
HAL Id: hal-03255427
https://univ-angers.hal.science/hal-03255427

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new parallel architecture for QBF tools
Benoit da Mota, Pascal Nicolas, Igor Stéphan

To cite this version:
Benoit da Mota, Pascal Nicolas, Igor Stéphan. A new parallel architecture for QBF tools. 2010
International Conference on High Performance Computing and Simulation, HPCS 2010, 2010, Caen,
France. pp.324 - 330, �10.1109/HPCS.2010.5547114�. �hal-03255427�

https://univ-angers.hal.science/hal-03255427
https://hal.archives-ouvertes.fr


A New Parallel Architecture for QBF Tools

Benoit Da Mota, Pascal Nicolas, Igor Stéphan
LERIA, University of Angers, France

{damota, pn, stephan}@info.univ-angers.fr

ABSTRACT

In this paper, we present the main lines and a first imple-
mentation of an open general parallel architecture that we
propose for various computation problems about Quanti-
fied Boolean Formulae. One main feature of our approach
is to deal with QBF without syntactic restrictions, as prenex
form or conjunctive normal form. Another main point is
to develop a general parallel framework in which we will
be able in the future to introduce various specialized algo-
rithms dedicated to particular subproblems.

KEYWORDS: Quantified Boolean Formulae (QBF),
parallel, tools.

1. INTRODUCTION

The quantified Boolean formula (QBF) validity problem
is a generalization of the Boolean formulae satisfiability
problem. While the complexity of Boolean satisfiability
problem is NP-complete, it is PSPACE-complete for the
QBF validity problem. This is the price for a more concise
representation of many classes of formulae. Many impor-
tant problems in several research fields have polynomial-
time translations to the QBF validity problem : AI plan-
ning [1] and Formal Verification (see [2] for a survey).
Most of the recent and efficient decision procedures for
QBF have formulae in negative normal form (NNF) as in-
put or even more restrictive format such as formulae in con-
junctive normal form (CNF). But rarely, problems are ex-
pressed in such a form which destroyed completely their
original structures. It is much more natural to use the full
expressivity of the QBF language: all the usual connectors
(including implication, bi-implication and xor) and quan-
tifiers nested in the formula. So, a first goal of our work
is to elaborate a QBF solver without restrictions on the in-
put formula. Today, the availability of multi-core proces-
sors, computer clusters and grid computing is an opportu-

nity to elaborate new algorithms to solve difficult computa-
tion problems. Then, the second goal of our work is to ex-
ploit the power of parallel programming to tackle the QBF
validity problem by reusing, adapting, improving, combin-
ing,. . . well known sequential algorithms for QBF inside
a parallel architecture (see [2] for a survey on open QBF
techniques). Furthermore, beyond the validity problem, we
are also interested in more general problems linked to QBF,
as compilation for instance. In this case, the answer of the
system is not simply YES or NO, but rather a set of formu-
lae. Thus, one feature of our long term goal is to elaborate
an architecture, as open as possible, in order to offer a set
of QBF tools to the end user. In this present work, after
having recalled some fundamental notions about SAT and
QBF in section 2 and made a quick survey on sequential
and parallel QBF solvers in section 3, we describe the main
feature of the parallel architecture that we propose in sec-
tion 4. In section 5, we detail the first instantiation of this
general framework that we have done and in section 6 we
give some technical details and experimental results about
our implementation, before to conclude in section 7 by giv-
ing some future research directions.

