
HAL Id: hal-03255566
https://univ-angers.hal.science/hal-03255566v1

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous Control Approach for Local Search
Julien Robet, Frédéric Lardeux, Frédéric Saubion

To cite this version:
Julien Robet, Frédéric Lardeux, Frédéric Saubion. Autonomous Control Approach for Local Search.
Second InternationalWorkshop, SLS 2009, 2009, Bruxelles, Belgium. pp.130-134, �10.1007/978-3-642-
03751-1_13�. �hal-03255566�

https://univ-angers.hal.science/hal-03255566v1
https://hal.archives-ouvertes.fr

An Autonomous Control Approach for Local
Search

Julien Robet, Frédéric Lardeux, and Frédéric Saubion

LERIA, University of Angers (France)
name@info.univ-angers.fr

1 Introduction

Local search algorithms are metaheuristics which have been widely used for
solving complex combinatorial problems. Their efficiency relies on their ability
to suitably explore various areas of the search space but also on its propensity
to converge to a local optimum (the locality is defined here with respect to the
notion of neighborhood). The concept of balance between intensification and
diversification, especially well-known in evolutionary computation, is a crucial
point when designing and using a local search algorithm. Indeed, one of the
classic pitfalls encountered by these algorithms is the excessive attraction of local
optima, which may trap the search process when all the potential neighbors
are not as good as the current configuration and when the move strategy is
mainly based on improvement. To cope with this excessive exploitation of the
search space (i.e., intensification), alternative mechanisms must be used to insure
enough diversification.

Inspired by the recent book of R. Battiti et al.[1] and our previous work on
the autonomous management of multiple operators in genetic algorithms [2], we
propose an original approach in order to design a local search algorithm that
will include several move operators, corresponding to different neighborhoods
and different strategies for choosing the neighbors. The control of these operators
will then be achieved automatically. We have tested our algorithm on the famous
quadratic assignment problem (QAP), which has been widely studied and for
which an extensive library of instances and results is available [3].

2 Toward a more Integrated View of Neighborhood

In this paper, our idea is to combine parameters and components in the notion of
move operators and to automatically control their application along the search
process. We therefore introduce, within the local search algorithm, an adaptive
operator selection method, as we have already proposed for genetic algorithms
[2]. This selection mainly consists in evaluating the effect of the operator on the
current state of the search in order to reward them and to be able to choose the
most suitable one for the next computation step. Therefore, our objective is to
evaluate the impact of the operators and to adjust their use according to the
current the search. This approach is summarized in Figure 1.

A li ti

AOS LS

Reward

Application

Parameters

Reward

Computation

Evaluation

Operator

Selection

Current

Search State

Operator

Application

Fig. 1. Autonomous control in local
search

Fig. 2. Balance between intensification
and diversification

This figure allows us to highlight the main issues that we have to address in
an autonomous local search algorithm:

– How to evaluate the current search state ?
– How to reward operators with regards to this evaluation ?
– How to use these rewards to select the operator for the next move ?

If the notion of quality helps to guide and evaluate the ongoing search pro-
cess, the concept of diversity should also deserves more attention. It has appeared
indeed in previous works [2] that this notion can be used jointly with the quality
in order to efficiently manage the balance between diversification and intensifi-
cation. In the next section, we will therefore propose a definition of a diversity
measure according to local search specificities.

3 A Diversity Measure for Local Search

To quantify the diversity of a local search path, our measure consists in analyzing,
for each variable of the problem , the distribution of its successive assigned values
with regards to its domain. Our approach relies indeed on a simple observation: if
a search path is very diversified, successive assigned values to variables will tend
to ”cover” their domains. Otherwise, a non diversified path will be characterized
by assigning a small number of different values to each variable (with regards
to the cardinal of its domain), especially for the variable whose value remains
unchanged along the considered path. The evaluation consists in observing, for
each decision variable, the standard deviation of the number of occurrences of
each possible value for this variable (i.e., for each element of its domain). The
average of these deviations assesses the intrinsic similarity of the path. Indeed,
the calculated standard deviations will be even lower as the path will be diverse.
In order to normalize the measure, this average value is then divided by the
theoretically maximum possible similarity. We obtain then a value between 0
and 1 that we subtract from 1 to reflect the diversity of the path.

