operator with a probability
proportional to the reward values stored by the CA module.

– MAB2 (M2) (already described), that always chooses the operator that
maximizes the expression 2

– MAB2 + Stuck detection (M2D), that adds to M2 a method to de-
tect when the population is trapped into a local optima. This checking is
achieved by considering the mean quality of the population. The detection
is performed thanks to the linear regression of the values of mean quality
during the last generations. If the value of the slope is close to zero and
the difference between the maximum and minimum values of mean quality
is small enough, a period of diversification is started, using only operators
that have an exploration profile. This diversification period is maintained
until the diversity reaches a range over the original value, while there exist
exploration operators, or when a number of generations have passed without
being able to reach the desired diversity.

2.2 Blacksmith

As mentioned above, the controller deals with operators that eventually enter
and exit the Credit Registry. Blacksmith is the component in charge of the
management of these operators, in such way that the EA always benefit from
useful operators. Since dismissed operators could eventually be useful in the
future, Blacksmith keeps a trace of them. We distinguish the following three
main states for the operators :

– Unborn: operators that have never been used during the execution of the
EA.

– Alive: operators that are currently present in the Credit registry and there-
fore being used by the EA.

– Dead: operators that have been discarded from the Credit Registry.

Note that, besides their performance measures, all the information known by
the controller about the operators is their name.

We used a simple strategy to manage the operators in the registry. A fixed
number of operators is kept in the registry, and they are evaluated at regular
intervals. Only operators that have been applied a sufficient number of times can
be eliminated. This minimum is required to be rather sure that the operator has
a low performance. The weakest of those ”known-enough” operators is deleted

and a new one is inserted in the registry. In order to give all operators a chance to
show their skills, all unborn operators are tried before Blacksmith starts reviving
dead operators. Unborn operators are tried in a random order.

3 Designing a Multi-Crossover EA for SAT

3.1 Evolutionary Algorithms for SAT

The seminal SAT problem [4] consists in finding an assignment that satisfies a
Boolean expression. An instance of this problem is a Boolean formula that can
be written in conjunctive normal form (CNF), i.e., as a conjunction of clauses
where clauses are disjunctions of literals (variables or negated variables). When
all the clauses can be satisfied, the problem is called satisfiable. Otherwise, it is
interesting to minimize the number of false clauses. EAs for SAT [3, 5, 13, 7] con-
sider individuals as assignments of Boolean variables, being the aim to generate
individuals that produce the least possible false clauses. Different operators are
used in the EAs: selection, crossover, mutation, insertion, etc.

We used an algorithm based on GASAT [7], which is currently one of the most
effective EAs for SAT. Our implementation is a steady-state EA that replaces
the oldest individual by a child obtained applying a crossover operator. An initial
population is randomly generated. Two individuals are randomly selected and
recombined to obtain a new one that is added to the current population. The
whole process is repeated until a solution is found or until a fixed maximum
number of crossovers is reached.

3.2 A family of crossover operators

We use a wide set of crossovers (307 in total), each one having a predisposition
to either improve quality or to promote diversity. Only crossovers that produce
a single child from two parents are considered.

Most of the crossovers try to transfer the good properties of the parents to
their child. Consider the following crossovers examples.

– Uniform: keeps the value of variables that are identical in both parents;
– FF [3]: uses the set of clauses that are true in one parent and false in the

other. Only the values of the variables appearing true in the clauses of this
set are kept;

– CC [6]: deals only with clauses which are false in both parents and makes
them true in the child by flipping a variable in each one;

– CCTM [6]: operates like CC but it also works on clauses that are true in
both parents to ensure that the clauses will be also true into the child.

Crossover operators are composed by four basic actions defined by a quadru-
plet and performed consecutively. The actions are as follows:

A. Selection of clauses that are false in both parents: 1) select none, 2)
select one in chronological order, 3) choose one randomly, 4) choose one randomly
from the set of smallest clauses, 5) choose one randomly from the set of biggest
clauses.

B. Action on each one of the false clauses: 1) do nothing, 2) flip the
variable that maximizes the number of false clauses that become true, 3) same
as previous one, but also minimizing the true clauses that become false, 4) flip
all the variables, 5) flip the literal which appears less often in the others clauses.

C. Selection of clauses that are true in both parents: Same as in A.

D. Action on each of the true clauses: 1) do nothing, 2) set to true the
variable whose flip minimizes the number of false clauses, 3) set all the literals
to true, 4) set to true the literal whose negation appears less often in the other
clauses, 5) set all the literals to false.