2. PRELIMINARIES

Symbols ⊥ and > are the propositional constants. Symbol
∧ stands for conjunction, ∨ for disjunction, ¬ for negation,
→ for implication,↔ for bi-implication and ⊕ for xor. A
literal is a propositional symbol or the negation of a propo-
sitional symbol. Definitions of the language of proposi-
tional formula PROP and semantics of all the Boolean
symbols are defined in standard way. A formula is in nega-
tion normal form (NNF) if it is only constituted of conjunc-
tions, disjunctions and literals. A formula is in conjunctive
normal form (CNF) if it is a conjunction of disjunctions
of literals. A substitution is a function from propositional
symbols to PROP. This definition is extended as usual
to a function from PROP to PROP: [x ← F ](G) is the



formula obtained from G by replacing each occurrence of
x by the formula F . This definition is also extended as
usual for the substitution of a formula by another formula.
Logical equivalence is denoted ≡. The symbol ∃ stands

for the existential quantifier and ∀ stands for the univer-
sal quantifier (q stands for any quantifier). The set QBF
of quantified Boolean formulae is defined inductively as
follows: if F is in PROP then it is also in QBF; if F is
in QBF and x is a propositional symbol then (∃x F ) and
(∀x F ) are also in QBF; if F is in QBF then ¬F is also in
QBF; if F and G are in QBF and ◦ is in {∧,∨,→,↔,⊕}
then (F◦G) is in QBF. If a propositional symbol x is
not under the scope of a quantifier (as in qx), then it is a
free propositional symbol. A QBF is closed if its set of
free propositional symbols is empty. A binder is a string
q1x1 . . . qnxn with x1 . . . xn distinct propositional sym-
bols and q1 . . . qn quantifiers. A QBF is in prenex form
if it is constituted of a binder and a propositional formula
called the matrix. A QBF is in conjunctive normal form if
it is a prenex QBF and its matrix is in conjunctive normal
form. The definition of substitution is extended to QBF
as follows: [x ← F ](G) is the formula obtained from G
by replacing free occurrences of the propositional symbol
x by the formula F . The semantics of QBF is defined
as follows: for every propositional symbol y and every
QBF F , (∃y F ) ≡ ([y ← >](F )∨[y ← ⊥](F )) and
(∀y F ) ≡ ([y ← >](F )∧[y ← ⊥](F )).A QBF F is valid
if F ≡ >.

3. STATE OF THE ART OF QBF SOLVERS

3.1. State-of-the-art Of Sequential QBF Solvers

Since the verification of a model of a prenex QBF is
co-NP-complete [3] there are very few incomplete algo-
rithms based on metaheuristics. As far as we know there
are only two procedures which are based on local search:
WalkQSAT [4] and QBDD(LS) [5]. Hence, most of the
procedures for QBF are decision procedures which may be
separated in three kinds: “monolithic” procedures which
are self-sufficient, procedures with a transformation to an-
other decision problem formalism and procedures with an
oracle. In the first kind, procedures are based on resolution
like QKN [6], are bottom-up quantifier elimination proce-
dures like quantor [7] (for CNF QBF) or Nenofex [8]
(for NNF QBF) as extension of Davis and Putnam algo-
rithm, or are top-down quantifier elimination (or search-
based) procedures like Evaluate [9], QUBE [10] or
QSOLVE [11] (all for CNF QBF) or qpro [12] (for NNF
QBF) as extension of Davis, Logemann and Loveland al-

gorithm. A transformation procedure interprets QBF in
a different decision problem which has already efficient
decision procedure: SAT (in CNF) for sKizzo [13] or
ASP [14] (in those cases with an exponential growth of
the formula). Procedures with an oracle come back to the
initial concept of “polynomial hierarchy” since an oracle
which is able to solve subproblems with smaller complex-
ity is needed: QBDD(DLL) [5] uses an NP-complete or-
acle and QSAT [15] uses both NP-complete and co-NP-
complete oracles. This latter procedure is detailed in sec-
tion 5 since the instantiation of our parallel model uses
QSAT.

3.2. State-of-the-art Of Parallel QBF Solvers

As far as we know, there exist three implementations
of parallel solvers for the problem of validity of QBF:
PQSOLVE [11], PaQube [16] and QMiraXT [17]. Two
important remarks :

• Those procedures are all based on a top-down se-
quential procedure (QSOLVE [11] for PQSOLVE,
QUBE [10] for PaQube and PaMiraXT [18], a par-
allel SAT solver, for QMiraXT) and then apply a se-
mantic splitting strategy which selects a propositional
symbol of the most external block of quantifiers and
apply the quantifier semantics to split the problem and
distribute jobs.

