
HAL Id: hal-03255406
https://univ-angers.hal.science/hal-03255406v1

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous operator management for evolutionary
algorithms

Jorge Maturana, Frédéric Lardeux, Frédéric Saubion

To cite this version:
Jorge Maturana, Frédéric Lardeux, Frédéric Saubion. Autonomous operator management for evo-
lutionary algorithms. Journal of Heuristics, 2010, 16 (6), pp.881-909. �10.1007/s10732-010-9125-3�.
�hal-03255406�

https://univ-angers.hal.science/hal-03255406v1
https://hal.archives-ouvertes.fr

Journal of Heuristics manuscript No.
(will be inserted by the editor)

Autonomous Operator Management for Evolutionary

Algorithms

Jorge Maturana1
· Frédéric Lardeux2

·

Frédéric Saubion2

Received: date / Accepted: date

Abstract The performance of an evolutionary algorithm strongly depends on
the design of its operators and on the management of these operators along
the search; that is, on the ability of the algorithm to balance exploration and
exploitation of the search space. Recent approaches automate the tuning and
control of the parameters that govern this balance. We propose a new technique
to dynamically control the behavior of operators in an EA and to manage a
large set of potential operators. The best operators are rewarded by applying
them more often. Tests of this technique on instances of 3-SAT return results
that are competitive with an algorithm tailored to the problem.

Keywords Parameter control · Adaptive search · Hyper-heuristics ·
Algorithm design

1 Introduction

Evolutionary algorithms (EA) [19,16,31,26] have been widely used for dis-
crete and continuous optimization problems, covering a wide range of applica-
tions. Originally inspired by the principles of natural evolution, evolutionary
algorithms manage a set of possible configurations of the problem, which are
progressively modified by variation operators, in order to converge to an opti-
mal solution or, at least, to a sub-optimum of good quality. The evolutionary

1Instituto de Informática

Universidad Austral de Chile

General Lagos 2086, Campus Miraflores
5111187 Valdivia, CHILE
E-mail: jorge.maturana@inf.uach.cl
2Laboratoire LERIA

Département Informatique

Université d’Angers

UFR Sciences, 2 Boulevard Lavoisier
49045 Angers, FRANCE
E-mail: {lardeux,saubion}@info.univ-angers.fr

2

metaphor considers configurations as individuals that belong to a population
which evolves by means of genetic operators, namely mutation and crossover.
Evolutionary algorithms belong to the more general class of metaheuristics
[25].

Algorithm Design and Parameters

The performance of evolutionary algorithms relies mainly on the definition
of an appropriate encoding of the problem and on the design of efficient op-
erators. Once this structure is defined, the user has to adjust the behavior of
the algorithm by means of parameters.

The most straightforward parameters are the operator application rates.
These parameters, along with population size, are generally considered as mi-
nor modifiers since the algorithm remains essentially unchanged, regardless
of their values. Recent advances in parameter setting techniques have lead
to handle other parameters, such as parameters related to the encoding, the
evaluation and the selection processes, which may modify substantially the
algorithm. For instance, Simulated Annealing could be seen as a particular in-
stance of an Evolutionary Algorithm using a one-individual population, with-
out crossover nor mutation, but with specialized local search and reinsertion
operators.

It is difficult to assess when –by modifying parameter values– an algorithm
becomes another one. Designing and tuning the most suitable algorithm for a
given problem is an important issue that has been studied for many years. The
algorithm selection problem was formerly defined by John Rice in the 70’s [47]
and is now at the crossroads of several computer science research areas [52].

Although it is difficult to clearly assess which parameters can lead to an
algorithm transformation, we may intuitively distinguish between two general
classes of parameters: the behavioral parameters (mainly operator application
rates or population size) and the structural parameters, that could eventually
transform an algorithm (e.g., those related with the encoding and the choice of
operators). This classification is related to the distinction between numerical
and symbolic parameters pointed out by Smit et al.[51].

Even though the setting of behavioral parameters has been widely stud-
ied (see the recent textbook [37]), it remains a particularly difficult task for
the user. This setting often relies on empirical rules and/or problem-domain
knowledge. Typically, the adjustment of parameters relies on a series of time-
consuming experiences. These approaches reduces thus the generality of the
obtained values when considering other problems. On the other hand, con-
trol methods work directly on the values of the parameters while solving the
problem, i.e., on-line. Such kind of mechanisms for modifying parameters dur-
ing an algorithm execution were invented early in EC history, and most of
them are still being investigated nowadays. Indeed, there is at least two strong
arguments to support the idea of changing the parameters during an EA run:

– As evolution proceeds, more information about the landscape is known by
the algorithm, so it should be possible to take advantage of it. This applies
to global properties (for example, knowing how rugged is the landscape)

3

and to local ones (for example, knowing whether a solution has been im-
proved lately or not).

– As the algorithm proceeds from a global (early) exploration of the land-
scape to a more focused, exploitation-like behavior, the parameters should
be adjusted to take care of this new reality. This is quite obvious, and it
has been empirically and theoretically demonstrated that different values
of parameters might be optimal at different stages of the search process
(see [18] and references therein).

In addition to behavioral parameters, the choice of the structural compo-
nents of the evolutionary algorithm also requires expertise from the user. In
many application domains, that directly pertain to standard representations,
users who are not EA-experts can simply use off-the-shelf EAs, with classic
(and thus non-specialized) variation operators to solve their problems. How-
ever, the same users will encounter great difficulties when faced to problems
that fall out of the basic frameworks. Even if standard variation operators ex-
ist in literature (such as the uniform crossover [53]), acceptable results depend
necessarily on the specialization of the algorithmic scheme, which usually re-
quires the definition of appropriate operators. The design of problem-specific
operators requires much expertise, though some advanced tools are now avail-
able [13]. In any case, the impact on the computation process of problem-
specific operators is even more difficult to forecast than those of well-known
operators, and thus their associated parameters are harder to be correctly
estimated a priori.

Hyper-heuristics and Related Works

The problem of finding the best configuration in a search space of heuris-
tic algorithms is related to the more recent notion of Hyper-heuristics [7,9,
11]. Hyper-heuristics is a family of methods that aim at automating the pro-
cess of selecting, combining, generating or adapting multiple simpler heuristics
(or components of such heuristics) to efficiently solve computational search
problems. Hyper-heuristics, defined as “heuristics to choose heuristics” [10]
or “heuristics to generate heuristics” [1], address the problem of finding a
(quasi-)optimal solution in the (meta)heuristics search space. This idea was
pioneered in the early 60’s with the combination of scheduling rules [21,12].
Hyper-heuristics have been widely used for solving combinatorial problems
(see Burke et al. [7] for a recent survey).

Burke et al. [8] propose a comprehensive classification of hyper-heuristics
considering two dimensions: the nature of the search space and the source of the
feedback for learning. They distinguish between heuristics that select heuristics
from a pre-existing set and heuristics that generate new and more complex
ones, from basic components. Concerning the feedback, they identify three
categories: online learning, offline learning and no learning. The distinction
between online and offline learning was previously proposed in order to classify
parameter setting in evolutionary algorithms [17], differentiating parameter
tuning (offline) from parameter control (online).

4

As classical offline mechanisms, we may mention portfolio algorithms [32,
59], where previously acquired knowledge is used in order to select a suitable
resolution method for a given problem instance. Hutter et al. [33] have also
proposed to use a local search algorithm that automatically finds the correct
configuration in a search space composed of solving algorithms.

Online control of algorithms has been fully integrated in evolutionary com-
putation through self-adaptive algorithms [44] and adaptive strategies [55].
Focusing initially on local search algorithms, Battiti et al. [4,3] have also
federated a reactive search community around online control. This general
paradigm, that aims at producing autonomous algorithms [30], is now emerg-
ing mixing several computer science areas, including machine learning, com-
binatorial optimization and constraint programming [2,29].

Hyper-heuristics may also be used to discover new heuristics and thus
automatically design new solving algorithms. For instance, Fukunaga [23] has
used genetic programming to learn new performing heuristics for local search
algorithms in order to solve SAT problems.

An Autonomous Approach for Operator Management

In this work, we propose a new approach to build an autonomous EA, that
handles parameters that determine its behavior, and also decides which oper-
ators will be included in the algorithm. Since both operations are performed
online, our approach qualifies as a two-stage online selection hyper-heuristic.
In this paper, the operators are generated by composing basic sub-operators,
thus this approach could also be classified as a hyper-heuristic that discover
new good operators by combination.

The performance of the evolutionary algorithm is assessed by means of
measures that evaluate the current state of search. Two well-known criteria
are commonly used: diversification and intensification. Diversification reflects
the trend to explore various areas of the search space. Intensification is related
to the convergence of the search in a specific area. As a consequence, we use two
measures previously introduced to control the balance between intensification
and diversification [42], namely the average quality of the population and its
genetic diversity.