All variables that remain undefined in the child after the crossover are valued
using the uniform crossover process explained before. It must be noted that some
quadruplets are not valid (1i** or **1i with i ∈ {2, 3, 4, 5}).

4 Experimental Results

4.1 Experimental Setting

We compare different configurations of the controller against the state of the
art crossovers, presented in section 3.2 (FF, CC and CCTM). As baseline, we
compared also with the Uniform crossover, and with a controller that simply
apply one of the 307 possible operators randomly (named R307).

We have selected 8 instances from different SAT [14, 1] and Beijing com-
petitions. Benchmarks are selected to cover the different families of instances
(random, handmade and industrial). The basic algorithm used in our experi-
ments is applied 50 times for each controller (or state of the art crossover) and
instance. We used a population of 100 individuals and the number of crossovers
allowed is 105.

The objective is to test different combinations of Credit Assignment and
Operator Selection mechanisms. These combinations will be identified by the
notation X − Y , where X ∈ {C, PD, PR} is the AC mechanism, and Y ∈
{M2, R, M2D, PM} is the mechanism of SO.

The parameters of the controller are those of Blacksmith and those of the
OSs MAB2 and M2D. Regarding Blacksmith, the registry has a fixed size of
20 operators. Every 50 generations, the Analyzer is invoked in order to find
a weak operator and replace it by another. If an operator has been applied a
sufficient number of times (1

2 of the size of the registry window, i.e., 5 times)
and if its reward is in the lower third compared to the other operators, it is
discarded. Parameters of M2 are p = 0.2 and x = 1.5. M2D uses the data of
the last 100 generations to calculate the linear regression. Diversification period

is triggered when the value of the slope is within ±0.0001 and the difference
between maximal and minimal values are less than 0.001.

4.2 Discussion

Figure 3 shows the convergence of the best individual for different configurations
of controllers and state of the art crossovers for the instance ibm.

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

lo
g(

fa
ls

e
cl

au
se

s) C-R C-M2D

C-PM

PD-M2

PD-R

PD-M2D

PD-PM

PR-M2

PR-R

PR-M2D

PR-PM

FF C-M2

R307

Unif

CC, CCTM

Fig. 3. Number of false clauses of best individual so far, obtained by different controllers
and state of the art crossovers, solving the instance ibm (mean of 50 runs)

Figure 4.a shows the population diversity produced by the controllers with
somewhat similar results (PR-R and PD-M2). Note that the controllers that
obtain similar results in terms of quality, do not produce necessarily the same
level of diversity. This illustrates two different behaviours: while PD-M2 produces
a strong exploitation that improves the quality quickly until generation 30 000,
PR-R explores the search space to produce slower yet constant improvements
all along the search. Figure 4.b shows the diversity of the population produced
by the controllers that produced the best results (PD-PM, PD-R), together
with these produced by the state of the art crossovers. An intermediate level
of diversity can be observed in the best configurations, mainly due to their
exploratory OSs (PM and R), which allow a fast –though prudent– convergence
to better results.

The upward trend of diversity for PD-PM starting from the generation 8 000
is due to the inclusion of the diversification criteria in the evaluation of the oper-
ators. At the beginning of search, the initial population is composed of randomly
generated individuals. This facilitates the task of exploratory operators, which

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 30000 50000 70000 90000

PD-M2

PR-R

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 30000 50000 70000 90000

Unif

FF

PD-R

PD-PM

CC, CCTM

(b)

Fig. 4. Diversity of different methods solving the instance ibm. (a) that obtain similar
results, (b) of better ones, and state of the art crossovers

decrease diversity while increase quality. However, from a given moment, im-
provement becomes harder, thus the controller turns to exploration, by moving
individuals away from local optima. This behavior is precisely the one we sought
by including diversity among the measures sent to the controller.

The table 1 shows the average number of false clauses and their standard
deviation (in parentheses) over 50 executions of the different controllers, and
executions with the state of the art crossovers, Uniform, FF, CC and CCTM.
The best results (and those that are indistinguishable from them, using a T
Student test with a 95% of confidence) appear in boldface. The best results were
obtained by the configurations PD-PM and PD-R, that outperformed the state
of the art crossovers in 7 out of 8 instances.

Uniform crossover produced the worst results by far, reason why it will be
ignored from here on. One may notice that controllers PD-PM and PD-R pro-
duce results comparable with those obtained with the best crossovers without
controller (CC and CCTM). This is interesting because the development of CC
and CCTM relies on a work of several weeks of comparisons, analyses and exper-
iments [7], while the controller does a similar work in a few minutes (overhead
is about 10% of total execution time), and, what is more important, without
human intervention. It is also remarkable the performance of controllers PD-PM
and PD-R in industrial instances ibm and engine, where the average number of
false clauses is equivalent to at least 1

3 of those obtained with CC and CCTM.