• Those procedures are all dedicated for CNF QBF.

The procedure PQSOLVE is a distributed solver which uses
techniques from chess program parallelization [11]. It in-
stantiate a peer-to-peer model: An idle process requests
for work to a randomly selected process and becomes the
slave of this process for one job. Each process has a stack
of jobs to do and a master sends one of these jobs to its
momentary slave. A slave may become itself the mas-
ter of another process. The procedure QMiraXT is dedi-
cated to take into account the potential performance of the
modern multi-core and/or multithreaded processors. By
using a shared memory threaded solver, the learnt con-
flict clauses [19] are shared between the different search
spaces. There is no master process but instead a Master
Control Object (MCO) which allows threads to commu-
nicate through asynchronous signal global event messages
(if subproblems are valid or not). The MCO also handles
the semantic splitting strategy, called Single Quantification
Level Scheduling (or SQLS) and distributes the jobs. The
procedure PaQube is designed as a Master/Slave Model
where one process is dedicated to the master (which does
not need a dedicated CPU) and the others are the slaves
which actually perform the search. PaQube is a parallel



set of non CNF QBF with

free propositional symbols

non prenex non CNF

closed QBF

set back at its

occurrence in the

initial formula

set of boolean (non quantified)

formulae uniquely composed

of free propositional symbols

output : > or ⊥
computing with a method

which accepts free

propositional symbols

input extraction of subproblems

Figure 1. Execution Loop

MPI based QBF solver and the slaves share some conflict
learnt clauses or solution learnt cubes through messages
added to the local databases. The main work of the master
is to realized, as for QMiraXT, the SQLS. By their models,
PQSOLVE and PaQube are more extensible to clusters and
grids than QMiraXT but this latter seems to take more into
account the evolution of hardware than the two first ones.

4. A PARALLEL ARCHITECTURE

The general model of our system is a master/slaves archi-
tecture implemented by means of a server/clients network
on a cluster of computation nodes. Thus, in the sequel we
will use indifferently the terms master or server and slaves
or clients. Our parallel procedure applies many copies of
a sequential procedure to a small part of the original QBF.
To do so, disjoint subproblems have to be extracted and
then treated in parallel. The splitting of the given QBF can
be made syntactically or semantically. In our architecture,
we propose two splitting strategies and a way to mix them
both. In our parallel architecture, the master node reads
the original QBF, extracts syntactically some sub-problems
and distributes the jobs to slave nodes. Then, it waits for an-
swers and reinsert the result into the original formula. This
loop is repeated until to obtain > or ⊥ to ensure the com-
pleteness of the procedure. The whole process is illustrated
in figure 1 The aim of a slave node is to accept a prenex
non CNF QBF with free variables and to return an equiv-
alent non quantified boolean formula built only on these
free variables. For instance, in our first implementaion de-
scribed here, the slave node uses the method described in
subsection 5.1. At every iteration of the general loop we
can determine a syntatic width that is the number of sub-
formulas extracted by the splitting method. The maximal
syntactic width obtained all along this process indicates the
maximal number of computation nodes needed for our syn-
tactic splitting. Because of the chosen splitting method, this
maximal value can be not very large and reached at the first
iteration. With only this approach, it is obvious that our

parallel process would not be very efficient if many prob-
lems have a maximal syntactic width lesser or equal to two,
and then all slaves nodes, except two, would be useless.
But, as described below, the slave nodes can themselves
create some new subproblems. Every slave node receiving
a formula to process has the responsability to estimate the
difficulty of the given task. If it seems easy, then it decides
to solve itself the given problem. So, it starts immediately
the computation, returns the solution and waits for a new
task. If it considers that the task is too difficult, it applies
a semantic splitting strategy based on free variables of the
QBF. So, it generates a set of new subproblems and returns
them to the master node. This whole process is illustrated
in the figure 2. By this way, a client is able to add some
new tasks in the stack of tasks of the master node, which
on its turn will distribute them to slave nodes. This partic-
ular client splitting heuristic is a way to optimize the use of
numerous computation nodes when the maximal syntactic
width is small.