This measures are considered in order to control the algorithm at two differ-
ent levels: the behavioral level deals with the application of the operators while
the structural level corresponds to the inclusion and/or deletion of operators,
according to their observed performance.

For experimental purposes, we use an evolutionary algorithm that solves
the canonical problem of satisfaction in propositional logic (SAT) [24,49,6].
The algorithm GASAT [36], proposed a few years ago, has obtained interesting
results at the SAT competition in 2004. We have modified this algorithm in
order to create more than 300 varieties of crossover operators, that will be
managed by our controller.

Our goal is twofold:

5

– Show that an evolutionary algorithm may select and apply autonomously
operators adapted to the current state of the search, thanks to our control
mechanism and,

– Show that, without any previous knowledge about the most successful op-
erators, the controller can identify the most successful ones and reach
a comparable performance w.r.t. those obtained with the GASAT using
hand-crafted operators issued from a long and deep study.

The article is organized as follows. After this general introduction to set-
tle down our approach, some key concepts related to parameter settings for
evolutionary algorithms are presented in section 2. A short review about evo-
lutionary algorithms applied to the SAT problem is provided in section 3. The
details of our implementation and the experimental settings are presented in
sections 4 and 5. Experimental results are discussed in section 6 to finally draw
conclusions in section 7.

2 Autonomous Parameter Control for Evolutionary Algorithms

Besides the classification of hyper-heuristics presented in the previous section,
another taxonomy of parameters setting can be considered. Many previous
studies have addressed the problem of parameter setting for evolutionary al-
gorithms [45]. We refer the reader to an exhaustive survey published recently
[37]. In this section, we will focus on the points that are directly related to our
method.

2.1 Parameter Setting in Evolutionary Algorithms

Parameter setting can be classified using the taxonomy proposed by Eiben et
al. [17], shown in figure 1.

Fig. 1 Control taxonomy proposed by Eiben et al. [17]

In this taxonomy, setting methods are classified depending on whether they
attempt to set parameters before the run (tuning) or during the run (control).
The goal of parameter tuning is to obtain parameters values that could be
useful over a wide range of problems. Such results require a large number of
experimental evaluations and are generally based on empirical observations.

6

Parameter control is divided into three branches according to the degree
of autonomy of the strategies. Control is deterministic when parameters are
changed according to a previously established schedule, adaptive when param-
eters are modified according to rules that take into account the state of the
search, and self-adaptive when parameters are encoded into individuals in or-
der to evolve conjointly with the other variables of the problem. In this work,
we focus on adaptive control.

2.2 Adaptive Operator Selection

During the last years, Adaptive Operator Selection (AOS) have been used
as a generic framework to control parameters of evolutionary algorithms. The
main idea (illustrated by figure 2) is to consider the impact of an operator over
the search and update a credit registry, that keeps a trace of the success or
failure of operators during the last applications. The knowledge stored in this
registry is then used to choose the next operator to apply. The update of the
registry is done by the Credit Assignment module, while the selection of the
operator to apply is performed by the Operator Selection module. Therefore,
adaptive operator selection uses reinforcement learning to control parameters
of heuristics.

Fig. 2 General approach for the adaptive selection of operators

2.2.1 Credit Assignment

Traditionally, operator evaluation is exclusively based on population quality
[55,20]. This quality can be measured comparing the offspring and their par-
ents [38,56] or by considering the best [14] or median [34] individuals. It may
be interesting to use more sophisticated statistical tools that detect high fit-
ness values in order to reward operators that have a beneficial effect at some
specific instant instead of a good average behavior, such as in [57]. The geneal-
ogy of the individual (i.e., the fitness of the ancestors), can be also considered
[38,56].

In previous works, we have proposed to use conjointly the average quality
of the population and its diversity [41]. These two measures can be handled

7

differently The main objective is to propose a reward system as generic and
as robust as possible. This reward system should also be sensitive enough to
variations in the effect of the operators, in order to promptly adapt to the new
situation.

2.2.2 Operator Selection

Operator selection selects the operator to apply for the next search step, based
on the credits previously assigned. Again, there are many possible choices, such
as selecting operators with a probability proportional to their rewards [27], or
using more sophisticated models. Fialho et al. [20] use a multi-armed bandit,
issued from game theory, to select the operator, ensuring that an operator
cannot be infinitely unused. Other approaches include adaptive pursuit [54] or
APGAIN [58], where learning and solving stages alternate in order to adjust
the operator selection. The main idea is to propose a selection mechanism able
to automatically adapt to the current performance of the operators, in order
to always use the best suited ones.

3 Evolutionary Algorithms for SAT

This section describes the evolutionary algorithm that will be used by the con-
troller in order to solve the SAT problem, focusing on its crossover operators.

3.1 The SAT problem

The seminal SAT problem [24,49] consists in finding an assignment that sat-
isfies a Boolean expression. An instance of this problem is a Boolean for-
mula written in conjunctive normal form (CNF), i.e. a conjunction of clauses.
Clauses are disjunctions of literals. A literal is a variable or a negated vari-
able. When all the clauses can be satisfied, the problem is said to be satisfiable.
Whether the problem is satisfiable or not, it is always interesting to minimize
the number of false clauses (MaxSAT). Traditionally, two families of methods
can be used to solve this problem: exact methods, which find an answer to the
decision problem (i.e., if it is satisfiable or not) and approximate methods that
address the optimization problem (i.e., minimize the number of false clauses).

The motivation of considering the SAT problem as testbed is that there
exists a large variety of instances, coming from different kinds of problems
(random, hand-made and industrial). The instances have then different prop-
erties and search landscapes.

3.2 Evolutionary Algorithms for SAT

Evolutionary algorithms for SAT [15,22,39,28,48,36] belong to approximate
methods. Different operators can be used in evolutionary algorithms: mutation,

8

crossover and local search operators. Specialized operators are often used in
order to improve the performance of these algorithms.

We use an evolutionary algorithm based on GASAT [36]. GASAT is cur-
rently one of the most effective evolutionary algorithms for SAT. Its basic
principles can be sketched as follows:

initialize the population P randomly;
while stop condition is not satisfied do

identify the subpopulation B of the best individuals in P;
choose randomly two individuals x,y from B;
apply the CC crossover over x and y to obtain z;
perform local search over z;
if fitness(z) is better than the worst individual in B then

delete the oldest individual in P;
insert z in P;

end

end

Algorithm 1: General GASAT formulation

Several stopping conditions can be used, including finding a solution to the
problem, or a maximum number of elapsed crossovers, to name a couple.

Since the purpose of our work is to highlight the properties of the controller,
GASAT has been slightly modified in order to keep only its basic skeleton and
to focus on the effects of the controller. Therefore, the selection is performed
randomly and the local search has been removed. The new individuals always
replaces the oldest one, regardless of their quality.

3.3 A family of crossover operators for SAT

The design of operators has a great influence over the search. One way to mea-
sure their impact is to consider their effect over the diversity of the population.
Some operators may induce a concentration of individuals in some specific area
of the search space (exploitation), while others may promote exploration by
spreading them. These two tendencies are required at different steps of the
search, and it is desirable to use appropriate operators. In this work, we define
a wide set of crossover operators, that have different effects in terms of Explo-
ration versus Exploitation (EvE). All crossovers produce one child from two
parents. Most of these crossovers aim to transfer the good properties of the
parents into their descendants. Consider for instance the following operators
(note that since an individual represents a Boolean assignment, we say that
a clause is true for an individual if the corresponding assignment satisfies the
clause):

– The Uniform crossover [53] keeps the value of variables that are identical
in both parents

9

– The FF crossover, proposed by Fleurent and Ferland [22], uses the set of
clauses that are true in one parent and false in the other. Only the values
of the true literals appearing in these clauses are kept.

– The CC crossover [35] deals only with clauses that are simultaneously false
in both parents and turn them into true in the child by flipping a variable
in each one of them.

– The CCTM crossover [35] operates like CC but it also works on clauses
that are true in both parents to ensure that the clauses will be also true
into the child.

Most of the time, few crossover operators are designed for diversification
purposes. In order to induce different levels of EvE, we have modified several
crossovers in order to detect similar properties and break them. Consider for
instance, the following possible basic actions:

– A “reverse” uniform crossover, that flips all true values of variables that
are identical in both parents

– The Not True Maintenance crossover that deals only with clauses that are
true in both parents and makes them false in the child.

