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From (Quantified) Boolean Formulae to Answer Set Programming

We propose in this article a translation from Quantified Boolean Formulae to Answer Set Programming. The computation of a solution of a Quantified Boolean Formula is then equivalent to the computation of a stable model for a normal logic program. The case of unquantified Boolean formulae is also considered since it is equivalent to the case of Quantified Boolean Formulae with only existential quantifiers.

Introduction

The problem of satisfiability of a Boolean or propositional formula (SAT) is a combinatorial problem known as the canonical problem of the NP-complete complexity class. Many decision procedures have been proposed, mainly for the conjunctive normal form (CNF) [START_REF] Li | Heuristics based on unit propagation for satisfiability problems[END_REF][START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF][START_REF] Een | An extensible SAT-solver[END_REF]. Some recent works show that the CNF transformation seems to disrupt too much the original structure of the problem [START_REF] Thiffault | Solving non-clausal formulas with DPLL search[END_REF]. However, there exist only few implementations of solvers for non-CNF SAT formulae [START_REF] Thiffault | Solving non-clausal formulas with DPLL search[END_REF][START_REF] Jain | Satisfiability checking of non-clausal formulas using general matings[END_REF][START_REF] Lu | A signal correlation guided circuit-SAT solver[END_REF][START_REF] Parthasarathy | An efficient sequential SAT solver with improved search strategies[END_REF].

In the same way, the problem of validity of quantified Boolean formulae (QBF) [START_REF] Stockmeyer | The polynomial-time hierarchy[END_REF] is a combinatorial problem but with PSPACE-complete complexity. SAT problem is equivalent to QBF problem with only existentially quantified variables. Most of the decision procedures for QBF treat only the restriction to prenex CNF formulae since they are extensions of SAT decision procedures [START_REF] Rintanen | Improvements to the evaluation of quantified boolean formulae[END_REF][START_REF] Giunchiglia | Backjumping for quantified boolean logic satisfiability[END_REF][START_REF] Cadoli | An algorithm to evaluate quantified boolean formulae and its experimental evaluation[END_REF][START_REF] Letz | Lemma and model caching in decision procedures for quantified boolean formulas[END_REF][START_REF] Biere | Resolve and expand[END_REF][START_REF] Samulowitz | Binary clause reasoning in QBF[END_REF][START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF]. For QBF, the impact of the transformation in prenex CNF formulae seems even larger [START_REF] Ansotegui | Achilles' heel of QBF[END_REF]. As for SAT solvers, there exist very few QBF solvers for (non prenex) non-CNF formulae [START_REF] Ayari | Qubos: Deciding quantified boolean logic using propositional satisfiability solvers[END_REF][START_REF] Ansotegui | Achilles' heel of QBF[END_REF][START_REF] Zhang | Conflict driven learning in a quantified boolean satisfiability solver[END_REF][START_REF] Egly | A solver for QBFs in nonprenex form[END_REF][START_REF] Zhang | Solving QBF with combined conjunctive and disjunctive normal form[END_REF].

In both cases (SAT or QBF), the encoding of combinatorial problems, or more generally knowledge representation in artificial intelligence, are usually natural, direct and compact when an unrestricted syntax is allowed. That is why in this article we propose to deal with satisfiability for non CNF (quantified) Boolean formulae.

Answer Set Programming (ASP) is a formalism of non monotonic logic programming appropriated to represent and solve different combinatorial problems. Many decision procedures for ASP have been proposed and have been developed in different tools which have proved their efficiency and their robustness on large problems.

A polynomial translation from SAT to ASP has already been proposed but only for CNF formulae [START_REF] Niemelä | Logic programs with stable model semantics as a constraint programming paradigm[END_REF] or a particular case [START_REF] Hietalahti | DES: a challenge problem for nonmonotonic reasoning systems[END_REF]. In this article, we formalize a translation that can be applied to every kind of propositional formula and then, we extend it to quantified Boolean formulae. We want to demonstrate by this work that the paradigm of answer set programming (ASP, see subsection 2.2) is sufficiently expressive to represent quantified Boolean formulae (QBF, see subsection 2.1). To reach our goal, we first demonstrate in section 3 that the representation of the satisfiability problem for non-CNF formulae is possible in ASP. Then, in the section 4, we extend the principle to quantified Boolean formulae. We complete this study in section 5 by presenting the tools that we have developped to practically realize our translations from SAT or QBF to ASP. Furthermore, we give some experimental results illustrating that the best ASP solvers may be used to compute the models of (quantified) Boolean formulae in an arbitrary syntax and not just in conjunctive normal form which is the case for most of the available QBF solvers. The section 6 concludes our work by relating it to some others and discussing some points about efficiency. The proofs of all theoretical results enonced in our work are grouped in the special section 7. But first, we start with a section that introduces the necessary materials to understand this work.

