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Abstract—In this paper, we recall the dynamic island model
concept, in order to dynamically select local search operators
within a multi-operator genetic algorithm. We use a fully-
connected island model, where each island is assigned to a
local search operator. Selection of operators is simulated by
migration steps, whose policies depend on a learning process.
The efficiency of this approach is assessed in comparing, for
the One-Max Problem, theoretical and ideal results to those
obtained by the model. Experiments show that the model has
the expected behavior and is able to regain the optimal local
search strategy for this well-known problem.
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I. INTRODUCTION

Evolutionary algorithms are widely used for tackling NP-
hard problems [1], [2], [3]. Although their efficiency on
numerous optimization problem is well-established, their
performance and robustness depend on various elements
like the problem modeling, the search space properties or
global parametrizations [4]. These technical and execution
alternatives make the ad hoc resolution of combinatorial
optimization problems difficult to tackle by non-specialist
users. Recent approaches use autonomous algorithms [5],
which are able to analyze their own performances in order
to auto-adapt their behavior in function of the problem to
solve.

Island Models [6] are simultaneously considering a set
of populations clustered in islands which are evolving in-
dependently during some search stages while interacting
periodically. This model, which constitutes an additional
abstraction level in comparison to classical genetic and
memetic algorithms, allows to propose several diversification
levels and to simplify its parallelization.

Most of the time, island models are used in a static way,
where individuals are migrating from population to popula-
tion following a determinate scheme [7], or are specifically
chosen in order to reinforce the populations diversities [8],
[9], [10]. Nevertheless, it is possible to dynamically regulate
migrations between islands in considering a transition matrix
[11]. Such a model can reinforce or reduce the migration
probabilities during the evolutionary process in function of
the impact of previous analog migrations. The aim is to auto-
adapt migration without any given scheme, to dynamically

regulate the gathering or isolation of individuals in func-
tion of the search progress, and consequently to adapt the
population sizes.

In classical uniform island models, islands are following
the same evolutionary rules, so they differ only by their indi-
viduals. The dynamic model allows to regulate interactions
between individuals or group of individuals. We propose to
extend this model in assigning to each island different local
search operators. An appropriate and autonomous regulation
of migration flows will affect dynamically the resources
to the most pertinent operators in function of the search
progress. In experimenting this model without crossovers
but with a proper local search operator for each island, the
objective is not only to regulate the interactions between
individuals, but to simulate a reactive controller which
assigns individuals to the most promising islands.

In section 2 and after a brief recall of the dynamic
island model used, we present our island-based algorithm
which aims at simulating an autonomous local search algo-
rithm, or more precisely a population-based algorithm with
an adaptive selection of local search operators. Section 3
presents the One-Max problem and the theoretical optimal
strategies to solve it with local search (LS). In section 4,
experimentations will show the validity of our approach in
confronting theoretical and experimental results.

II. ISLAND MODELS FRAMEWORK

A. Island Models as a Complete Digraph

In [11] we proposed an island model framework which
dynamically supervises the commonly-used specification
parameters [10] like the number of individuals undergoing
migration, the policy for selecting immigrants or the topol-
ogy of the communication among subpopulations. An island
model topology is represented by a complete labeled digraph
G = (X,X2).

For an easier representation, we identify each island by an
ordinal; for example, ({1, . . . , N}, {1, . . . , N}2) represents
the topology of a N -islands model.

Migration policies are given by a transition (stochastic)
matrix T of size n, where T (i, j) represents the probability
for an individual to migrate from island i to island j (or
to stay at the same island if i = j). Since the model is
dynamic, T can be updated before of after each migration



process. One can denote Tt the matrix at time (or generation)
t.

An application of this dynamic evolution of the model
topology is to determine pertinent migration probabilities
at each time of the search, considering a classical multi-
population based genetic algorithm. The dynamic regulation
of migration policies can produce different size islands,
which prevents poor-quality subpopulations or islands to
require as many computational effort as promising ones.
However, if different islands represent different mutation
or local search operators, then the aim is to dynamically
provide a well-adapted repartition of individuals in function
of these operators and considering the search progression,
which can be assimilated to an operator selection process.

B. Autonomous Operator Selection

The aim of this work is to use this dynamic island model
to autonomously select local search operators within a clas-
sical evolutionary algorithm. In order to assess the relevance
of this approach, we will use the model considering a
population-based local search algorithm, with no crossover
and where each island is associated to a particular local
search operator. Here, contrary to recent works [5], the goal
is not to forecast the most promising crossovers between
individuals like in classical island models, but to detect at
each time of the search the most relevant LS operators.
This application constitutes an original approach in defining
autonomous algorithms.