5. A FIRST INSTANCE

In our parallel architecture, the slave nodes have to com-
pute an equivalent propositional formula of a given QBF.
Since this QBF is itself a subformula of a larger one, the
goal is to replaced it by the equivalent generated proposi-
tional formula. For that, we have chosen to instantiate our
parallel architecture with a procedure from the state-of-the-
art which applies a syntactical partitioning of the search
space with an oracle: the QSAT procedure [15]. In the rest
of this section we recall the QSAT procedure, then we de-
scribe how work the slave nodes and then we come back to
the master node and its syntactic treatment of QBF.

5.1 QSAT Decision Procedure For QBF

QSAT [15] is an inside-out quantifier elimination decision
procedure for the QBF validity problem. This procedure it-



waiting for a job

send MSG CONST ϕ

or send MSG OP ϕ

or send MSG CONST ϕor receive MSG JOB SAME job
receive MSG JOB job

splitting the formula
of the job

estimating the difficulty

stop

send MSG STRING ”nochange”.
or send MSG QUANT ϕ

receive MSG STRING ”stop” boot the client

solving the job

send MSG SPLIT + partial affectations

Figure 2. Client Automata

eratively works on the pattern Q(∃x (F∧G)) such that the
propositional symbol x does not appear in F . The logical
equivalence (∃x (F∧G)) ≡ (F∧(∃x G)) isolates the sub-
formula (∃x G) then an equivalent formula G′ which does
not contain x is computed thanks to a procedure simp, fi-
nally QSAT is recursively applied on the QBF Q(F∧G′)(≡
Q(∃x (F∧G))). This induction step is similar with a
universal quantification. For a formula Q(∀x(F ∧ G)),
such that x does not appear in F : the logical equivalences
(∀x(F ∧ G)) ≡ (F ∧ (∀x G)) ≡ (F ∧ (¬(∃x (¬G))))
isolates again a subformula (∃x (¬G)) for which the above
method can be applied. This process is iterated until there
is no more quantifier. The simp procedure needs two de-
cision procedures, one for SAT and one for TAUT. Its al-
gorithm is based on the classical construction of the CNF
as the conjonction of the negation of the lines, considered
as cubes, of the truth table which falsify the propositional
formula. It builds a CNF G′ on the free propositional sym-
bols of G such that G′ ≡ (∃x G). It works as a Davis,
Logemann and Loveland algorithm by splitting the search
space according to a free propositional symbol y of G by
recursive calls on [y ← >](G) and [y ← ⊥](G). In [15],
QSAT is described under a double restriction to SAT and to
CNF formulae. Under this latter restriction, the search of a
pattern Q(∃x (F∧G)) such that x does not appear in F is
trivial then only the choice of x enables different heuristics.

5.2. Client Description

From a global view, a client (running on a slave node) re-
ceives a QBF with free variables and must send back a not
quantified Boolean formula composed only with these free
variables. The QSAT procedure described previously is a
good candidate since it is works well for the two kinds of
quantifiers ∃ and ∀. In addition, it is possible to eliminate

several consecutive quantifiers of the same type. A prenex
QBF requires as many iterations to the QSAT procedure
as the number of quantifier alternations. The QSAT proce-
dure has a drawback, it is efficient only on a certain class
of formulas called “long and thin” [15]. So, to try to escape
to this difficulty, our architecture provides that a client can
give up on a too difficult task as it is illustrated in the fig-
ure 2 and commented below. Firstly, the client starts and
waits for a task. Then, it receives MSG JOB followed by
a job: a formula accompanied with a partial interpretation
or MSG JOB SAME and only a partial interpretation when
the same formula is resubmitted for a new computation. By
means of a heuristic function, the client tries to estimate the
difficulty of the task and the different cases are the follow-
ing.

• The job is considered computable : the job is executed
and a message is returned: MSG CONST with > or
⊥, or MSG OP with a propositional formula only build
with free propositional symbols, or MSG CNF with a
formula like for MSG OP but in CNF.