We have defined a large set of crossover operators (307 in total), which
correspond to combinations of four basic features. In this set, we find some
crossovers that are able to diversify, others that will improve quality and fi-
nally many of them whose effect lies in between. Most crossovers are built with
the following basic features, being defined by a quadruplet as follows:

I. Selection of clauses that are false in both parents:

1. select none
2. select them in chronological order
3. choose randomly one
4. choose randomly one from the set of smallest clauses
5. choose randomly one from the set of biggest clauses

II. Action on each of the false clauses:

1. do nothing
2. flip the variable that maximizes the number of false clauses that become

true
3. same as previous one, but also minimizing the true clauses that become

false
4. flip all the variables
5. flip the literal which appears less often in the rest of the clauses

III. Selection of clauses that are true in both parents:

1. select none
2. select them in chronological order
3. choose randomly one
4. choose randomly one from the set of smallest clauses

10

5. choose randomly one from the set of biggest clauses

IV. Action on each of the true clauses:

1. do nothing
2. set to true the variable whose flip minimizes the number of false clauses
3. set all literals to true
4. set to true the literal whose negation appears less often in the rest of the

clauses
5. set all literals to false

All variables that remain undefined in the child are valued using the uni-
form crossover process explained before. We can obtain many different crossover
operators. For instance 2211 corresponds to CC and 2222 to CCTM. Some
quadruplets are not valid (1i** or **1i with i ∈ {2, 3, 4, 5})

Finally, the FF crossover is combined with all the basic features previously
mentioned, and the reverse uniform crossover is added, obtaining a total of
307 operators.

4 Controller Description

This section presents the general control mechanism, whose architecture is
depicted by figure 3. Two main components can be identified:

– Adaptive Operator Selection (AOS) [40]: as discussed in section 2, adaptive
operator selection communicates with the evolutionary algorithm in order
to decide which operator will be applied. Adaptive operator selection also
receives feedback from the algorithm in order to update the credit reg-
istry, that stores the rewards assigned to each operator. This component
deals with behavioral parameters, related with the application rate of the
operators that are available to the algorithm at a given time.

– Blacksmith is related to the structural parameters of the EA. It constitutes
the “operator manager” that decides which operators will included in the
adaptive operator selection (and therefore available to the EA) at each step
of the search. The operators are built according to a specification or simply
taken from a list of operator names.

We want to highlight the conceptual difference between the two compo-
nents of the controller. Blacksmith designs the evolutionary algorithm that
is managed by the Adaptive Operator Selection. Back to the classification of
hyper-heuristics [8], adaptive operator selection can be seen as a heuristic to
select the suitable operator while Blacksmith is a heuristic to generate opera-
tors. In our approach, the choices concerning the adaptive operator selection
are thus dependent on those concerning Blacksmith. The next sections will be
devoted to the description of these two components.

11

Fig. 3 General scheme of the controller, depicting its two main components, adaptive op-
erator selection and Blacksmith

4.1 Adaptive Operator Selection

Roughly speaking, given a set of operators, we want to apply the best possible
ones. However, an optimal choice is difficult because of the dynamic nature of
evolutionary algorithms. On the one hand, it is preferable to apply operators
that have shown a good performance in the recent past. On the other hand,
other operators must be tried occasionally, in order to discover those that
could become appropriated to the current state of the search. This situation is
indeed a typical Exploration vs Exploitation dilemma, not at the evolutionary
algorithm level, but at adaptive operator selection level.

4.1.1 Credit Assignment

As mentioned in section 2, it is necessary to evaluate the performance of the
operators after their application. The Compass [43] and ExCoDyMAB [40]
methods consider three different criteria: variation of diversity, variation of
quality and execution time. ∆Diversity represents the genotypic diversity
variation, according to the chosen diversity measure, and ∆Quality is the
variation of mean quality, according to the fitness function of the problem.
The objective is then to maximize the first two criteria and to minimize the
third one. Since these objectives may be contradictory, we need to precisely
define how to combine these criteria in order to obtain a single evaluation
value.

The method Compass (C) [43] (Figure 4.a), considers the distance from a
point that represents the operator o in the (∆Diversity, ∆Quality) space to a
line tilted with an angle of Θ = π/4, which correspond to the desired balance
between quality and diversity.

12

In this work, two other schemes of evaluation are compared, both based on
the concept of Pareto dominance [46]. In an n-dimensional space, we say that
a point a = (a1, a2, . . . , an) dominates another point b = (b1, b2, . . . , bn) if ai is
better than bi ∀i = 1 . . . n. Here the word “better” is used in the context of the
aim of the optimization problem: if we consider a maximization problem in
the dimension i, then a dominates b if ai > bi, on the opposite, if the objective
is to minimize, then a dominates b if ai < bi. When none of the two points
dominate each other, they are said incomparable. In our case, we have a 2-
dimensional space (∆Diversity, ∆Quality) with two criteria that we want to
maximize.

The first method, Pareto Dominance (PD), counts the number of opera-
tors dominated by each one (see figure 4.b). The best one corresponds to the
highest value. The Pareto Rank (PR) method counts the number of operators
that each operator dominate, (figure 4.b) and lowest values are thus the best
ones. Operators with a PR value of 0 belong to the Pareto frontier. There is
an important difference between these two evaluations: whereas PR encour-
age exclusively non-dominated operators, PD also rewards those which are in
strong competition with the others.

Fig. 4 Credit Assignment Schemes. Compass (a), Pareto Dominance (b), Pareto Rank (c)

After the application of an operator, the values of ∆Diversity and ∆Quality
are sent to the controller. The credit assignment module computes the eval-
uation (using C, PD or PR), and normalizes the values w.r.t. all operators.
Normalized values are stored into the Credit Registry as the assigned rewards.
A list of the last m rewards of each operator (corresponding to its last m ap-
plications) is recorded in the registry, in order to provide updated information
about the performance of each operator to the operator selection module.

4.1.2 Operator Selection

The operator selection module selects the next operator to be applied. Ex-
DMAB [40] is inspired by the methods of multi armed bandits used in game
theory. This strategy always chooses the most efficient operator according to
the formula:

13

MABo,t = ro,t + C

√

log
∑

k nk,t

no,t

(1)

where ro,t is the reward obtained by the operator o at current time t, and
no,t is the number of times that the operator o has been applied so far. The
left term (rot) favors the use of the best operators, while the right term favors
the operators that have been applied less often. Additionally, the values of ro,t

and no,t are reset when a change of the operators’ behavior is detected, in
order to speed up the identification of better operators.

The expression 1 relies on the assumption that all operators are present
in the evolutionary algorithm from the beginning of the run. If an operator is
inserted during the execution, its value of no,t would be so low that it would
have to be applied many times to adjust the value of the expression 1 w.r.t.
the rest of the operators.

Here we have reformulated the expression 1 in order to deal with a dynamic
set of operators. The measure corresponding to the number of times that an
operator has been applied is replaced by another criterion that corresponds to
the number of generations elapsed since the last application of the operator
(i.e., its idle time). The evaluation of a new operator is immediately raised by
applying it only once. The new MAB formula is then defined as:

MAB2o,t = ro,t + 2 × exp(p × io,t − p × x × NOt) (2)

where io,t is the idle time of operator o at time t. NOt is the number of
operators considered by the adaptive operator selection at time t, x expresses
how many times NOt the controller must wait before applying o compulsory.
The behavior of the exploration component is highlighted by figure 5. The
value stays close to zero except when io,t is close to x×NOt. Since ro,t ∈ [0, 1]
(normalization), if an operator has not been applied for a long time then its
application becomes mandatory. p is a parameter that adjusts the slope of the
exponential.

Fig. 5 behavior of exploratory component of expression 2

In our work, we compare the following four different operator selection
modules:

14

– Random (R), that simply chooses randomly among the operators cur-
rently available to the EA.

– Probability Matching (PM), that chooses the operator with a prob-
ability proportional to the reward values stored by the credit assignment
module.

– MAB2 (M2) (already described), that always chooses the operator that
maximizes the expression 2

– MAB2 + Stuck detection (M2D), that adds to M2 a method to detect
if the population is trapped into a local optimum. This test is performed by
considering the mean quality of the population. The detection is performed
thanks to the linear regression of the values of mean quality during the last
generations. If the value of the slope is close to zero and the difference be-
tween maximum and minimum values of mean quality is small enough, a
diversification stage is decided, carried on by choosing exclusively opera-
tors with an exploratory profile. This diversification stage is maintained
until the diversity reaches a range over the original value, when there are
no exploration operators, or when a number of generations have passed
without being able to reach the desired diversity.

4.2 Blacksmith

Blacksmith is the component that manage the inclusion or exclusion of the
operators, in order to provide the evolutionary algorithm with operators. Since
deleted operators could eventually be useful in the future, Blacksmith keeps a
trace of them. An operator may have three main states (figure 6).