Preliminaries

The aim of the two following subsections is to recall the formal definitions necessary for the understanding of our work.

(Quantified) Boolean Formulae

The Boolean values are denoted with t and f , the set of Boolean values is denoted with BOOL and the set of Boolean functions (i.e. functions from BOOL n to BOOL) is denoted with F. The set of propositional symbols (or variables) is denoted with V. The symbols and ⊥ are the propositional constants. The symbol ∧ is used for conjunction, ∨ for disjunction, ¬ for negation, → for implication, ↔ for equivalence and ⊕ for xor (O = {∧, ∨, →, ↔, ⊕}). A literal is a propositional variable or the negation of a propositional variable. The set of literals is denoted with L. The set P ROP of propositional formulae (called also Boolean formulae) is inductively defined as follows: every propositional symbol (constant or variable) is an element of P ROP ; if F is an element of P ROP then ¬F is an element of P ROP ; if F and G are elements of P ROP and * is an element of O then (F * G) is an element of P ROP . The symbol ∃ is used for existential quantification and ∀ for universal quantification (q is used in place of ∃ and ∀). The set of quantified Boolean formula (QBFs) is also defined by induction as follows: every Boolean formula is also a quantified Boolean formula; if F is a QBF and x is a propositional variable then (∃x F ) and (∀x F ) are QBF. It is assumed that distinct quantifiers bind occurrences of distinct variables. The set of variables or symbols of a formula F is denoted with V(F ). A substitution is a function from the set of variables to the set of (quantified) Boolean formulae. We define a substitution of x by F in G, denoted with G[x ← F ], as the formula obtained by replacing in G all the occurrences 1 of variable x by the formula F . A binder Q is a string q 1 x 1 . . . q n x n with x 1 , . . . , x n distinct variables and q 1 , . . . , q n quantifiers. The function Q from the set of variables of a binder to {∃, ∀} associates to a variable its quantifier in the binder Q. A QBF QF is in prenex form if it is constituted of a binder and a Boolean formula called the matrix. A QBF QF is in conjunctive normal form (CNF) if F is itself in conjunctive normal form (i.e. a conjunction of disjunctions of literals). In the following, we only deal with prenex QBFs. We define an occurrence o ∈ {0, 1} * of a formula in another one as follows:

is the occurrence of Σ in itself; if o is an occurrence of σ in Σ 0 then 0.o is an occurrence of σ in ¬Σ 0 ; if o is an occurrence of σ in Σ 0 then 0.o is an occurrence of σ in (Σ 0 * Σ 1 ), * ∈ O and σ is a sub-formula of Σ 0 ; if o is an occurrence of σ in Σ 1 then 1.o is an occurrence of σ in (Σ 0 * Σ 1 ), * ∈ O and σ is a sub-formula of Σ 1 . As usual .o is simplified in o.
Semantics of all the Boolean symbols is defined in standard way. A valuation (or Boolean interpretation) is a function from the set of variables to BOOL. Propositional satisfaction is denoted with |= and logical equivalence is denoted with ≡. A model (i.e. a valuation satisfying a formula) is denoted with a set of literals; for example, the valuation ν defined by ν(x) = t, ν(y) = f and ν(z) = t and which satisfies the formula ((x∨y)↔z) is denoted with {x, ¬y, z}. The semantics of QBF is defined as follows: for every Boolean variable y and QBF F , (∃y

F ) = (F [y ← ]∨F [y ← ⊥]) and (∀y F ) = (F [y ← ]∧F [y ← ⊥]). A QBF F is valid if F ≡ .
If y is an existentially quantified variable preceeded by the universally quantified variables x 1 , . . . , x n we denote ŷx1,...,xn its Skolem function from BOOL n to BOOL. A model for a QBF F is a sequence s of satisfying Skolem functions for F (denoted with s |= F ). For example, the QBF ∃y∃x∀z((x∨y)↔z) is not valid but the QBF ∀z∃y∃x((x∨y)↔z) is valid and its possible sequence of satisfying Skolem functions is ŷz (t) = t, ŷz (f ) = f , xz (t) = f and xz (f ) = f2 . Skolem functions are sometimes represented by policies [START_REF] Coste-Marquis | Representing policies for quantified boolean formulae[END_REF] or strategies [START_REF] Bordeaux | Boolean and interval propagation for quantified constraints[END_REF] which clarify them by trees; for example, the term {z → y; ¬x, ¬z → ¬y; ¬x} is a valid policy or winning strategy corresponding to the Skolem functions x and ŷ. A (Boolean) model of an unquantified Boolean formula corresponds exactly to a (QBF) model of its existential closure; for example for the QBF ∃y∃x∃z((x∨y)↔z), the Skolem functions x = t, ŷ = f and ẑ = t correspond to the Boolean model ν(x) = t, ν(y) = f and ν(z) = t for the propositional formula ((x∨y)↔z). A QBF is valid if and only if there exists a sequence of satisfying Skolem functions. We recall that the SAT problem which decides if a Boolean formula is satisfiable or not is the canonical problem of the NP-complete class and the QBF problem which decides if a quantified Boolean formula is valid or not is the canonical problem for the PSPACE-complete class.

