Autonomous operator management for evolutionary algorithms - Université d'Angers Accéder directement au contenu
Article Dans Une Revue Journal of Heuristics Année : 2010

Autonomous operator management for evolutionary algorithms


The performance of an evolutionary algorithm strongly depends on the design of its operators and on the management of these operators along the search; that is, on the ability of the algorithm to balance exploration and exploitation of the search space. Recent approaches automate the tuning and control of the parameters that govern this balance. We propose a new technique to dynamically control the behavior of operators in an EA and to manage a large set of potential operators. The best operators are rewarded by applying them more often. Tests of this technique on instances of 3-SAT return results that are competitive with an algorithm tailored to the problem.

Fichier principal
Vignette du fichier
PaperJoH.pdf (683 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03255406 , version 1 (18-03-2022)



Jorge Maturana, Frédéric Lardeux, Frédéric Saubion. Autonomous operator management for evolutionary algorithms. Journal of Heuristics, 2010, 16 (6), pp.881-909. ⟨10.1007/s10732-010-9125-3⟩. ⟨hal-03255406⟩


46 Consultations
86 Téléchargements



Gmail Facebook X LinkedIn More