– Unborn, corresponds to the operators that have never been used during
the execution of the algorithm.

– Alive, corresponds to operators that are currently in the Credit registry
and therefore available to the EA. Operators in this state have two pieces
of information attached: the data, that corresponds to recent measures of
performance, and the profile, which summarizes the information in data,
by calculating meaningful statistics.

– Dead, corresponds to operators that have been deleted from the Credit
Registry. Dead operators lost their data structure, but keep their profile.
A future insertion back into the credit registry (revival) would not be
performed blindly.

Note that, besides their performance measures, all the information known
by the controller about the operators is their name. The controller is inde-
pendent from the evolutionary algorithm and thus no implementation details
are included in the algorithm. The evolutionary algorithm must implement
and apply the operators. This architecture ensures the independence of the
controller, and its possible use with different evolutionary algorithms without
any noticeable change.

15

profile

data
name

Unborn Alive Dead

birth death

revival

name

profile

name

Fig. 6 Operator states and corresponding information associated to operators

Blacksmith controls the structural parameters, deciding whether and when
the operators will be available to the EA. As shown in figure 3, its specific tasks,
are the following:

– Create the operators, according to their definition. This task could be
performed by combining different basic features or simply by taking their
definition from a list of possible operators. In this work, the combination
is done by combining the basic features given in section 3.3.

– Add operators to the Credit registry, to make them available to the EA.
This corresponds to the born transition shown in figure 6.

– Analyze the operators that currently belong to the Credit Registry, in
order to decide if some of them must die or if a new operator (either
unborn or dead) must be (re)inserted to the registry

– Eliminate operators from the registry (death transition shown in figure
6).

– Stores the profile of eliminated operators.
– Restitute dead operators back into the Registry when needed (revive tran-

sition shown in figure 6).

Note that the elimination of an operator does not necessarily mean that
it is essentially bad since it is performed according to the current state of
the search and the remaining operators in the registry. If the registry contains
several good diversification operators, but the search requires an intensification
stage, one of them will be deleted. The deleted operator could be useful later
and that is why dead operators keep their profile.

We used a simple strategy to manage the operators in the registry. A fixed
number of operators is kept in the registry, and evaluated at regular intervals.
Operators that have been applied a sufficient number of times are considered
for deletion. This condition is required to guarantee that the operator has a low
performance. The weakest of those ”known-enough” operators is deleted and
a new one is inserted in the registry. In order to give all operators a chance
to show their skills, all unborn operators are tried before Blacksmith starts
reviving dead operators. Unborn operators are inserted in a random order.

16

5 Experimental Setting

In this section we present the experimental framework to test our method on
the resolution of the SAT problem. We compare different configurations of the
controller against the state of the art crossovers presented in section 3.3 (i.e.,
FF, CC and CCTM). As baseline, we use an EA with only Uniform crossover
and an EA with a controller that simply chooses randomly one of the 307
possible operators, called R307.

5.1 Testbed

In our experiments we have selected 8 instances from different SAT and Beijing
competitions [50,5]. These benchmarks were selected from different families of
instances (random, handmade and industrial):

– f500 and uf250-010 are randomly generated threshold instances,
– aim-100-1 6-yes1-1 (noted aim-100 in the following) is a random instance

modified to have only one solution,
– engine 4 nd.cnf (noted engine in the following) is an instance of very large

scale integration (VLSI),
– ibm-2004-29-k55) (noted ibm in the following) is an industrial instance of

bounded model checking (BMC),
– simon-s02b-r4b1k1.2 (noted simon in the following) is a difficult instance

from SAT competition,
– bw large.d is a planning instance (blocks world),
– flat200-19 is a graph coloring instance.

The algorithm (see section 1) is applied 50 times for each controller (or
crossover) and instance. The population has 100 individuals and the number
of allowed fitness evaluations (corresponding, in this case, to crossover appli-
cations) is 100 000.

5.2 Controller Meta-Tuning

Our objective is to test different combinations of Credit Assignment and Oper-
ator Selection mechanisms introduced in 4.1.1 and 4.1.2. These combinations
will be identified by the notation X − Y , where X ∈ {C, PD, PR} denotes
the Credit assignment mechanism used, and Y ∈ {M2, R, M2D, PM} is the
mechanism for operator selection.

The parameters of the controller are the parameters of the Blacksmith
and the parameters of MAB2 and M2D. The registry has a fixed size of 20
operators. Every 50 generations1 , the Analyzer is invoked in order to find a
weak operator to replace it by a fresh one. If an operator has been sufficiently

1 According to the usual taxonomy, this algorithm is a steady state evolutionary algo-
rithm, thus a generation corresponds to the application of one operator

17

applied (1

2
of the size of the registry, i.e., 5 times) and if its reward is in the

lower third compared to the other operators, it is selected to be deleted.

The parameters of M2 are p = 0.2 and x = 1.5. M2D uses the data of the
last 100 generations to compute the linear regression. The diversification stage
is triggered when the value of the slope is within ±0.0001 and the difference
between maximal and minimal values is less than 0.001.

Of course, it can be argued that we have replaced the original parameters
of the evolutionary algorithm by new ones, so the problem of their setting
remains the same. We must remark that we are dealing with several hundred
of operators, deciding whether they will be included or not in the evolutionary
algorithm and when they will be applied. The combinatorial nature of this
problem produces a huge number of parameters, compared to the few ones
of the controller. Moreover, a bad parameterization of the controller produces
less noticeable impact than a bad setting of the original parameters. We must
also consider a temporal issue: it is not only a matter of finding the correct set
of operators, but also to find them at each step. If we consider the number of
operators, their effect on the performance and their impact on the execution
time, the few parameters of the controller are justified.

6 Results and Discussion

In this section we present the experimental results, focusing on the most in-
teresting aspects. For the sake of readability, we recall the notations in table
1.

Table 1 Summary of notations

Notation Description

Credit Assignment
C Compass
PD Pareto Dominance
PR Pareto rank

Operator Selection
M2 MAB2
R Random
M2D MAB2 + Stuck detection
PM Probability Matching

Crossover
Unif uniform crossover
R307 one crossover is randomly chosen in a set of 307 crossovers
FF Fleurent and Ferland crossover
CC Corrective Clause crossover
CCTM Corrective Clause and Truth Maintenance crossover

18

Figure 7 shows the convergence of the best individual of the population
for different configurations of controllers and state-of-the-art crossovers on the
instance ibm.

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

lo
g(

fa
ls

e
cl

au
se

s) C-R C-M2D

C-PM

PD-M2

PD-R

PD-M2D

PD-PM

PR-M2

PR-R

PR-M2D

PR-PM

FF C-M2

R307

Unif

CC, CCTM

Fig. 7 Number of false clauses of best individual so far, obtained by different controllers
and state of the art crossovers, solving the instance ibm

Figure 8.a shows the diversity of the population produced by the controllers
with quite similar results (PR-R and PD-M2). Note that controllers that obtain
similar levels in terms of quality, do not produce necessarily the same level
of diversity. We observe different behaviors: while PD-M2 induces a strong
exploitation that improves the quality quickly until generation 30 000, PR-R
explores the search space and produce slower but constant improvements along
the search. Figure 8.b shows the diversity of the population for controllers
that obtained the best results (PD-PM, PD-R), together with state of the
art crossovers. An intermediate level of diversity can be observed on the best
configurations, mainly due to their operator selection methods (PM and R),
which allow a fast –though prudent– convergence to better results.

The upward trend of diversity for PD-PM starting from generation 8 000
is due to the diversification criteria in the evaluation of the operators. At
the beginning of search, the initial population consists of randomly generated
individuals. It favors the exploitation operators, which decrease diversity at
the same time that quality increases. However, from a given search step, im-
provements become harder, thus the controller turns to exploration, aiming
at escaping from local optima. This behavior is precisely what we looked for
when including diversity in the measures sent to the controller.

This tendency is particularly strong for the credit assignment methods
C and RP. Figure 9 shows the evolution of the diversity for different credit

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 30000 50000 70000 90000

PD-M2

PR-R

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 30000 50000 70000 90000

Unif

FF

PD-R

PD-PM

CC, CCTM

(b)

Fig. 8 Diversity of different methods solving the instance ibm. (a) that obtain similar
results, (b) of better ones, and state of the art crossovers

assignment methods: C, PD and PR, combined with the operator selection R,
on the instance simon. In this figure, one may remark the excessive exploration
induced by C. This could explain why its results are not the best of the series.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000

C-R

PD-R

PR-R

Fig. 9 Diversity of credit assignments C, PD and PR, jointly with operator selection R,
showing the shift from exploitation to exploration

Table 2 shows the average number of false clauses and their standard devi-
ation (between brackets) over 50 executions of the different controllers against
the state of the art crossovers, Uniform, FF, CC and CCTM. The best results

20

appear in boldface. We assess the statical significance of the results with a
T Student test with an 95% of confidence (therefore, several results can be
boldfaced).