Answer Set Programming

Since few years, Answer Set Programming (ASP) is a very active research field involved in knowledge representation, non monotonic reasoning, logic programming and combinatorial problem resolution. In a fully declarative manner, ASP can represent a problem with a logic program of whose semantics defines a set of answers (the models of the program) encoding the solutions of a given problem. Under the generic term of ASP, many syntactic and semantic variants have been defined. In this work we use the original stable model semantics [START_REF] Gelfond | The stable model semantics for logic programming[END_REF] for normal logic programs.

A normal logic program3 is a finite set of rules like )} has no stable model at all and is said to be inconsistent.

To determine if a program has, or not, a stable model is an NP-complete problem, and then the relation between ASP and the canonical NP-complete problem, SAT, has already been studied. For instance, we recall here the approach introduced in [START_REF] Niemelä | Logic programs with stable model semantics as a constraint programming paradigm[END_REF] in the case of propositional formulae given in CNF. Let Σ be a clause set. The translation of the formula produces a program LP (Σ) containing rules (na ← not a.) and (a ← not na.) for every atom a occurring in Σ. For every clause in Σ, a new atom c is created and the rule (← not c.) 4is added to LP (Σ). For every literal l in this clause, the rule (c ← a.) if l is an atom a or the rule (c ← na.) if l is the negation of an atom a, is added to LP (Σ). In this way, Σ has a propositional model if and only if LP (Σ) has a stable model. The reader can observe that the first rule pairs in LP (Σ) allow one to generate all possible interpretations for Σ and rules whose head is c permit to infer c if the interpretation satisfies the corresponding clause. Lastly, for every clause, constraints forbid all sets not containing c (that are not models of Σ) to be a stable model. The first part of our contribution is an extension of this approach to all propositional formulae without syntactic restriction (like CNF) and it is described in the next section.

3 From a Boolean Formula to a Normal Logic Program

We propose a (polynomial) translation of every Boolean formula into a normal logic program and prove that a formula is satisfiable if and only if the program, obtained by this translation, has a stable model. Our result is not only an existence result but it gives the correspondence between the (Boolean) models of the formula and the stable models of the obtained program. It allows ASP solvers to be used as a tool to solve SAT problems without any restriction on formulae (as CNF). The following definition describes the π and π -1 functions which associate a set of literals of a formula to a set of atoms of a program and reciprocally.

Definition 1 (π and π -1 functions). Let π : 2 L → 2 A be a function such that, for every

L ∈ 2 L , π(L) = {x | x ∈ L} ∪ {nx | ¬x ∈ L}.
Let π -1 : 2 A × P ROP → 2 L be a function such that for every A ∈ 2 A and every Σ ∈ P ROP ,

π -1 (A, Σ) = {x | x ∈ A, x ∈ V(Σ)} ∪ {¬x | nx ∈ A, x ∈ V(Σ)}.
The following definition describes the P Q function which generates from a set of propositional variables a program whose stable models are in bijection with all the possible valuations of the variables. Definition 2 (P Q function). Let V be a set of variables, P Q : 2 V → P be a function such that

P Q (V ) = x∈V (x ← not nx.), (nx ← not x.)
Theorem 1. Let Σ be a propositional formula and ν be a set of literals. ν is a valuation of V(Σ) if and only if P Q (V(Σ)) has a stable model π(ν).

Example 1. Let F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))) be a propositional formula. V(F ) = {a, b, c, d} and

P Q (V(F )) =        (a ← not na.), (na ← not a.), (b ← not nb.), (nb ← not b.), (c ← not nc.), (nc ← not c.), (d ← not nd.), (nd ← not d.)       
For example, the set of atoms m = {na, b, nc, d} is a stable model of the normal logic program P Q (V(F )) and π -1 (m, F ) = {¬a, b, ¬c, d} is a valuation of V(F ).