Since PR considers similarly all the operators placed on the Pareto frontier
(points in the figure 2.c with value 0), it induces a balance between exploration
and exploitation forces, preventing the EA to lean to one side or the other.A
similar behavior could be observed when using Compass, given its performance
measure method. By contrast, PD better appreciates the operators which follow
the general tendency (points in the figure 2.b with higher values), allowing the
EA to break the status quo, inclining the search towards exploitation to finally

Table 1. Number of false clauses and standard deviation

f500 aim-100 ibm simon
C-M2 25.9 (24.0) 2.4 (1.9) 6009.7 (3024.6) 189.0 (17.3)
C-M2D 16.8 (19.7) 2.6 (1.9) 6063.4 (2171.8) 194.4 (23.9)
C-PM 56.3 (33.6) 2.2 (1.9) 5151.9 (2758.8) 209.2 (41.8)
C-R 21.0 (14.4) 1.1 (0.2) 4908.4 (1623.0) 183.7 (16.7)
PD-M2 67.4 (62.7) 3.3 (2.2) 2712.0 (3523.9) 94.3 (103.0)
PD-M2D 53.3 (59.0) 2.5 (1.5) 2567.1 (4206.3) 107.9 (102.5)
PD-PM 6.0 (1.4) 1.0 (0.0) 423.8 (75.2) 93.5 (7.7)
PD-R 5.6 (1.2) 1.0 (0.0) 491.1 (66.9) 102.9 (9.7)
PR-M2 98.2 (53.8) 2.9 (1.7) 12370.3 (5214.2) 201.0 (188.7)
PR-M2D 104.2 (52.5) 2.6 (1.8) 12050.3 (5141.1) 277.9 (200.0)
PR-PM 7.8 (1.4) 1.0 (0.0) 4495.9 (791.9) 148.9 (11.9)
PR-R 6.9 (1.1) 1.0 (0.0) 3228.6 (913.8) 145.2 (9.2)
R307 49.4 (4.3) 1.0 (0.0) 4962.7 364.9) 187.4 (11.7)
Unif 218.4 (5.7) 11.2 (1.0) 34149.6 (138.5) 2872.6 (33.9)
FF 30.2 (4.9) 1.9 (0.6) 3827.8 (160.5) 137.5 (9.7)
CC 7.2 (1.3) 1.9 (0.6) 1247.7 (98.7) 81.6 (5.4)
CCTM 7.3 (1.4) 1.8 (0.6) 1237.2 (78.1) 81.2 (5.3)

bw-large.d flat200-19 uf250 engine
C-M2 427.1 (287.1) 54.4 (40.1) 12.3 (13.9) 761.6 (477.3)
C-M2D 596.3 (329.1) 40.7 (37.4) 7.5 (11.5) 1045.0 (369.8)
C-PM 650.5 (816.6) 67.3 (41.9) 21.9 (15.2) 752.8 (490.4)
C-R 306.4 (194.4) 52.5 (28.9) 6.7 (5.8) 577.3 (262.3)
PD-M2 1575.6 (1697.3) 58.3 (44.9) 30.8 (23.0) 838.9 (836.3)
PD-M2D 1553.9 (1804.1) 52.7 (48.4) 26.3 (25.2) 911.4 (824.0)
PD-PM 78.1 (3.2) 10.7 (2.1) 2.2 (1.3) 15.4 (3.3)
PD-R 83.2 (3.5) 9.2 (2.1) 1.5 (0.9) 18.4 (3.1)
PR-M2 2455.1 (1678.0) 100.7 (56.7) 41.0 (24.3) 1267.1 (966.1)
PR-M2D 2367.9 (1713.0) 99.8 (54.0) 34.9 (24.0) 1064.7 (964.8)
PR-PM 187.9 (146.9) 31.6 (20.5) 1.7 (0.8) 462.1 (328.8)
PR-R 272.5 (268.5) 16.3 (10.5) 1.5 (0.5) 415.6 (302.4)
R307 207.5 (22.9) 25.3 (7.2) 17.8 (2.6) 534.8 (54.0)
Unif 27237.3 (301.9) 408.7 (20.6) 98.8 (3.6) 12663.6 (289.1)
FF 126.6 (10.6) 44.9 (4.4) 15.1 (3.4) 465.3 (49.8)
CC 579.0 (17.6) 12.0 (2.1) 3.4 (1.4) 67.9 (12.8)
CCTM 580.3 (17.6) 12.7 (2.1) 3.2 (1.2) 68.9 (11.4)

improve the quality of the population. This “flexible balance” is the main asset
of this CA method.