Table 2 Number of false clauses and standard deviation

f500 aim-100 ibm simon
C-M2 25.9 (24.0) 2.4 (1.9) 6009.7 (3024.6) 189.0 (17.3)
C-M2D 16.8 (19.7) 2.6 (1.9) 6063.4 (2171.8) 194.4 (23.9)
C-PM 56.3 (33.6) 2.2 (1.9) 5151.9 (2758.8) 209.2 (41.8)
C-R 21.0 (14.4) 1.1 (0.2) 4908.4 (1623.0) 183.7 (16.7)
PD-M2 67.4 (62.7) 3.3 (2.2) 2712.0 (3523.9) 94.3 (103.0)
PD-M2D 53.3 (59.0) 2.5 (1.5) 2567.1 (4206.3) 107.9 (102.5)
PD-PM 6.0 (1.4) 1.0 (0.0) 423.8 (75.2) 93.5 (7.7)
PD-R 5.6 (1.2) 1.0 (0.0) 491.1 (66.9) 102.9 (9.7)
PR-M2 98.2 (53.8) 2.9 (1.7) 12370.3 (5214.2) 201.0 (188.7)
PR-M2D 104.2 (52.5) 2.6 (1.8) 12050.3 (5141.1) 277.9 (200.0)
PR-PM 7.8 (1.4) 1.0 (0.0) 4495.9 (791.9) 148.9 (11.9)
PR-R 6.9 (1.1) 1.0 (0.0) 3228.6 (913.8) 145.2 (9.2)
R307 49.4 (4.3) 1.0 (0.0) 4962.7 364.9) 187.4 (11.7)
Unif 218.4 (5.7) 11.2 (1.0) 34149.6 (138.5) 2872.6 (33.9)
FF 30.2 (4.9) 1.9 (0.6) 3827.8 (160.5) 137.5 (9.7)
CC 7.2 (1.3) 1.9 (0.6) 1247.7 (98.7) 81.6 (5.4)
CCTM 7.3 (1.4) 1.8 (0.6) 1237.2 (78.1) 81.2 (5.3)

bw-large.d flat200-19 uf250 engine
C-M2 427.1 (287.1) 54.4 (40.1) 12.3 (13.9) 761.6 (477.3)
C-M2D 596.3 (329.1) 40.7 (37.4) 7.5 (11.5) 1045.0 (369.8)
C-PM 650.5 (816.6) 67.3 (41.9) 21.9 (15.2) 752.8 (490.4)
C-R 306.4 (194.4) 52.5 (28.9) 6.7 (5.8) 577.3 (262.3)
PD-M2 1575.6 (1697.3) 58.3 (44.9) 30.8 (23.0) 838.9 (836.3)
PD-M2D 1553.9 (1804.1) 52.7 (48.4) 26.3 (25.2) 911.4 (824.0)
PD-PM 78.1 (3.2) 10.7 (2.1) 2.2 (1.3) 15.4 (3.3)
PD-R 83.2 (3.5) 9.2 (2.1) 1.5 (0.9) 18.4 (3.1)
PR-M2 2455.1 (1678.0) 100.7 (56.7) 41.0 (24.3) 1267.1 (966.1)
PR-M2D 2367.9 (1713.0) 99.8 (54.0) 34.9 (24.0) 1064.7 (964.8)
PR-PM 187.9 (146.9) 31.6 (20.5) 1.7 (0.8) 462.1 (328.8)
PR-R 272.5 (268.5) 16.3 (10.5) 1.5 (0.5) 415.6 (302.4)
R307 207.5 (22.9) 25.3 (7.2) 17.8 (2.6) 534.8 (54.0)
Unif 27237.3 (301.9) 408.7 (20.6) 98.8 (3.6) 12663.6 (289.1)
FF 126.6 (10.6) 44.9 (4.4) 15.1 (3.4) 465.3 (49.8)
CC 579.0 (17.6) 12.0 (2.1) 3.4 (1.4) 67.9 (12.8)
CCTM 580.3 (17.6) 12.7 (2.1) 3.2 (1.2) 68.9 (11.4)

The best results are obtained by the configurations PD-PM and PD-R, that
outperform state of the art crossovers on 7 out of 8 instances. All the results
are significantly different. Table 3 shows the percentage of improvement of
PD-PM and PD-R, compared to state of the art crossovers.

The uniform crossover produces clearly the worst results and will be ignored
in the following experiments. One may notice that controllers PD-PM and PD-
R get results comparable with those obtained by the best operators without
controller (CC and CCTM). However, let us remark that the design of CC and

21

Table 3 Improvement of controllers PD-PM and PD-R, compared with Uniform and the
state of the art crossovers

PD-PM f500 aim-100 ibm simon bw-large.d flat200 uf250-010 engine-4-nd
Unif 97.23% 91.07% 98.76% 96.75% 99.71% 97.37% 97.79% 99.88%
FF 80.01% 47.92% 88.93% 31.99% 38.34% 76.09% 85.58% 96.68%
CC 16.57% 47.92% 66.03% -14.62% 86.52% 10.20% 35.50% 77.25%
CCTM 17.03% 45.05% 65.74% -15.15% 86.55% 15.17% 31.01% 77.59%

PD-R f500 aim-100 ibm simon bw-large.d flat200 uf250-010 engine-4-nd
Unif 97.44% 91.07% 98.56% 96.42% 99.69% 97.75% 98.48% 99.85%
FF 81.46% 47.37% 87.17% 25.16% 34.28% 79.51% 90.07% 96.05%
CC 22.22% 47.37% 60.64% -26.10% 85.63% 23.33% 55.88% 72.90%
CCTM 23.29% 44.44% 60.31% -26.72% 85.66% 27.56% 53.12% 73.29%

CCTM (the best crossovers) relies on a work of several weeks of comparisons,
analysis and experiments [36]. The controller provides a similar performance
in a few minutes, without human intervention. We want also to remark the
performance of controllers PD-PM and PD-R on industrial instances ibm and
engine, where the average number of false clauses is equivalent to at least 1

3

of those obtained by CC and CCTM.

When comparing the different credit assignment methods, we note that
PD is used in the most efficient controllers, followed by C and PR. In order
to compare the two controllers based on the notions of Pareto dominance and
to understand why PD performs better than the two others, it is necessary to
study their behavior during individual executions. Figure 10 shows the average
quality of the populations using PD-M2, PR-M2 and C-M2 on the instance
ibm.

PR considers all the operators placed on the Pareto frontier equally (points
in figure 4.c with value 0). This induces a balance between exploration and
exploitation and prevents the evolutionary algorithm to lean to one side or
to the other. Note that the attempts to increase the quality of PR-PM are
moderated by this balance, forcing the average quality to come back to an
intermediate value. A similar behavior could be observed when using Compass,
according to its performance measure method. On the other hand, when using
PD, the better evaluation of the operators, which follow the general tendency
(points in figure 4.b with higher values), allows the evolutionary algorithm to
break the status quo and finally to improve the quality of the population. This
“flexible balance” is the main asset of this credit assignment method.

Interestingly, the most exploratory operator selection methods (PM and
R) have produced some of the best results. It could seem surprising –and con-
tradictory with studies in literature– that a random operator selection could
be able to outperform sophisticated methods that carefully try to balance EvE
at the operator selection level. A possible hypothesis for these good results is
that the mix of crossovers works better than applying a single one. However,
the poor results obtained by R307 prove that this is not the only reason.

22

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10000 20000 30000 40000 50000

PD-M2

PR-M2

C-M2

Fig. 10 Behavior of Pareto Rank vs. Pareto Dominance: Average number of false clauses
in the instance ibm

When the Blacksmith analyzes the set of operators to replace some of them,
it always chooses the worst ones. This corresponds to exploitation, based on
the rewards stored in the Credit Registry. This choice of operators produces a
displacement of the exploitation at EvE level from the operator selection to the
Blacksmith. In this new scenario, the operator selection is only in charge of the
exploration, which is restricted to the operators allowed by the Blacksmith.
In this AOS+Blacksmith scheme, building credit assignment and structural
control modules is more gainful than designing operator selection mechanisms.

In order to check the generality of the controllers PD-PM and PD-R, we
have extended the comparison with the state of the art crossovers on a set of
26 new instances, mixing crafted, random and industrial instances presented
in table 4. The column Not. gives the notations used for the instances in the
next tables.

