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Abstract. Adaptive evolutionary algorithms have been widely devel-
oped to improve the management of the balance between intensification
and diversification during the search. Nevertheless, this balance may need
to be dynamically adjusted over time. Based on previous works on adap-
tive operator selection, we investigate in this paper how an adaptive
controller can be used to achieve more dynamic search scenarios and
what is the real impact of possible combinations of control components.
This study may be helpful for the development of more autonomous and
efficient evolutionary algorithms.

1 Introduction

From a high level point of view, Evolutionary Algorithms (EAs) [5] manage a
set (population) of possible configurations of the problem solutions(individuals),
which are progressively modified by variation operators, in order to converge to
an optimal solution or, at least, to a sub-optimum of good quality. EAs have
been successfully applied to various combinatorial and continuous optimization
problems. It is now clearly assessed that the successful use of an EA mainly
relies on the suitable combination of several components: the choice of an ap-
propriate encoding of the problem, the definition of efficient operators and the
adjustment of the behaviour of the algorithm by means of parameters. One may
indeed identify two general classes of parameters: behavioural, mainly operator
application rates or population size and structural, that define the main features
of the algorithm and could eventually transform it radically, e.g., those related
with the encoding and the choice of operators.

Even if significant progresses have been achieved in parameter setting [10],
this setting often relies on empirical rules and/or problem-domain knowledge and
often involve time-consuming experiences. Following the classification proposed
in [4], we usually distinguish between tuning techniques that aim at adjusting
the algorithm’s parameters before the run and control techniques that modify
the algorithm’s behaviour along the search process. Efficient tuning methods are
now available using either statistical tools[2] or meta-algorithms[8][14].

Back to the performance of the EAs, the management of the balance be-
tween the exploration and the exploitation of the search space (also known as



diversification and intensification) is largely recognized as a key feature for the
overall performance of the search process. Therefore, there is a need for finding
a suitable criteria that can be used for this management.

Several control techniques have been proposed, especially to tackle the selec-
tion problem, i.e., which variation operator should be applied at a given step of
the search. Recent works on adaptive pursuit [17] or Adaptive Operator Selec-
tion (AOS) [7, 6] have provided promising results on the adaptive management
of the search process but focused on a single criterion: the quality of the pop-
ulation. [12] proposed a control method for EAs, whose purpose is to manage
simultaneously the mean quality and the diversity of the population, which are
clearly related to intensification and diversification. The main idea is to consider
the impact of an operator over the search and to keep a trace of its successes or
failures. This knowledge is then used to choose the next operator to apply.

In [11] combinations of various components of the controller have been tested
in order to achieve the best possible results by combining ideas from [6, 3, 12]. In
[13], the adaptive management of the operators themselves is addressed. In these
works, the search is guided by a fixed scheme to control the trade-off between
intensification and diversification. The described controller is adaptive since it
adapts its behaviour to the current state of the search and the algorithm’s envi-
ronment (including its components and some fixed parameters). However, this
control is not really dynamic in the sense that the balance between intensification
and diversification is keep fixed. Since the search may need different emphasis on
these trends in different moments of the search in order to obtain better results
[9], we want to explore ways to adjust this trade-off dynamically. In this work,
our purpose is twofold:

– to provide a fair a clear experimental analysis of the controller behaviour:
different level of control were interleaved in [13] and we need to assess the
control ability of the controller itself.

– to provide an analysis of the dynamic control ability of the controller and of
its potential ability to manage more dynamic strategies.

Such a study will help algorithm designers to better understand the actual effects
of such adaptive control techniques and thus to select the suitable components
for achieving more autonomous algorithms. This paper is organized as follows.
The controller is presented in Sec.2, an experimental analysis is offered in Sec.
3 and 4, before drawing conclusions and outlining future work in Sec. 5.