4 The ALS Algorithm

The aim of our algorithm, called ALS (Autonomous Local Search), is to manage
a set of local search operators in order to apply them at appropriate moment
during the solving process. The challenge is thus to make three main modules
work together: current solving state evaluation, internal components rewarding,
and selection of the next operator using these rewards.

4.1 Operator Evaluation

The process used to analyze internal components is inspired by our previous
works on evolutionary algorithms [2]. Its principle is to maintain along the search
a history of recent performances for each operator. The originality of the method
relies in the fact that the evaluation is not limited to one criterion (quality
variations), but also takes into account diversity gaps. Quality and diversity
variations between two iterations are thus computed as:

∆Q =
eval(op(c))− eval(c)

eval(c) + 1
and ∆D = div(Pi,j)− div(Pi−1,j−1)

where op(c) is the configuration produced by the application of op on the current
configuration c and Pi,j the path from iteration i to iteration j. Given an oper-
ator op we then define ∆Qop,t (resp. ∆Dop,t) the mean quality (resp. diversity)
variation over the t last applications of op where t corresponds to the size of the
sliding window that stores information about each operator.

4.2 Control Issues

Applying the same memorization principles to the variations of the search state,
we may collect important information about how the search process evolves
among the search space. Indeed, a diversity loss reflects a focus on a particular
search space areas, whereas a diversity gain appears when moving away from
the current area. During the solving process, the choice of next operator to
apply is achieved according to probabilities defined in the following section, 4.3.
These probabilities are widely influenced by a parameter α, which models the
desired balance between intensification and diversification. We thus introduce
three values (see figure 2):

– α corresponds to the desired balance between intensification and diversifica-
tion. (0 ≤ α ≤ π/2)

– β is the angle formed by the current search trajectory (actual current angle)
– γ is the resulting commanded angle for next search step, in order to coun-

teract the search in the right direction

The application strategy can thus been seen as the way to compute γ’s value
according to collected information. For example, if one gets trapped into a local

optima, it will be beneficial to increase γ in order to promote search diversifi-
cation. Furthermore, the closest to α the search trajectory is, the more efficient
the solving process is. We designed then a formula to compute γ according to α
and β, reducing the gaps between them as much as possible:

γ =
{

α− gap(α, β)/2 if gap(α, β) ≤ π/2
α− gap(α, β + π)/2 otherwise

where gap corresponds to the difference between two angles values.

4.3 Operator Rewarding

Relying on operator evaluation (cf. section 4.1) and current execution state (cf.
section 4.2), we defined the following rewarding system: first of all, measures
introduced in section 4.1 have to be normalized. We thus divide them by the
highest absolute values found among all operators.

Then, for each operator op, we have to compute its corresponding angle(op)
(between 0 and 2π) and its norm ||op|| (between 0 and

√
2, as measures are

normalized) in (∆Q,∆D). Operator rewards are then defined as follows:

score(op) =

{
(||op||.(1− 4.gap(γ,angle(op))

π))2 if gap(γ, angle(op)) ≤ π/4
(||op||.π−4.gap(γ,angle(op))

3π)2 otherwise

Those rewards are finally used to define operators’ application probabilities:

p(opk) =

max(0, score(opk)
Σo∈Opscore(o)) if ∃o ∈ Op, score(o) > 0

[Σo∈Opscore(o)]−score(opk)
Σo∈Opscore(o) otherwise

where Op is the set of all possible operators.
In order to insure fairness for less used operators, a simulation step is achieved

every 20 iterations. It consists in applying every operator on the current con-
figuration, only keeping the best resulting combination. This method, although
computationally expensive, allows relatively up-to-date evaluations.