Table 5 shows the mean and standard deviation (between brackets) of 25
executions of 40 000 generations each one. The best results (and those that are
indistinguishable from them, using a T Student test with a 95% of confidence)
are boldfaced. The last row shows the number of instances for which each
controller or crossover has obtained the best results of the series.

PD-R obtains top results on 19 instances and PD-PM on 17, while CC
and CCTM are better only 5 times. Even though controller configurations
obtained the worst results on two industrial instances, we observe the best
improvements on this family of instances, especially on I5 and I6, where the
controlled evolutionary algorithms obtained up to 260 times less false clauses
than the best state of the art crossover. The overhead of this improvement

23

Table 4 SAT instances used for algorithms comparisons

Name Not. Nb Var. Nb Clauses
Crafted instances

ezfact64 3.sat05-450.reshuffled-07 C1 3073 19785
ezfact64 4.sat05-451.reshuffled-07 C2 3073 19785
ezfact64 5.sat05-452.reshuffled-07 C3 3073 19785
ezfact64 6.sat05-453.reshuffled-07 C4 3073 19785
hgen2-v500-s1216665065.sat05-467.reshuffled-07 C5 500 1750
hgen3-v400-s344840348.sat05-470.reshuffled-07 C6 500 1750
hgen3-v400-s553296708.sat05-471.reshuffled-07 C7 500 1750
hgen3-v500-s1349121860.sat05-473.reshuffled-07 C8 500 1750
pyhala-braun-unsat-40-4-02.sat05-459.reshuffled-07 C9 9638 31795

Random instances

unif2p-p0.9-v630-c2280-S1071799860-07-UNSAT R1 630 2280
unif2p-p0.9-v630-c2280-S1244126495-18-SAT R2 630 2280
unif2p-p0.9-v630-c2280-S1501024241-13-UNSAT R3 630 2280
unif2p-p0.9-v630-c2280-S1788789488-19-SAT R4 630 2280
unif-k3-r4.261-v650-c2769-S1089058690-02.SAT.shuffled R5 650 2769
unif-k3-r4.261-v650-c2769-S1159448555-06.SAT.shuffled R6 650 2769
unif-k3-r4.261-v650-c2769-S1172355929-14.SAT.shuffled R7 650 2769
unif-k3-r4.261-v650-c2769-S1341479044-12.UNSAT.shuffled R8 650 2769
unif-k3-r4.261-v650-c2769-S1470952774-07.SAT.shuffled R9 650 2769
unif-k3-r4.2-v10000-c42000-S1173369833-06 R10 1000 42000

Industrial instances

AProVE07-03 I1 3114 10827
AProVE07-21 I2 3189 11039
eq.atree.braun.13.unsat I3 2010 6802
eq.atree.braun.10.unsat I4 1111 3756
vmpc 26 I5 676 86424
vmpc 24 I6 576 67872
sortnet-6-ipc5-h11-unsat I7 27724 95880

is reasonable since the control represents less that 10% of the total execution
time.

Until now, we have used a simplified evolutionary algorithm to better ap-
preciate the performance of our controller. Compared to the original GASAT,
our algorithm selects parents randomly from the whole population and does
not perform mutation or local search on the obtained children. Since the final
goal of our study is to create a controller that work in real conditions, we have
restored the missing features of GASAT, selecting parents from the subset of
the better individuals and using local search over the child for improving it2.
However, we still ignore the condition of insertion (because it only accepts
individuals with high quality, rejecting those with high diversity which can be
provided by the controller in a diversification phase) and the intensity of the
local search (10 steps instead of 1000), because of execution time constraints.

Table 6 shows the mean and standard deviation (between brackets) of
25 executions of 40 000 generations each one, using the complete algorithm.
The best results are marked in boldface. In this scenario controllers keep their

2 This corresponds to a so-called memetic algorithm, that mixes evolutionary algorithms
and local search

24

Table 5 Comparison of PD-PM and PD-R with state of the art crossovers over crafted,
random and industrial instances. Number of false clauses and standard deviation.

PD-PM PD-R FF CC CCTM
C1 35.4 (5.4) 34.8 (2.8) 503.2 (41.0) 44.7 (5.2) 42.1 (4.7)
C2 35.8 (2.6) 38.0 (4.2) 509.4 (31.6) 46.0 (4.4) 47.6 (4.9)
C3 35.4 (3.7) 35.6 (3.6) 490.0 (37.7) 48.4 (4.1) 47.1 (3.3)
C4 45.1 (3.8) 43.4 (4.6) 491.6 (36.5) 48.7 (3.0) 48.2 (3.4)
C5 10.5 (1.8) 9.8 (2.8) 47.9 (4.2) 11.6 (1.8) 10.2 (1.5)
C6 8.6 (1.9) 8.3 (1.7) 36.9 (3.3) 8.4 (1.6) 8.7 (1.4)
C7 8.8 (1.8) 8.0 (1.9) 38.7 (4.2) 8.4 (1.2) 8.7 (1.7)
C8 10.0 (2.4) 9.7 (2.5) 48.2 (4.1) 11.3 (1.4) 11.6 (1.6)
C9 150.9 (31.2) 123.3 (28.8) 973.2 (77.4) 214.7 (15.9) 217.0 (14.8)
R1 7.5 (1.5) 7.2 (1.1) 34.2 (5.4) 9.5 (1.9) 9.7 (1.8)
R2 6.4 (1.3) 5.7 (1.4) 30.6 (3.8) 7.3 (1.4) 7.7 (1.6)
R3 8.4 (1.4) 8.2 (1.5) 32.1 (3.8) 10.6 (1.6) 10.9 (1.9)
R4 4.2 (1.5) 3.5 (1.4) 26.3 (3.8) 7.4 (1.2) 7.4 (1.8)
R5 8.2 (2.1) 7.8 (1.8) 40.0 (6.0) 8.4 (1.5) 9.1 (1.4)
R6 6.7 (1.6) 7.9 (1.6) 44.2 (6.4) 8.7 (1.5) 8.8 (1.4)
R7 6.1 (1.7) 5.8 (2.1) 39.4 (5.5) 7.6 (1.6) 7.8 (1.4)
R8 9.0 (1.2) 8.8 (1.6) 49.2 (5.3) 10.3 (1.9) 9.9 (1.7)
R9 9.1 (1.6) 9.0 (1.7) 41.9 (5.7) 10.0 (1.7) 9.0 (1.5)
R10 110.1 (5.7) 115.1 (8.3) 654.0 (39.5) 153.0 (9.2) 150.0 (7.9)
I1 123.6 (11.4) 167.6 (32.3) 439.3 (27.3) 354.4 (11.4) 349.6 (11.7)
I2 99.7 (8.2) 134.7 (22.5) 469.1 (26.3) 372.0 (35.5) 367.8 (32.2)
I3 2.7 (2.9) 8.6 (7.7) 216.5 (18.9) 1.0 (0.0) 1.0 (0.0)
I4 2.8 (2.4) 6.3 (4.8) 116.2 (11.2) 1.0 (0.2) 1.1 (0.4)
I5 59.4 (98.5) 38.0 (1.4) 12567.6 (547.1) 10044.2 (384.4) 9928.1 (382.0)
I6 127.8 (317.1) 35.1 (1.5) 9736.2 (404.9) 7567.7 (238.0) 7521.2 (272.9)
I7 44.2 (1.3) 48.4 (2.2) 1877.6 (195.1) 61.8 (1.7) 61.6 (1.8)
Wins 17 19 0 5 5

advantage mainly in crafted instances, while random and industrial ones (with
a couple of meritorious cases, I5 and I6) are dominated by state of the art
crossovers.

The loss of performance of controllers can be explained by the elitist config-
uration of the complete GASAT configuration. The fact that GASAT chooses
the breeders from the subpopulation of the better individuals, along with the
application of local search, restrict the attempts of the controller to diversify
the population. As explained in a former research [36], GASAT uses several
operators (selection, crossover, local search, condition of insertion) and its
performance relies on the simultaneous use of all of them.

The results obtained by controllers using the simplified configuration of
GASAT are better than those obtained with the complete version. Table 7
shows a comparison of PD-PM and PD-R using the simplified GASAT, and
CC and CCTM using the complete version. The names of the best solved
instances (using a T Student test with a 95% of confidence) and their number
is shown for each configuration.

25

Table 6 Comparison of PD-PM and PD-R with state of the art crossovers over crafted,
random and industrial instances, using an algorithm near of the complete GASAT imple-
mentation. Number of false clauses and standard deviation.