• The job is considered too difficult to compute : so a
semantic splitting of the formula is done and the mes-
sage MSG SPLIT is sent with a set of partial affec-
tations. Then is sent the message MSG STRING plus
“no change” or MSG QUANT plus the formula partially
treated.

Our heuristic function to estimate the difficulty of a task
is very simple: if a task has already been split, then it is
easy, otherwise, if the number of free variables is lesser
than a constant, then the task is easy, otherwise, the task is
no computable. Our semantic splitting procedure is also
very simple. When the formula is read, the free vari-
ables are stacked. So, if a splitting is necessary, we com-
pute the number of free variables to instantiate without ex-
ceeding another constant defining the finest possible split-
ting. Then, the corresponding free variables are unstacked



and all the partial affectations are generated and sent with
MSG SPLIT. Our system could be improved by using a
more sophisticated heuristic to evaluate the difficulty of a
task and to choose the variable on which the semantic split-
ting is done. But, for the moment, we have prefered to im-
plement a fully deterministic behavior (a client always cuts
the same task the same way) in order to limit the varia-
tions during different runs. Today, the client ends its split-
ting work by returning MSG STRING plus “no change”
but in the future, by coupling the estimation of difficulty
and a partial solving of the problem, we envisage to return
some partial affectations accompanied with MSG QUANT
followed by the formula partially treated and rewrote.

5.3. Syntactical Splitting Strategy

The syntatic splitting strategy realized by the master node
looks for some subformulas which can be treated sepa-
rately. In a general way, it consists to take a binary logical
connective and to work recursively on its two subformulae.
QSAT being a quantifier elimination procedure, at least one
of these two sub-formulas should have a quantifier. Our
approach of reasoning with QBF is to keep as close as pos-
sible to the original formulation of the problem, because
we postulate that the one who has encoded the problem
has represented some particular pieces of knowledge via
some particular subformulae. So, the position of quanti-
fiers makes sense for the author and that is why whe have
chosen to extract the set of non CNF prenex subformulae
with possibly free propositional symbols. For instance, let
Q(F ↔ (G∧H)) be a QBF, such that F and G are prenex
with free variables and H is a non quantified boolean for-
mula. Our splittig strategy extracts the set of subproblems
{F,G} that can be treated separately. Our syntactical split
does not change from one execution to another, and also
limits the number of hypothesis during the study of exper-
imental results. The drawback of this split is the maximal
syntactic width which often does not exceed 2.

6. EXPERIMENTATIONS

6.1. Technical Choices

Since we want to escape the difficulties arising from the
translation of general QBF into prenex CNF ones, one of
the specific and original feature of our approach is to be
able to deal directly with non prenex, non CNF QBF. In
the elaboration of the data structure for representing QBF
we have searched the maximum of expressivity and exten-
sibility and not performance or saving of memory space.

A QBF is represented by a set of abstract elements of for-
mula, linked to each other in a tree. An abstract element
of formula imposes only two actions to the concrete ele-
ments : to start an abstract visitor and to (de)serialize it-
self. Among the concrete elements of formula we find the
tree nodes for representing logical (unary or binary) con-
nectives or quantifiers and the tree leaves for representing
literals or propositional constants. By this way, our data
structure is a set of composite elements all inheriting from
the abstract element of formula. Following the design pat-
tern composite+visitor, the visitors are external treatments
that adapt automatically to the concrete element met along
the visit. A concrete formula is serializable to be sent on
the network and deserializable to be restored in memory.
In order to represent more efficiently the formulas having a
part in CNF, we have define a concrete element CNF leaf
storing a matrix of literals.

All the communication part is done by using the standard
Message Passing Interface (MPI) and we have chosen the
Open MPI implementation. For our approach with a com-
posite data structure, MPI has a shortcoming: it is simply
not possible to send and receive complex data types na-
tively. The Boost.MPI C++ library is a wrapper dedicated
to respond this constraint by using Boost.Serialization. All
our communications are synchronous and use the send/recv
of Boost.MPI.