C. Migration Policy

Algorithm 1 is the generic algorithm we used for the au-
tonomous operator selection within an island model context.
In order to allow a maximum of adaptability, we chose
to update the migration process after each local search
iteration (for the whole population). Ideational, less frequent
mutations process do not minimize the effective number of
mutations (individuals moving to other islands) but only
provide a less reactive search. As a dynamic algorithm,
transition values are expected to be regulate accordingly.

Initialize population;
repeat

foreach population do
foreach individual do

One local search iteration;

Update the Transition Matrix T;
Migration Process;

until stop condition;
Algorithm 1: Generic Dynamic Island Model (DIM) Al-
gorithm.

The crucial point concerns the update of the transition
matrix T , which follows a learning process:

Tt = (1− β)(α.Tt−1 + (1− α).Rt) + β.Nt

Rt is a reward matrix, computed after migration process
t − 1 and LS step t, and which takes into account the
comparative pertinence of the last migrations. Using an
intensive strategy, for each island, the migration which have
brought the best average accuracy score acc of individuals
(typically their fitness improvement) receives the maximum
reward. More formally, if Mijt is the set of individuals which
have migrated from island i to island j in migration process
t − 1 (∪iMijt is the set of individuals in island j during
iteration t):

Rt(i, j) =

{
1/|B| if j ∈ B,

0 otherwise,

with B = argmax
j′

∑
x∈Mij′t

acc(x)

|Mij′t|

Nt is a noise stochastic matrix with random values.
The two parameters α and β allow to manage the update

of the transition matrix. α represents the importance of the
knowledge accumulated during the last migrations and β the
amount of noise which is necessary to explore alternative
ways and to keep the model reactive.

III. ONE-MAX PROBLEM

The One-Max problem is a simple and well-known prob-
lem, commonly used to assess the performance of Adaptive
Operator Selection algorithms [12], [13]. The n-bits One-
Max problem considers n-length bit strings; starting from
0n individuals (i.e. strings made up of n zeros), the aim is
to maximize the number of ones, that is to reach the 1n bit
string. The score of a bit string x, noted |x|1, corresponds
to its number of ones.

A. One-Max Mutation Operators

Recent works cited above use four mutation (or local
search) operators: bit-flip, which flips every bit with prob-
ability 1/n, and k-flip (with k = {1, 3, 5}), which flips
exactly k bits. In the following and depending on the
context, bit-flip and k-flip can denote the mutation operator
as well as the corresponding neighborhood relation. k-
flip can easily be modelized as a neighborhood relation
Nk : {0, 1}n → 2{0,1}

n

such as x′ ∈ Nk(x) if and only
if |h(x, x′)| = k (hamming distance). It is more difficult
to exprim the bit-flip operator with a neighborhood relation,
since it corresponds to a complete neighborhood with a non-
uniform move probability. However, one bit-flip move can
be reduced in one k-flip move with a determined probability
of chosing k.

Intuitively, the 5-flip operator mutation will be more
efficient when applied on weak individuals (with a majority
of zeros), while 1-flip will improve with a higher probability
individuals with a high proportion of ones. This point is



corroborated by the theoretical comparison of operators
hereinafter.

B. Most Accurate Operators

Definition 1: Let x ∈ {0, 1}n an individual of score s,
M = {µ1, . . . , µl} a mutation operators set and x1, . . . , xl

l neighbors of x such that x
µk→ xk (xk results from the

mutation on x by µk). s1, . . . , sl are the respective scores
of individuals x1, . . . , xl. We define the domination rate
χ(µk,M, x) of an operator µk on M in function of x, the
probability p(∆s(x, xk) > ∆s(x, xk′),∀k′ ∈ {1, . . . , l} \
{k}), which is equal to:

n∑
i=1

p(∆s(x, xk) = i)
∏
k′ 6=k

i−1∑
j=0

p(∆s(x, xk′) = j)


For k-flip operators (x′, of score s′, is the transformation

of x, of score s, by k-flip), we have :

pk(∆s(x, x′) = i) =

{
Ci

n−sC
k−i
s

Ck
n

if i > 0,

1− p(s′ > s) if i = 0.

For bit-flip operator, pbit(∆s(x, x′) = i) =

n∑
k=1

(
Ck

n

1

nk

(
1− 1

n

)n−k

pk(∆s(x, x′) = i)

)
The domination rates evolution of the four considered

operators in function of the score of an individual is shown
in Figure 1 (with M = { 1-flip, 3-flip, 5-flip, bit-flip }).
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Figure 1. Domination rates evolution for the 1000-bits One-Max problem.