PD-PM PD-R FF CC CCTM
C1 126.5 (9.5) 135.1 (15.8) 1139.9 (51.9) 144.3 (9.8) 136.8 (13.3)
C2 128.8 (10.8) 131.1 (9.4) 1159.0 (53.2) 136.8 (9.2) 136.3 (10.13)
C3 129.3 (14.8) 136.0 (11.4) 1136.1 (49.0) 143.3 (10.9) 137.6 (10.6)
C4 128.9 (9.8) 129.7 (11.2) 1148.8 (58.0) 140.7 (9.5) 140.6 (10.75)
C5 18.8 (3.0) 19.3 (2.8) 111.0 (11.2) 17.7 (2.0) 17.6 (3.45)
C6 13.4 (2.8) 14.8 (3.0) 88.5 (10.8) 13.8 (1.8) 13.4 (2.81)
C7 13.9 (2.4) 13.9 (2.5) 87.7 (12.4) 13.9 (2.8) 13.6 (2.15)
C8 18.2 (2.9) 17.6 (2.8) 108.2 (10.4) 17.1 (2.3) 18.1 (2.25)
C9 504.5 (28.6) 511.4 (30.5) 2923.2 (213.7) 451.6 (18.7) 442.9 (17.2)
R1 18.9 (3.6) 18.2 (3.2) 100.4 (13.6) 17.4 (2.3) 16.8 (1.85)
R2 16.1 (2.5) 17.2 (3.5) 100.4 (16.6) 14.9 (2.9) 14.4 (3.21)
R3 18.4 (2.3) 18.8 (2.1) 112.2 (16.0) 16.2 (2.5) 17.3 (2.41)
R4 13.9 (2.8) 14.3 (2.9) 91.9 (18.4) 12.8 (2.7) 12.2 (2.91)
R5 19.6 (4.5) 19.8 (3.2) 138.6 (15.4) 17.9 (2.5) 16.4 (2.61)
R6 20.8 (4.3) 20.4 (4.1) 136.3 (14.7) 18.4 (3.3) 17.9 (2.87)
R7 20.3 (4.6) 20.2 (4.5) 134.4 (15.2) 16.6 (2.7) 17.8 (3.29)
R8 23.8 (3.6) 25.5 (5.8) 143.0 (13.8) 22.4 (3.0) 20.8 (3.79)
R9 20.6 (5.2) 19.6 (3.6) 137.6 (14.2) 18.0 (2.3) 18.1 (2.6)
R10 387.3 (58.6) 378.3 (31.4) 2343.5 (250.6) 288.5 (19.4) 277.4 (19.41)
I1 173.5 (18.0) 173.0 (11.8) 937.4 (67.6) 143.6 (8.1) 149.7 (7.95)
I2 161.7 (16.1) 166.2 (17.7) 992.9 (56.7) 130.4 (8.2) 126.2 (8.42)
I3 90.3 (10.8) 93.5 (15.0) 576.6 (37.9) 64.6 (5.6) 65.4 (5.75)
I4 48.6 (8.8) 50.6 (10.3) 317.4 (19.6) 39.3 (4.4) 38.4 (6.11)
I5 11.5 (2.4) 10.9 (2.4) 12686.0 (353.3) 9627.4 (407.2) 9800.4 (467.41)
I6 10.2 (2.1) 10.2 (1.7) 9784.3 (291.9) 6135.9 (723.4) 5591.9 (1729.97)
I7 486.1 (415.1) 652.0 (402.1) 7935.0 (645.2) 71.5 (4.3) 71.7 (4.04)
Wins 8 5 0 15 16

Table 7 Comparison of PD-PM and PD-R using the simplified version of GASAT, with
CC and CCTM controllers, using a more complete version

Version Controller/Crossover Successful instances Wins
C1, C2, C3, C5, C6, C8

PD-PM R1, R3, R5, R6, R7, R8, R9, R10 19
simplified I1, I2, I3, I4, I7
GASAT C1, C3, C4, C5, C6, C7, C8, C9

PD-R R1, R2, R3, R4, R5, R7, R8, R9 18
I5, I6

complete CC — 0
GASAT CCTM — 0

7 Conclusions

We have presented a controller to handle two generic kind of parameters.
Behavioural parameters tune the application of different operators in the al-
gorithm, while structural parameters design the algorithm by deciding which
operators will be included in the algorithm at each step of the search.

26

Our controller has two modules : the Adaptive Operator Selection receives
feedback from the evolutionary algorithm in order to update the credit registry,
which is used later to select the operator to apply. Therefore, the registry
characterizes the set of operators that are currently available to the EA. The
second module, called Blacksmith, decides which operators –from a wide set of
available ones– will be included in the EA, based on their observed performance
and the needs of the search.

The main contribution of this work is thus the generic framework that
addresses the problems of selecting which operator to apply and of designing
the best suited algorithm at each step of the search. The controller is im-
plemented independently from the algorithm, setting a simple and minimal
interface between them. The performance evaluation measures are related to
two high-level criteria (exploration and exploitation) that are common to many
search metaheuristics. Such a controller could be easily plugged into another
metaheuristic algorithm.

We have also defined two interesting Credit Assignment methods, based
into the notions of Pareto-dominance (PD and PR), which handles the com-
promise of several criteria according to the general tendencies of the operators.
We have modified a previous Operator Selection method (MAB2) in order to
deal with a dynamic set of operators.

We have tested twelve controllers, resulting from the combination of three
Credit Assignment and four Operator Selection modules for the resolution
of the satisfiability problem SAT. More than 300 crossover operators were
delivered to the controller, and the results were compared with state of the
art crossovers. Comparisons on instances from different families and types
of benchmarks (crafted, random-generated and industrial) have highlighted a
clear advantage for two of the controller configurations (PD-PM and PD-R).
In order to measure exploration and exploitation, we have used population
diversity and mean fitness, respectively. We used a very simple scheme for the
Blacksmith, that keeps a fixed-length set of operators. Given the importance
of the control of the structural parameters

From a set of 34 instances, PD-PM has obtained the best results on 27 in-
stances, similar results on 4 and worst results only on 3. For the same number
of instances, PD-R has obtained the best results on 28, similar on 3 and worst
on 3. Using our controller in an algorithm very near of the state of the art evo-
lutionary algorithm GASAT, the results are not good because this algorithm
is developed to only improve the quality.

Although we have used only crossover operators for SAT as source of struc-
tural parameterization, this schema could be extended to other operators and
problems without too much effort. The extension of our method to other pop-
ulation based approaches, including single-individual approaches, where the
population diversity could be replaced by a temporal diversity, in order to
evaluate the variation of the visited configurations.

In order to use the controller as a tool for the design of algorithms, a
mechanism could be included in the controller to identify the most successful
operators. It would be also interesting to detect the relationships between

27

operators. Note that we have not identified a unique best crossover and the
good performance of PD-PM/R may rather be due to the joint effect of several
crossovers.

On most of the instances, we have noticed a stabilization of diversity and
quality levels, from generation 30 000. This situation suggests that we could
obtain some improvements by incorporating a search strategy [41]. This strat-
egy could include additional criteria in order to better guide the exploration
and exploitation of the search space.

Acknowledgements We would like to thank warmly the anonymous reviewers for their
helpful comments and remarks.

References

1. M. Bader-El-Den and R. Poli. Generating sat local-search heuristics using a gp hyper-
heuristic framework. In 8th International Conference, Evolution Artificielle, EA 2007.
Revised Selected Papers, number 4926 in Lecture Notes in Computer Science, pages
37–49, Tours, France, 2008. Springer.

2. R. Battiti and M. Brunato. Learning and Intelligent Optimization Second International
Conference, LION 2007 II, . Selected Papers, volume 5313 of LNCS. Springer, 2008.

3. R. Battiti and M. Brunato. Handbook of Metaheuristics (2nd edition), chapter Reactive
Search Optimization: Learning while Optimizing. Springer, 2009. In press.

4. R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent Optimization,
volume 45 of Operations research/Computer Science Interfaces. Springer Verlag, 2008.

5. D. Le Berre, O. Roussel, and L. Simon. The SAT2007 competition. Technical report,
Tenth International Conference on Theory and Applications of Satisfiability Testing,
May 2007.

6. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2009.

7. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu. A survey of hyper-
heuristics. Technical Report Technical Report No. NOTTCS-TR-SUB-0906241418-
2747, School of Computer Science and Information Technology, University of Notting-
ham, Computer Science, 2009.

8. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward. Handbook
of Meta-heuristics, chapter A Classification of Hyper-heuristics Approaches,. 2009. to
appear.

9. E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Handbook
of Meta-heuristics, chapter Hyper-heuristics: An Emerging Direction in Modern Search
Technology, pages 457–474. Kluwer, 2003.

10. P. Cowling and E. Soubeiga. Neighborhood structures for personnel scheduling: A sum-
mit meeting scheduling problem (abstract). In E. K. Burke and W. Erben, editors,
proceedings of the 3rd International Conference on the Practice and Theory of Auto-
mated Timetabling, Constance, Germany, 2000.