2 Adaptive Operator Selection

Parameter tuning implies a high cost, reason why we will focus on parameter
control and more specially on the adaptive control of the applications rates of
operators that can be used in an EA. Considering a basic steady state EA, these
parameters are used to select for each generation which operator will be applied.
Actually, the concept of AOS has been widely studied for EAs and we may
decompose it in the basic actions depicted in Fig. 1 and described below.
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Fig. 1. AOS General Scheme

Impact Computation The first task consists in assessing the performances
of the operator that has been applied. Following the ideas developed in [12],
we evaluate an operator according to its impact on both quality and diversity,
which can be seen as criteria that reflect the balance between intensification and
diversification. Since considering a single value could not reflect the properties of
an operator, it is more representative to record several values over a sliding win-
dow [11] of size T . Different functions can be used to compute the performance
of the operator such as mean value or, as suggested in [6], the extreme value
(i.e., max). Wi will show that the choice of this function may fully change the
operator’s behaviour. Once the impacts in terms of quality and diversity have
been computed, they can be used to evaluate the operator.

Performance Evaluation The method presented in [12] plots ∆D (diversity
variation) vs∆Q (quality variation). In this framework, an user-defined angle θ is
introduced to set the desired compromise between quality and diversity. Its value
varies between 0 (maximum reachable diversity) and π

2 (maximum reachable
quality). The similarity between the direction induced by the operator and the
desired search direction (defined by θ) is computed as (sin(θ) · δD + cos(θ) ·
δQ)/

√
sin(θ)2 + cos(θ)2. Being this a multi-criteria measure, other evaluation

functions could be used (e.g., Pareto Dominance or Pareto Rank [13]), however,
they will not be considered in this study.

Credit Assignment Since we may have a wide variety of operator profiles, we
are interested in comparing –and rewarding– them in a fair way. Performance is
normalized according to the highest value and to the execution time of the oper-
ator (to set the trade-off between obtaining good results and the time invested
in doing it). The credit register is then used by the the operator selection pro-
cess. Note that, as for impact computation, the rewards can be computed over
a given period of time either using the max imum reward or the mean reward.
Nevertheless, it has been shown that this choice level has a negligible effect on
the overall behaviour of the controller[11].

Operator Selection The operator selection has been considered from two ba-
sic points of view. On the one hand, Probability Matching (PM) is the most
common method, based on a roulette-wheel routine: the application rate is pro-
portional to the reward. On the other hand, operator selection is related to rein-
forcement learning problems since it basically consists in discovering the optimal
application policy, i.e., applying the best possible operators, without neglecting



the potential offered by formerly-bad and not-used ones. Following ideas stem-
ming from Multi-Armed Bandit methods (MAB), we used an Operator Selection
scheme that has been firstly investigated in [3]. In MAB, the next operator is

chosen according to the following formula: MABo,t = ro,t+C
√

log
∑

k nk,t

no,t
where

ro,t is the cumulated reward obtained by operator o at time t, and n is the
number of times operator o has been applied so far. The scaling factor C1 is
used to properly balance the trade-off between both terms. Furthermore, ro,t
and no,t are reset when a change in operators’ behaviour is detected (according
to a Page-Hinkley test). This formula relies on the fact that all operators are
available from the beginning of the search.

3 Quality and Diversity Management

Experiments have been performed on the satisfiability problem (SAT) [1] for two
reasons: first, because SAT can encode a variety of problems with different fit-
ness landscapes; then, because we use a SAT-specialized algorithm [18] that has
several crossover operators whose performance is already known due to previous
studies [13]. Population size has been set to 30 for every different experiments
and a set of 20 crossover operators was used (to be detailed in Sec. 4). To show
that the controller’s behaviour is not dependent on the category of instances,
we use three SAT instances coming from both random (F500) and handmade
categories (SIMON, 3BIT). These instances have been chosen because they are
representative of different kind of instances and show different landscapes2. In
the following experiments we will focus on the behaviour of the population along
the execution time in terms of mean quality and diversity rather than the qual-
ity of the solution. Please notice that the execution time is constant for each
operator, so it will be assessed as the number of crossovers performed during
the search. We have observed that, with regards to the issues we want to high-
light, the behaviour of the controller is relatively equivalent for the considered
instances, reason why we will focus on the most representative figures. About
100 full experiments were executed for all different combinations of algorithm’s
components and strategies to change the angle’s value.