It is interesting to note that the most exploratory OSs (PM and R) produced
some of the better results. It could seem surprising –and contradictory with
studies in the literature– that a random OS outperforms sophisticated methods
that carefully try to balance EvE at the operator selection level.

This can be explained by the following hypothesis. When Blacksmith analyzes
the set of operators to replace some of them, it always chooses the worst ones.
This is indeed an act of exploitation, based on the rewards stored in the Credit
Registry. The fact that we are constantly choosing the operators that will be
available to the EA produces a displacement of the exploitation at AOS level
from the OS module to Blacksmith. In this new scenario, the OS is mainly in
charge of the exploration, which is restricted to the operators that the Blacksmith
has allowed.

In order to check the generality of controllers PD-PM and PD-R, we have
extended the comparison with the state of the art crossovers over a set of 26
supplementary instances, mixing crafted, random and industrial ones. Table 2
shows the mean and standard deviation (in parentheses) of 25 executions of

Table 2. Comparison of PD-PM and PD-R with state of the art crossovers over crafted (C), random
(R) and industrial (I) instances. Number of false clauses and standard deviation.

PD-PM PD-R FF CC CCTM
C1 35.4 (5.4) 34.8 (2.8) 503.2 (41.0) 44.7 (5.2) 42.1 (4.7)
C2 35.8 (2.6) 38.0 (4.2) 509.4 (31.6) 46.0 (4.4) 47.6 (4.9)
C3 35.4 (3.7) 35.6 (3.6) 490.0 (37.7) 48.4 (4.1) 47.1 (3.3)
C4 45.1 (3.8) 43.4 (4.6) 491.6 (36.5) 48.7 (3.0) 48.2 (3.4)
C5 10.5 (1.8) 9.8 (2.8) 47.9 (4.2) 11.6 (1.8) 10.2 (1.5)
C6 8.6 (1.9) 8.3 (1.7) 36.9 (3.3) 8.4 (1.6) 8.7 (1.4)
C7 8.8 (1.8) 8.0 (1.9) 38.7 (4.2) 8.4 (1.2) 8.7 (1.7)
C8 10.0 (2.4) 9.7 (2.5) 48.2 (4.1) 11.3 (1.4) 11.6 (1.6)
C9 150.9 (31.2) 123.3 (28.8) 973.2 (77.4) 214.7 (15.9) 217.0 (14.8)
R1 7.5 (1.5) 7.2 (1.1) 34.2 (5.4) 9.5 (1.9) 9.7 (1.8)
R2 6.4 (1.3) 5.7 (1.4) 30.6 (3.8) 7.3 (1.4) 7.7 (1.6)
R3 8.4 (1.4) 8.2 (1.5) 32.1 (3.8) 10.6 (1.6) 10.9 (1.9)
R4 4.2 (1.5) 3.5 (1.4) 26.3 (3.8) 7.4 (1.2) 7.4 (1.8)
R5 8.2 (2.1) 7.8 (1.8) 40.0 (6.0) 8.4 (1.5) 9.1 (1.4)
R6 6.7 (1.6) 7.9 (1.6) 44.2 (6.4) 8.7 (1.5) 8.8 (1.4)
R7 6.1 (1.7) 5.8 (2.1) 39.4 (5.5) 7.6 (1.6) 7.8 (1.4)
R8 9.0 (1.2) 8.8 (1.6) 49.2 (5.3) 10.3 (1.9) 9.9 (1.7)
R9 9.1 (1.6) 9.0 (1.7) 41.9 (5.7) 10.0 (1.7) 9.0 (1.5)
R10 110.1 (5.7) 115.1 (8.3) 654.0 (39.5) 153.0 (9.2) 150.0 (7.9)
I1 123.6 (11.4) 167.6 (32.3) 439.3 (27.3) 354.4 (11.4) 349.6 (11.7)
I2 99.7 (8.2) 134.7 (22.5) 469.1 (26.3) 372.0 (35.5) 367.8 (32.2)
I3 2.7 (2.9) 8.6 (7.7) 216.5 (18.9) 1.0 (0.0) 1.0 (0.0)
I4 2.8 (2.4) 6.3 (4.8) 116.2 (11.2) 1.0 (0.2) 1.1 (0.4)
I5 59.4 (98.5) 38.0 (1.4) 12567.6 (547.1) 10044.2 (384.4) 9928.1 (382.0)
I6 127.8 (317.1) 35.1 (1.5) 9736.2 (404.9) 7567.7 (238.0) 7521.2 (272.9)
I7 44.2 (1.3) 48.4 (2.2) 1877.6 (195.1) 61.8 (1.7) 61.6 (1.8)

40 000 generations each one. The best results (and those that are indistinguish-
able from them, using a T Student test with a 95% of confidence) are marked
in boldface.