11. P. I. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid proto-
typing in scheduling and optimisation. In Applications of Evolutionary Computing,
EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, volume 2279 of Lec-
ture Notes in Computer Science, pages 1–10. Springer, 2002.

12. W. Crowston, F. Glover, G. Thompson, and J. Trawick. Probabilistic and parametric
learning combinations of local job shop scheduling rules. Technical report, ONR Re-
search Memorandum No. 117, GSIA, Carnegie-Mellon University, Pittsburg, PA, 1963.

13. L. Da Costa and M. Schoenauer. GUIDE, a Graphical User Interface for Evolutionary
Algorithms Design. In Jason H. Moore, editor, GECCO Workshop on Open-Source
Software for Applied Genetic and Evolutionary Computation (SoftGEC). ACM Press,
2007. Software available at http://guide.gforge.inria.fr/.

28

14. L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 61–69, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

15. K. A. De Jong and W. M. Spears. Using genetic algorithm to solve NP-complete prob-
lems. In Proc. of the 3rd International Conference on Genetic Algorithms (ICGA’89),
pages 124–132, Virginia,USA, 1989.

16. K.A. De Jong. Evolutionary computation: a unified approach. MIT Press, 2006.
17. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary

algorithms. IEEE Trans. Evolutionary Computation, 3(2):124–141, 1999.
18. A.E. Eiben, Z. Michalewicz, M. Schoenauer, and J.E. Smith. Parameter Setting in

Evolutionary Algorithms, chapter Parameter Control in Evolutionary Algorithms, pages
19–46. Volume 54 of Lobo et al. [37], 2007.

19. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, 2003.

20. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Extreme value based adaptive
operator selection. In G. Rudolph et al., editor, Parallel Problem Solving from Nature
- PPSN X, 10th International Conference, volume 5199 of Lecture Notes in Computer
Science, pages 175–184. Springer, 2008.

21. H. Fisher and L. Thompson. Industrial Scheduling, chapter Probabilistic learning com-
binations of local job-shop scheduling rules. Prentice Hall, 1963.

22. C. Fleurent and J. A. Ferland. Object-oriented implementation of heuristic search meth-
ods for graph coloring, maximum clique, and satisfiability. In Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, pages 619–652, 1996.

23. A. Fukunaga. Automated discovery of local search heuristics for satisfiability testing.
Evolutionary Computation, 16(1):31–61, 2008.

24. M. R. Garey and D. S. Johnson. Computers and Intractability , A Guide to the Theory
of NP-Completeness. W.H. Freeman & Company, San Francisco, 1979.

25. F. Glover and G. Kochenberger. Handbook of Metaheuristics (International Series in
Operations Research & Management Science). Springer, January 2003.

26. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

27. D. E. Goldberg. Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning, 5(4):407–425, 1990.

28. J. Gottlieb and N. Voss. Adaptive fitness functions for the satisfiability problem. In Par-
allel Problem Solving from Nature - PPSN VI 6th International Conference. Springer
Verlag, 2000. LNCS 1917.

29. Y. Hamadi, E. Monfroy, and F. Saubion. Special issue on autonomous search. Contraint
Programming Letters, 4, 2008.

30. Y. Hamadi, E. Monfroy, and F. Saubion. What is autonomous search? Technical Report
MSR-TR-2008-80, Microsoft Research, 2008.

31. J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. University of Michigan
Press, Ann Arbor, MI, 1975.

32. F. Hutter, Y. Hamadi, H. Hoos, and K. L. Brown. Performance prediction and au-
tomated tuning of randomized and parametric algorithms. In Twelfth International
Conference on Principles and Practice of Constraint Programming, volume 4204 of
Lecture Notes in Computer Science, pages 213–228. Springer, 2006.

33. F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on
local search. In Proc. of the Twenty-Second Conference on Artifical Intelligence (AAAI
’07), pages 1152–1157, 2007.

34. B. A. Julstrom. What have you done for me lately? adapting operator probabilities in a
steady-state genetic algorithm. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 81–87. Morgan Kaufmann, 1995.

35. F. Lardeux, F. Saubion, and J-K. Hao. Recombination operators for satisfiability prob-
lems. In Artificial Evolution, 6th International Conference, Evolution Artificielle, vol-
ume 2936 of Lecture Notes in Computer Science, pages 103–114. Springer, 2004.

36. F. Lardeux, F. Saubion, and J-K. Hao. GASAT: A genetic local search algorithm for
the satisfiability problem. Evolutionary Computation, 14(2):223–253, 2006.

29

37. F. Lobo, C. Lima, and Z. Michalewicz, editors. Parameter Setting in Evolutionary
Algorithms, volume 54 of Studies in Computational Intelligence. Springer, 2007.

38. F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algorithm. In
IEEE International Conference on Evolutionary Computation, pages 121–125. IEEE
Press, 1997.

39. E. Marchiori and C. Rossi. A flipping genetic algorithm for hard 3-SAT problems.
In Proc. of the Genetic and Evolutionary Computation Conference, volume 1, pages
393–400, 1999.

40. J. Maturana, A. Fialho, F. Saubion, M. Schoenauer, and M. Sebag. Compass and
dynamic multi-armed bandits for adaptive operator selection. In Proceedings of IEEE
Congress on Evolutionary Computation CEC, 2009.

41. J. Maturana and F. Saubion. On the design of adaptive control strategies for evolu-
tionary algorithms. In Proc. Int. Conf. on Artificial Evolution. LNCS 4926, Springer,
2007.

42. J. Maturana and F. Saubion. Towards a generic control strategy for EAs: an adaptive
fuzzy-learning approach. In Proceedings of IEEE International Conference on Evolu-
tionary Computation (CEC), pages 4546–4553, 2007.

43. J. Maturana and F. Saubion. A compass to guide genetic algorithms. In G. Rudolph
et al., editor, Parallel Problem Solving from Nature - PPSN X, 10th International
Conference Dortmund, Germany, September 13-17, 2008, Proceedings, volume 5199 of
Lecture Notes in Computer Science, pages 256–265. Springer, 2008.

44. S. Meyer-Nieberg and H.G. Beyer. Self-Adaptation in Evolutionnary Computation,
pages 47–76. Springer Verlag, 2007.

45. V. Nannen, S. K. Smit, and A. E. Eiben. Costs and benefits of tuning parameters
of evolutionary algorithms. In Parallel Problem Solving from Nature - PPSN X, 10th
International Conference Dortmund, Germany, September 13-17, 2008, Proceedings,
volume 5199 of Lecture Notes in Computer Science, pages 528–538. Springer, 2008.

46. V. Pareto. Cours d’économie politique. in Vilfredo Pareto, Oeuvres complètes, Genève
: Librairie Droz, 1896.

47. J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.
48. C. Rossi, E. Marchiori, and J. N. Kok. An adaptive evolutionary algorithm for the

satisfiability problem. In Proc. of the ACM Symposium on Applied Computing (SAC
’00), pages 463–470. ACM press, 2000.

49. L. Sais. Problème SAT : progrès et défis. Collection Programmation par contraintes.
Hermès, 2008.

50. L. Simon and D. Le Berre. The SAT2005 competition. Technical report, Eighth In-
ternational Conference on the Theory and Applications of Satisfiability Testing, June
2005.

51. S. Smit and G.Eiben. Comparing parameter tuning methods for evolutionary algo-
rithms. In Proceedins of the IEEE Congress on Evolutionary Computation, 2009.

52. A. K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm se-
lection. ACM Computing Surveys, 41(1):1–25, 2008.

53. G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the third
international conference on Genetic algorithms, pages 2–9, San Francisco, CA, USA,
1989. Morgan Kaufmann Publishers Inc.

54. D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In H.-G.
Beyer, editor, Proc. GECCO’05, pages 1539–1546. ACM Press, 2005.

55. D. Thierens. Adaptive Strategies for Operator Allocation. In F.G. Lobo, C.F. Lima, and
Z. Michalewicz, editors, Parameter Setting in Evolutionary Algorithms, pages 77–90.
Springer Verlag, 2007.

56. A. Tuson and P. Ross. Adapting operator settings in genetic algorithms. Evolutionary
Computation, 6(2):161–184, 1998.

57. J. M. Whitacre, T.Q. Pham, and R. A. Sarker. Use of statistical outlier detection
method in adaptive evolutionary algorithms. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 1345–1352, New
York, NY, USA, 2006. ACM.

58. Wong, Lee, Leung, and Ho. A novel approach in parameter adaptation and diversity
maintenance for GAs. Soft Computing, 7(8):506–515, 2003.

59. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Research, 32:565–606, 2008.