3.1 The Trade-off Hypothesis

Previous works claimed that the angle value π
4 would lead to a good compro-

mise between intensification and diversification. Our purpose is first to check
this hypothesis. We will present experiments made to compare PM and MAB,
considering how the mean and max impact computation criteria influence their
behaviour (see Sec. 2, § ‘Impact Computation’).

1 Let us note that some parameters are involved in MAB, but as studied in [11], their
influence is much less significant than initial operator application rates and they
have relative stable values over wide set of benchmarks.

2 For more details, we forward the interested reader to the SAT competition’s website
http://www.satcompetition.org/.



To start, we fixed θ = π
4 on the three considered instances. The following

pictures show the normalized population ’s entropy and the cost of all individuals
as they appear in each step (i.e., at each crossover, shown on the x-axis).

When using PM, we can see that the search behaviour shows great differences
between themean andmax criteria. As shown in the pictures, themean approach
can converge, depending on the instance, to both intensification (Fig. 2a) or
diversification behaviours (high entropy, Fig. 2b).

(a) Simon, PM mean, angle π/ 4 (b) F500, PM mean, angle π/ 4

Fig. 2. Experiments with fixed angle π/4

The same uncertainty holds when introducing the MAB approach. This can lead
either to a strong instability (Fig. 3a), without evident differences between the
mean and max approach, or to a behaviour favouring diversification (Fig. 3b) 3.

(a) SIMON, MAB max, angle π/ 4 (b) F500, MAB mean, angle π/ 4

Fig. 3. Experiments with fixed angle π/4

We have seen that setting the value of θ to π/4 produces a variety of differ-
ent behaviours (and not necessarily an intermediate compromise between diver-
sification and intensification). Apparently, the instance’s features (fitness land-
scape) or other settings of the controller (the operator selection scheme used)
are stronger factors than a fixed “universal“ value for θ. In order to elucidate the
real effect of the angle over the search, we will observe how the search behaviour
changes when the value of θ is modified during the search.

3 In this case, the controller shows a strong use of operator 6011, namely the only one
able to diversify, see Sec. 4.



3.2 Towards a More Dynamic Control

We have defined different strategies in order to dynamically change the angle
value during search:

– To split the execution time in several epochs and alternates the angle value
between 0 and π

2 (ALWAYSMOVING).
– To split the execution time in several epochs and angle values in equally dis-

tributed levels in [0, π
2 ] for each one. Angle can either increase (ANGLEIN-

CREASE ) or decrease (ANGLEDECREASE );
– To change the angle linearly over the execution time in [0, π

2 ], either increas-
ing (LINEARINCREASE ) or decreasing (LINEARDECREASE ).

In the following pictures we plot, along with the population’s Cost and Entropy,
the value of angle θ during the execution, in the range [0, π

2 ]. It has been remarked
that the EA behaviour does not change progressively product of small angle
variations, either when using the max or the mean criteria.

In some cases it seems to exist a threshold from where the behaviour changes
radically, supporting the hypothesis of the “positive feedback” proposed in [11],
except that this threshold is not always found at θ = π/4. Notice, for instance,
how MAB with the max criterion and ANGLEINCREASE strategy switches
near π

2 (Fig. 4b), while the switch occurs near π
4 for ANGLEINCREASE-mean

(Fig. 4a) and ANGLEDECREASE both mean and max (Fig. 4d). In some other
cases, particularly those mixing PM with decreasing strategies (with mean and
max ), the behaviour seems to be unaffected by the value of θ (Fig. 4c). When
increasing the angle, the mean criterion shows itself more reactive than max. We
can say that defining a dynamic strategy which accounts for progressive angle
variations does not represent an advantage in terms of control, since the search
behaviour does not react to progressive angle changes, but rather to trespassing
a threshold. This is not satisfactory from a dynamic behaviour point of view.