PD-R obtains top results on 19 instances and PD-PM in 17, while CC and
CCTM does it only 5 times. Even though the controller configurations obtained
worst results in two industrial instances, we observe the best improvements on
this family of instances, especially on I5 and I6, where the controlled EAs ob-
tained until 260 times less false clauses than the best state of the art crossover.
The results presented in this comparison confirm the generality of PD-PM and
PD-R on different families and types of instances.

5 Conclusion

In this paper we have presented an autonomous controller that manages an
important number of crossover operators in an EA. The control occurs at two
levels: (1) at design level, deciding which operators will be included and used by
the EA, and, (2) at behavioural level, choosing, among the available operators,
which ones will be applied at each step of the search.

We have tested several controller configurations that deal with an EA that
has 307 available crossover operators. The EA solved 34 SAT instances from
different families, in order to check the generality of our approach. The results
were advantageously compared with state of the art crossovers.

The main contribution of this work is the generic framework that could be
applied without major modifications to other operators than crossovers and for

other metaheuristic algorithms. Future work include extending this work in these
directions, as well as analyzing results obtained during the run, in order to
identify the most successful operators and to detect their relationships.

References

1. D. Le Berre, O. Roussel, and L. Simon. The SAT2007 competition. Technical
report, Tenth International Conference on Theory and Applications of Satisfiability
Testing, May 2007.

2. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Trans. Evolutionary Computation, 3(2):124–141, 1999.

3. C. Fleurent and J. A. Ferland. Object-oriented implementation of heuristic search
methods for graph coloring, maximum clique, and satisfiability. In Cliques, Color-
ing, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
619–652, 1996.

4. M. R. Garey and D. S. Johnson. Computers and Intractability , A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, 1979.

5. J. Gottlieb and N. Voss. Adaptive fitness functions for the satisfiability problem.
In Parallel Problem Solving from Nature - PPSN VI 6th International Conference,
Paris, France, September 16-20 2000. Springer Verlag. LNCS 1917.

6. F. Lardeux, F. Saubion, and J-K. Hao. Recombination operators for satisfiability
problems. In Artificial Evolution, 6th International Conference, Evolution Artifi-
cielle, EA 2003, volume 2936 of LNCS, pages 103–114. Springer, 2004.

7. F. Lardeux, F. Saubion, and J-K. Hao. GASAT: A genetic local search algorithm
for the satisfiability problem. Evolutionary Computation, 14(2):223–253, 2006.

8. F. Lobo, C. Lima, and Z. Michalewicz, editors. Parameter Setting in Evolutionary
Algorithms, volume 54 of Studies in Computational Intelligence. Springer, 2007.

9. J. Maturana, E. Fialho, F Saubion, M. Schoenauer, and M. Sebag. Compass and
dynamic multi-armed bandits for adaptive operator selection. In Proceedings of
IEEE Congress on Evolutionary Computation CEC, pages 365 – 372, 2009.

10. J. Maturana and F. Saubion. Towards a generic control strategy for EAs: an
adaptive fuzzy-learning approach. In Proceedings of IEEE International Conference
on Evolutionary Computation (CEC), pages 4546–4553, 2007.

11. J. Maturana and F. Saubion. A compass to guide genetic algorithms. In G.
Rudolph et al., editor, Proc. PPSN’08, pages 256–265. Springer, 2008.

12. V. Pareto. Cours d’économie politique. in Vilfredo Pareto, Oeuvres complètes,
Genève : Librairie Droz, 1896.

13. C. Rossi, E. Marchiori, and J. N. Kok. An adaptive evolutionary algorithm for
the satisfiability problem. In Proc. of the ACM Symposium on Applied Computing
(SAC ’00), pages 463–470. ACM press, 2000.

14. L. Simon and D. Le Berre. The SAT2005 competition. Technical report, Eighth
International Conference on the Theory and Applications of Satisfiability Testing,
June 2005.