To use the method from section 5.1, we have to answer two
questions: Is the formula tautological? Otherwise, is the
formula unsatisfiable? To answer, we have included the
MiniSat decision procedure [20]. Besides the fact that
this procedure is very efficient, its sources are available and
distributed freely under the MIT licence (a strictly freer li-
cence than the LGPL). Data structures in MiniSat are
very different from ours and are geared for performance.
So we have an interface (a visitor) to formulate our queries
in the data format of MiniSat. Conversely, we can in-
terpret the answers of MiniSat to integrate them directly
into our data structure. From our expressive and extensible
data structure, it is thereby possible to benefit of efficient
treatments in another model by means of a conversion in
linear time with respect to the size of the formula.

To reduce the need in bandwidth, each computing node
keeps in cache the MiniSat solver object of the last
treated subformula. If a new task on the same formula
comes, the first benefit is the saving of the transfer of this
formula. The second benefit is the use by MiniSat of the
clause learning. The already trained instance of MiniSat
can answer more quickly to a new question. The ideal con-
figuration would be to share the learning between the dif-
ferent nodes, but that is not the case at the moment in our



system. In addition, we should study the extra traffic gen-
erated by sharing this information.

6.2. Experimental Results

To evaluate our architecture, we ran few preliminary tests
on some instances of qbflib (www.qbflib.org) and on some
self-generated problems. The semantic splitting is strictly
the same whatever the number of computing clients. Exper-
iments are performed on a high-performance cluster con-
taining 12 Bull Novascale R422, connected by a double
gigabit ethernet network. Each R422 server has 2 moth-
erboards. Each computer is a 2x Int12el(R) Quad-Core
Xeon(R) E5440 at 2.83GHz with 16GB of local memory
and runs on a 64 bits version of the Linux 2.6.18 kernel.

We select some results to illustrate some interesting cases.
The first column of our tables represents the number of run-
ning clients. The label on the top of the columns are short-
cuts for the instances names. In addition, we have a ded-
icated processor to run the master. Our results match the
pattern: time in seconds speedup.

Table 1. Results without pretreatment

c8 8 c8 16 r4 5 s5 4
1 105 1 7264 1 18483 1 58812 1
2 52 2.0 6627 1.1 11215 1.6 27741 2.1
4 28 3.8 4560 1.6 3601 5.1 19938 2.9
8 15 7.0 2437 3.0 4940 3.7 5537 10.6

16 11 9.5 3247 2.2 2268 8.1 4320 13.6
32 7 15.0 967 7.5 857 21.6 1027 57.2
64 6 17.5 3950 1.8 247 74.8 582 101.1

128 7 15.0 3548 2.0 128 144.4 780 75.4

Table 1 presents the results for 4 instances: counter8 8,
counter8 16, ring4 5 and semaphore5 4. They are part of
the QBF1.0 set available on qbflib. All these formulas are
prenex, then the maximal syntactic width is 1. The unique
choice we have to treat this formulas in a parallel way is
to use the semantic extraction of subproblems described in
subsection 5.2. The first problem, counter8 8 is simple, so
increasing the number of clients is really efficient only un-
til we use 8 of them. The explanation is easy: greater is
the number of used nodes, longer is the initialization time
of all the machinery of MPI. For instance it takes 5 sec-
onds for 128 nodes. To evaluate our approach with many
calculation resources, we need bigger problems. The sec-
ond problem, counter8 16, satisfies this constraint, how-
ever the times are irregular and the speedup is relatively
bad. Two phenomena occur here. First, some subprob-
lems are very difficult to solve. For this example, some
tasks take several hundreds of seconds. A task taking 10%
of the total time, will limit to 10 the maximal speedup in