The hypothesis of a threshold value for θ that depends on the instance being
solved is supported by the observed behaviour of LINEARDECREASE and
LINEARINCREASE in different instances (Fig. 5): When using MAB, there
clearly exists an angle value that triggers a different search behaviour. Notice
that the threshold value is different depending on whether we are increasing
(Figs. 5 c and d) or decreasing (Figs. 5 a and b) θ . This could make difficult to
find a compromise value, since it would depend on initial state of diversity.

Given that θ produces basically two extreme behaviours, we could devise a
control strategy that simply alternates between minimum and maximun values
in order to control both quality and diversity. This can be seen in experiments
carried using the ALWAYSMOVING strategy, in which the MAB clearly reacts
to angle changes in both mean and max impact computation criteria (Fig. 6).

4 Operators Management

Another relevant goal of this study is to investigate and understand how the
control affects the Operator Selection during the search process. Operators lead



(a) SIMON, MAB mean,
ANGLEINCREASE

(b) SIMON, MAB max,
ANGLEINCREASE

(c) 3BIT, PM max,
ANGLEDECREASE

(d) 3BIT, MAB max,
ANGLEDECREASE

Fig. 4. Experiments with ANGLEINCREASE and ANGLEDECREASE

to the concentration of the population into specific search space areas (thus
favouring intensification), others have it spread, thus favouring diversification.

To this goal, we have used a selection of 20 crossover operators from the set of
more than 300 crossover operators defined in [13], combining four basic features.

We have grouped them according to their expected effect over population: di-
versification: 0035, 0015, 4455, 6011; intensification: 0011, 1111, 1122, 5011,
3332, 1134, 0022, 2352, 4454, 1224, 0013; neutral: 2455, 4335, 1125, 5035, 1335.
Preliminary experiments have shown that, despite the above-mentioned expected
effects, the behaviour induced by operators may be rather unclear at some point,
except for 6011, which has shown excellent diversification capabilities in every
condition. We will focus on the behaviour of the operator selection module w.r.t.
its skill on dealing with those operators during diverse search epochs.

As a starting point, we show the operators frequency application when using
a fixed angle. When favouring diversification (θ = 0), both PM and MAB are able
to identify the operator 6011 as the one able to insure the utmost diversification,
using both max and mean. Notice that the probabilistic nature of PM can incur
on the risk of applying a “wrong” operator if this has been applied in the early
stage of the search. This is the case of the operator 1111, which is an operator
favouring intensification, but that has been used by PM mean (Fig. 7a). MAB
instead (Fig. 7b) does not show this shortcoming.



(a) SIMON, MAB max,
LINEARINCREASE

(b) SIMON, MAB mean,
LINEARINCREASE

(c) SIMON, MAB max,
LINEARDECREASE

(d) SIMON, MAB mean,
LINEARDECREASE

Fig. 5. Experiments with LINEARINCREASING and LINEARDECREASING

At this point, we have also to remark that it is obviously difficult to intensify
the search when the population has reached a good mean quality, therefore
intensification operators may then turn to another behaviour when being applied.
In the following pictures, we are displaying, along with Cost, Entropy and Angle,
the operator’s relative application rate.

When imposing the maximum desired quality (θ = π
2 ), MAB mean is able to

identify the intensifier operator 1111 (Fig. 9a). The same happens with the MAB
max, even with higher application magnitude (Fig. 9b). Note that when applying
MAB, the operator selection process makes all operators to be selected at least
a minimum number of times through the search: for this reason, operators which
are known to not provide any intensification are deemed to worth a try. This
is the case of the diversifying operator 6011, that has been detected and used
in both mean and max. This is different with PM: When 6011 is not randomly
selected at the early search stage, its not likely to be selected, neither using mean
(Fig. 9c) nor max (Fig. 9d). Notice that also with PM the operator 1111 has
been detected and used, but its magnitude is smaller than in the MAB case.