5 Application to the Quadratic Assignment Problem

We have experimented ALS on instances from QAPLIB [3]. We consider ALS
with 10 operators , and tried several values for α. As a baseline, we have im-
plemented an uniform choice version (at each step, an operator is chosen ran-
domly). ALS is also compared against the optimized robust taboo search [4]
with the same experimental conditions. Table 5 summarizes the results: for each
instance, the best known value (March 2009) is indicated in the BKV column,
θavg is then the mean deviation from BKV, computed as θavg = 100(favg−BKV)

BKV ,
where favg stands for objective function’s mean value over 20 runs, each of them

Instance BKV UC
ALS

RTS
α = 0.25π α = 0.15π α = 0.1π α = 0

bur26a 5426670 0,1177 0,0196 0,0020 0,0000 0,0020 0,0000
bur26c 5426795 0,0359 0,0029 0,0000 0,0000 0,0217 0,0000
bur26f 3782044 0,0153 0,0019 0,0000 0,0000 0,0679 0,0000
chr25a 3796 42,4341 10,2160 6,6228 8,3298 8,6828 7,6765
els19 1,7E+07 4,8532 0,0003 0,0000 0,0000 0,0000 0,0000
kra30a 88900 3,8774 0,8931 0,7627 0,4027 1,1755 0,0000
kra30b 91420 2,4251 0,3227 0,0131 0,0459 0,1181 0,0230
tai30b 6,4E+08 1,5794 0,1882 0,2319 0,0372 0,8525 0,0326
tai50b 4,6E+08 1,4307 0,2330 0,3693 0,2566 0,5376 0,1078
nug20 2570 1,9767 0,0156 0,0000 0,0000 0,0000 0,0000
nug30 6124 2,0901 0,2449 0,0000 0,0000 0,0131 0,0065
sko42 15812 2,0529 0,5237 0,0443 0,0202 0,0620 0,0342
sko49 23386 2,0174 0,6431 0,2279 0,2407 0,2382 0,1403
sko56 34458 2,1139 0,5305 0,1843 0,1660 0,2783 0,1051
tai30a 1818146 3,6971 1,7781 0,4163 0,6008 0,3973 0,3933
tai35a 2422002 3,9348 2,1099 0,8157 0,6868 0,9082 0,7705
tai50a 4941410 4,4437 2,4926 1,1522 1,1269 1,3648 1,3733
wil50 48816 1,0005 0,2176 0,0520 0,0385 0,0713 0,0361

Average 4,4498 1,1352 0,6053 0,6640 0,8217 0,5944

Table 1. Mean deviation of ALS, uniform choice, and robust taboo search from best
known values (BKV)

being executed over 40000 iterations. The best value between the five algorithms
is boldfaced. Basically, results from table 5 clearly highlights the controller’s ad-
vantages, since among 18 tested instances, ALS is systematically better than
UC. When compared to RTS, we may remark that with α set to 0.15π or 0.1π,
we obtain very similar results since about half of the instances are better solved
with ALS. Nevertheless, we should insist here on the fact that the 10 operators
are not really optimized and could be seen as general purpose operator for per-
mutation based coded problems. The average values, mentioned at the bottom
of the table and which are not so different for α between 0 and 0.15π, high-
lights that the tuning of α, although having a noticeable impact, seems to bear
a greater tolerance than the tuning of all the operators’ parameters. Let us also
mention that according to other tests, not reported here, enlarging the set of
handled operators improves solving efficiency. Indeed, ALS-10 (10 operators set)
was better than ALS-2 (2 operators set) for all the instances. Therefore, using
our controller, the user may expect benefits from a multi-operators algorithm
whose parameters would be actually difficult to tune with regards to their com-
binatorial interactions. The controller aims at applying the right operator at the
right time, even if some of them could be judged a priori less interesting

References

1. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Vol 45 of Operations Research/Computer Science Interfaces. Springer Verlag (2008)

2. Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M.: Compass and
dynamic multi-armed bandits for adaptive operator selection. In: Proceedings of
IEEE Congress on Evolutionary Computation CEC. (2009) to appear.

3. Burkard, R.E., Karisch, S., Rendl, F.: Qaplib-a quadratic assignment problem li-
brary. European Journal of Operational Research 55(1) (November 1991) 115–119

4. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17(4-5) (1991) 443–455