the best case, ie when starting the search with this task.
The second phenomena is linked to the use of MiniSat
as an oracle. Each of these 4 problems has only one alter-
nation of quantifiers. So, each computation node receives
the formula one time and creates a unique instance of the
MiniSat solver. All other tasks will use this instance in
cache and will take benefits of the clause learning already
locally done during previous tasks. The proper of a parallel
execution is the impossibility to predict the task distribu-
tion. In extension, each semantic subproblem trains the lo-
cal instance of MiniSat and this training is unpredictable
and different at each execution. More computation nodes
we have, more the probability to learn, locally, a good in-
formation before to solve a hard problem decreases. Us-
ing more processors does not necessarily implies a quicker
resolution if we are not able to share information. For the
ring4 5 problem we find a super-linear speedup with 64 and
128 computation nodes. As for the previous problem, we
think that the clause learning of MiniSat has an effect,
but positive this time. It is possible that some subprob-
lems train efficiently most of the MiniSat solvers. With
the increase of the number of nodes, each solver receives
less subproblems to solve and perhaps keeps longer some
more relevant information’s. We note similar durations: no
task monopolize many resources. But, because of the ran-
dom nature of the parallel execution, we have to do mul-
tiple runs to consolidate our hypothesis. We have a super-
linear speedup for the semaphore5 4 problem with 32 and
64 clients. With 128 the gain is lesser than with 64 clients.
Unlike ring5 4, some tasks are very long and can take 50%
of the total time with 64 clients and more. As counter8 16,
more the clause learning is distributed on different clients
more the long task are penalizing.

Table 2. Results with pretreatment

c8 8 c8 16 r4 5 s5 4
1 52 1 6069 1 8718 1 25647 1
2 27 1.9 2959 2.1 3536 2.5 6530 3.9
4 14 3.7 1855 3.3 1597 5.4 1855 13.8
8 10 5.2 3338 1.8 914 9.5 2226 11.5

16 6 8.7 1114 5.4 349 25.0 1993 12.9
32 5 10.4 1527 4.0 202 43.2 778 33.0
64 5 10.4 1249 4.9 89 98.0 240 106.9

128 5 10.4 1750 3.5 38 229.4 588 43.6

Table 2 shows the results on the same problems but with
few optimizations on the input formula. The master, just
after reading the formula, applies recursively a naive prop-
agation comparable to unit propagation on CNF formula
and seeks monotonic literals. The results with this simple
pretreatment show that it is possible to improve the per-
formances of our resolution procedure with state-of-the-art
techniques. This pretreatment could be applied to subprob-
lems. All results for ring4 5 correspond to a super-linear



speedup and the gain with 128 clients reaches 229.4.

Table 3. Results for adder 6 and chaine 30

adder 6 chaine 30
1 3479 1 68343 1
2 1377 2.5 33068 2.1
4 995 3.5 16181 4.2
8 1788 1.9 7504 9.1

16 708 4.9 3780 18.1
32 1242 2.8 2043 33.5
64 1238 2.8 1023 66.8

128 1007 3.5 438 156.0

Unlike previous problems, adder 6 and chain 30 are not
prenex and contain bi-implication and/or xor. The adder 6
problem has a syntactic width of 2, except for the last iter-
ation. the chain 30 have a syntactic width of 30 only dur-
ing the first iteration, 1 otherwise. Table 3 summarizes the
different results. For adder 6, the speedup is good until 4
clients. For this problem, the last iteration is the longer
and this task does not have free variable: only one client is
working. The speedup for chain 30 is super-linear. First,
the master distributes 30 subproblems which are quickly
simplified, then the syntactic width decreases to 1: the se-
mantic extraction takes over. As seen with ring5 4, the
times to solve the tasks are very similar.

7. CONCLUSION

In this paper we have exposed our ideas about a new paral-
lel approach for QBF tools. Our first implantation demon-
strates the validity of our model. Even though its comput-
ing power is not very high for the moment our architecture
is the only one able to deal with non prenex, non CNF QBF
with bi-implication and xor.