When dynamically changing the angle, the advantages of using MAB rather
than PM become evident by analysing the operator frequency: in ANGLEDE-
CREASE, PM turns not to be utterly unable to detect the operator 6011 as
diversifying agent, in both mean and max. This is given by the fact that in the
first search stages, when intensification is advocated, high rewards are assigned



to other operators. These high rewards make them to be applied also in fur-
ther search stages (Fig 8e, only the mean case is reported). For each operator,
several bars are plotted, each of which corresponds to a different search epoch,
identified by a diverse angle value. MAB does not show this shortcoming, being
able to correctly identify the operator 6011 as the best diversificator, in both
ANGLEINCREASE and ANGLEDECREASE (Fig. 8f).

(a) SIMON, MAB max,
ALWAYSMOVING

(b) SIMON, MAB mean,
ALWAYSMOVING

Fig. 6. SIMON, ALWAYSMOVING

(a) 3 BIT, PM mean, angle 0 (b) 3 BIT, MAB mean, angle 0

Fig. 7. Operator Frequency: angle 0

When applying ANGLEINCREASE, PM max identifies soon the operator
6011 as the one apt to diversify, applying it less and less as the angle value
decreases (Fig. 8g). PM mean also discriminates among search epochs, but the
operator 6011 is uniformly applied over the first two epochs (Fig. 8h).

Similar conclusions can be drawn when considering extreme and consecutive
angle changes (ALWAYSMOVING): PM max is able to understand when to use
operator 6011, when starting from both θ = π

2 (Fig. 8a) and θ = 0 (Fig. 8b).
PM mean is instead incapable to self-adapt to these angle changes, and shows
furthermore a huge application of operator 2455, which is a neutral one (Fig. 8c).
MAB has instead no problem in self-adapting to extreme angle changes: using



(a) PM Simon Always
moving 1, Max Rew

(b) PM Simon Always
moving 0, Max Rew

(c) PM Simon Always moving
0, Mean Rew

(d) MAB Simon Always
moving, Max Rew

(e) PM Simon Decrease,
Mean Rew

(f) MAB Simon Decrease,
Max Rew

(g) PM Simon Increase, Max
Rew

(h) PM Simon Increase,
Mean Rew

Fig. 8. Operator Frequency

both mean and max, and in both ANGLEINCREASE and ANGLEDECREASE,
the behaviour can be summarised by Fig. 8d.



(a) F500 MAB mean, angle π/2 (b) F500 MAB max, angle π/2

(c) F500 PM mean, angle π/2 (d) F500 PM max, angle π/2

Fig. 9. Operator Frequency: Angle π/2

5 Conclusion

The general parameter control paradigm is related to the algorithm selection
problem [16], which consists in selecting the most efficient algorithm for solving
a problem at hand. Here, this selection is adaptive or dynamic and this general
paradigm may open a new perspective for finding Free Lunch Theorems [15]. At
least, there is a need of more formalized tools and criteria to compare algorithm’s
performances in term of reliability, adaptability and autonomy.

We have shown that, changing the angle value during search allows the con-
troller to control the desired features. Since diversity depends not only on the
value of θ but also in its previous state, extreme changes in θ seem to be the more
straightforward way to control diversity. A finer diversity control could be done
using two approaches: either to define how long these extrema values should
be maintained, or to closely monitor the obtained diversity values and adjust
θ according to the strategy schedule. Additional experiments are being carried
out, which embed a mechanism to insert new operators on the fly. Further work
will address the dynamic adjustment of the angle value based on the difference
between desired and actual levels of intensification–diversification trade-off.

This work was supported by the French Chilean ECOS program C10E07
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