IV. EXPERIMENTATIONS

In this section we show that the behavior of our
population-based local search algorithm is very close of the
theoretical results. Moreover, we remark that it is not very
dependent of the parameter tuning.

A. Theoretical vs Empirical Results

As described in section III, our algorithm starts with a
population of 0n individuals. The expected behavior during
the search is to use the 5-flip operator when the population
quality is weak (at the beginning), then the 3-flip operator
and finally the 1-flip operator when the population quality
is sufficiently high. In our experiments, this can be observed
by the evolution of the population size in each island
with respect to the migrations. The more an island attracts
individuals, the more its assigned operator is applied.

Parameters for this experiment are:

• number of islands: 4 (one for each LS operator)
• population size: 400
• initial probabilities of migrations: 1 to stay in the same

island
• α: 0.8
• β: 0.01

In addition, let us precise that both fitness function and
accuracy score used are the simple bit string score.

To compare the experimental results with the theoreti-
cal values, we represent in Figure 2 the population size
in each island with respect to the average fitness of the
population. The fact that this evolution of population sizes,
i.e. the computational effort of each operators, match with
the theoretical domination rates, show the accuracy of the
proposed model and its pertinence to simulate an operator
selection mechanism.

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

p
o
p
u
la
ti
o
n
 s
iz
e

fitness

5-flip

1-flip

bit-flip
3-flip

Figure 2. Evolution of the population size in each island with respect to
the average fitness of the population.

B. Parametrization

As presented in section II-C, this dynamic island model
requires a few conceptual parameters, the number of indi-
viduals, the initial placement of individuals and transition
matrix values, as well as the update matrix parameters α
and β.



1) Population Size: Our experiments show that the be-
havior of the search is globally identical with a small or a
large population (more than 100 individuals by island), even
if more individuals make the model a little more robust and
less dependent to noise. With a small population, it is nec-
essary to extend the number of steps, but the global number
of operations is lower and updating the transition matrix is
faster. A population size equal to 100×number of islands
seems to be an ideal trade-off between running time and
migrations number if we want to keep a nice matching
to the theoretical operator suitability, but in practical use,
and since this dynamic model is sufficiently inertial and
reactive, smaller population provides equivalent results in
terms of solution quality. This point will be assess on real-
use problems in future works.

2) Initial Transition Matrix: Except with random values,
one can initialize the transition matrix with two natural
strategies: first, with a fully partitioned island model (iden-
tity matrix); secondly, with a fully connected one (same
value everywhere), which makes to each individual the
possibility to be affect by any combination of operators
in the first steps. Both possibilities have been tested, with
no impact on the results; after a few migration steps, both
behaviors become identical thanks to the reactive character-
istics of the model (on condition that β 6= 0, see section
IV-B3).

3) Dynamic Model Parameters: Default used values for
α and β are respectively 0.8 and 0.01. An increasing value
of α makes the search slower since informations obtained
by recent migrations are less considered for the update. On
the contrary, decreasing value of α minimizes the impact of
the knowledge (learning process) and overestimates the last
migration effects, so the search can be wrong oriented by a
migration which provides exceptionally a good result.

The influence of β is important, but its exact setting is not
crucial to the smooth-running of the algorithm, even if a too
high value of β make the search slower. On the other hand,
it must make sure that β 6= 0, otherwise some islands can
become and stay unreachable (transition probability equal to
0).

V. CONCLUSION

This paper presents an original and efficient approach
to design an autonomous local search algorithm with an
accurate selection of operators. The proposed mechanism
use a dynamic island model, where each island represents
an operator. A learning process regulates and adapts migra-
tion policies during the search depending to the impact of
previous migrations. At each stage of the search, the more
efficient operators receive dynamically the great majority of
computational resources. In other words, the model is able
to auto-adapt the attractive power of each islands.

This application is an extension of the dynamic island
model approach. In previous work, we focus on the capacity

for the model to dynamically regulate the interaction be-
tween individuals in an evolutionary context, with crossovers
and the same configuration on each island, with promising
results. Here, we dissociate the exploitation / exploration
dilemma to focus on the capacity to allocate with relevance
the resources to the most suitable operators. For that, we
used an experimental protocol which makes possible to
assess the real efficiency of the model (One-Max problem
and comparison with theoretical values). The next step is to
apply this operator selection strategy to difficult problems,
and then to assemble this heterogeneous model within a
more general evolutionary context.
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