In the future, we will work on the integration of other
methods of computation and on the development of some
heuristic of choice to better select the subproblems and the
method to apply to solve them. Another line of research
will be to elaborate some techniques of knowledge shar-
ing. Indeed, every node learns some information during its
proper computations and then it would be certainly very ef-
ficient to propagate, at least one part of, this learning to the
other nodes. Last but not least, we do not have to forget that
problems in QBF are in PSPACE class of complexity. So,
some strategies of resolution or enunciation of solutions of
some problems can require data with an exponential size.
So, we need measures of size of our data structures and of
the cost of their transfer on the network in the cluster.

REFERENCES
[1] A. Ayari and D. Basin, “Qubos: Deciding Quantified

Boolean Logic using Propositional Satisfiability Solvers,” in
FMCAD’02. Springer-Verlag, 2002.

[2] M. Benedetti and H. Mangassarian, “Experience and per-
spectives in qbf-based formal verification,” Journal on Sat-
isfiability, Boolean Modeling and Computation, 2008.

[3] H. Kleine Büning and X. Zhao, “On Models for Quantified
Boolean Formulas,” in Logic versus Approximation, In Lec-
ture Notes in Computer Science 3075, 2004.

[4] I. Gent, H. Hoos, A. Rowley, and K. Smyth, “Unsing
Stochastic Local Search to Solve Quantified Boolean For-
mulae,” in CP’03, 2003.

[5] G. Audemard and L. Sais, “A Symbolic Search Based Ap-
proach for Quantified Boolean Formulas,” in SAT’05, 2005.

[6] H. Kleine Büning, M. Karpinski, and A. Flögel, “Resolution
for quantified Boolean formulas,” Information and Compu-
tation, vol. 117, no. 1, pp. 12–18, 1995.

[7] A. Biere, “Resolve and Expand,” in SAT’04, 2004, pp. 59–
70.

[8] F. Lonsing and A. Biere, “Nenofex: Expanding NNF for
QBF Solving,” in SAT’08, 2008, pp. 196–210.

[9] M. Cadoli, A. Giovanardi, and M. Schaerf, “Experimental
Analysis of the Computational Cost of Evaluating Quanti-
fied Boolean Formulae,” in AIIA’97, 1997, pp. 207–218.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella, “QUBE: A
System for Deciding Quantified Boolean Formulas Satisfia-
bility,” in IJCAR’01, 2001, pp. 364–369.

[11] R. Feldmann, B. Monien, and S. Schamberger, “A Dis-
tributed Algorithm to Evaluate Quantified Boolean Formu-
lae,” in AAAI’00, 2000.

[12] U. Egly, M. Seidl, and S. Woltran, “A Solver for QBFs in
Nonprenex Form.” in ECAI’06, 2006, pp. 477–481.

[13] M. Benedetti, “skizzo: a suite to evaluate and certify QBFs,”
in CADE’05, 2005, pp. 369–376.

[14] I. Stéphan, B. Da Mota, and P. Nicolas, “From (Quantified)
Boolean Formulas to Answer Set Programming,” Journal of
logic and computation, vol. 19, no. 4, pp. 565–590, 2009.

[15] D. Plaisted, A. Biere, and Y. Zhu, “A satisfiability procedure
for quantified Boolean formulae,” Discrete Applied Mathe-
matics, vol. 130, pp. 291–328, 2003.

[16] M. Lewis, P. Marin, T. Schubert, M. Narizzano, B. Becker,
and E. Giunchiglia, “PaQuBE: Distributed QBF Solving
with Advanced Knowledge Sharing,” in SAT’09, 2009, pp.
509–523.

[17] M. Lewis, T. Schubert, and B. Becker, “QMiraXT - A Mul-
tithreaded QBF Solver,” in MBMV’09, 2009, pp. 7–16.

[18] T. Schubert, M. Lewis, and B. Becker, “PaMiraXT: Parallel
sat solving with threads and message passing,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 6,
pp. 203–222, 2009.

[19] L. Zhang and S. Malik, “Conflict Driven Learning in a
Quantified Boolean Satisfiability Solver,” in ICCAD’02,
2002.

[20] N. Een and N. Srensson, “An Extensible SAT-solver,” in
SAT’03, 2003.