The (Boolean) models of a propositional formula are valuations satisfying the constraints linked to the operators constituting the formula. To obtain a program corresponding to the formula, we add to P Q function another function which translates those constraints (or sub-formulae). The chosen method introduces for every operator instances of the formula a new atom which represents the results of the operator on its arguments. Definition 3 (P translation function). Let Σ, Σ 0 and Σ 1 be three propositional formulae, x a propositional variable and o an occurrence. Let P : P ROP × {0, 1} * → P be a function defined by induction as follows:

if Σ = x then P (Σ, o) = {(s o ← x.)} if Σ = ¬Σ 0 then P (Σ, o) = {(s o ← not s o.0 .)} ∪ P (Σ 0 , o.0) if Σ = (Σ 0 ∧Σ 1 ) then P (Σ, o) = {(s o ← s o.0 , s o.1 .)} ∪ P (Σ 0 , o.0) ∪ P (Σ 1 , o.1) if Σ = (Σ 0 ∨Σ 1 ) then P (Σ, o) = {(s o ← s o.0 .), (s o ← s o.1 .)} ∪P (Σ 0 , o.0) ∪ P (Σ 1 , o.1) if Σ = (Σ 0 →Σ 1 ) then P (Σ, o) = {(s o ← not s o.0 .), (s o ← s o.1 .)} ∪P (Σ 0 , o.0) ∪ P (Σ 1 , o.1) if Σ = (Σ 0 ↔Σ 1 ) then P (Σ, o) = {(s o ← s o.0 , s o.1 .), (s o ← not s o.0 , not s o.1 .)} ∪P (Σ 0 , o.0) ∪ P (Σ 1 , o.1) if Σ = (Σ 0 ⊕Σ 1 ) then P (Σ, o) = {(s o ← s o.0 , not s o.1 .), (s o ← not s o.0 , s o.1 .)} ∪P (Σ 0 , o.0) ∪ P (Σ 1 , o.1)
The translation of an initial formula Σ is given by P (Σ, ).

Example 2 (Example 1 continued). For the propositional formula F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d)))))

P (F, ) =                (s ← s 0 , s 1 .), (s 0 ← s 0 2 .), (s 0 ← s 0.1 .), (s 0 2 ← c.), (s 0.1 ← b.), (s 1 ← not s 1.0 .), (s 1 ← s 1 2 .), (s 1.0 ← b.), (s 1 2 ← s 1 2 .0 , s 1 3 .), (s 1 2 .0 ← not s 1 2 .0 2 .), (s 1 2 .0 ← s 1 2 .0.1 .), (s 1 2 .0 2 ← c.), (s 1 2 .0.1 ← d.), (s 1 3 ← s 1 3 .0 .), (s 1 3 ← s 1 4 .), (s 1 3 .0 ← c.), (s 1 4 ← s 1 4 .0 , s 1 5 .), (s 1 4 ← not s 1 4 .0 , not s 1 5 .), (s 1 4 .0 ← a.), (s 1 5 ← not s 1 5 .0 .), (s 1 5 .0 ← d.)               
From the two above definitions, we introduce in the following definition the function Π which generates from a propositional formula a normal logic program.

Definition 4 (Π function).

Let Σ be a propositional formula. Let Π : P ROP → P be a function such that Π(Σ) = P Q (V(Σ)) ∪ P (Σ, ).

The following lemma shows that for a formula Σ, the program Π(Σ) does not eliminate nor adds stable model to the program P Q (Σ): it only adds to the stable models of P Q (Σ) some atoms s o . Lemma 1. Let Σ be a propositional formula. The set of literals ν is a valuation for V(Σ) if and only if there exists a (unique) stable model m of Π(Σ) such that π(ν) ⊆ m.

The following lemma shows that every intermediate atom s o introduced to represent the result of a sub-formula is in the stable model if and only if its valuation is t. Lemma 2. Let Σ init be a propositional formula, Σ be a sub-formula of Σ init and m be a stable model of

P Q (V(Σ init )) ∪ P (Σ, ). For every occurrence o of Σ in Σ init s o ∈ m if and only if π -1 (m, Σ) |= Σ.
Theorem 2. Let Σ be a propositional formula and m a stable model of Π(Σ),

s ∈ m if and only if π -1 (m, Σ) |= Σ.
The result follows from the previous lemma 2 with Σ = Σ init .

To obtain only stable models containing (or not) the atom s , we extend the definition of function Π to Π + (Π -) which includes in the program a new constraint.

Definition 5 (Π + and Π -functions). Let Σ a propositional formula. Let Π + and Π -: P ROP → P be two functions such that:

Π + (Σ) = Π(Σ) ∪ {(← not s .)} Π -(Σ) = Π(Σ) ∪ {(← s .)}
The following corollary to the previous Theorem 2 establishes the wished result: the equivalence between the existence of a stable model of the program and the satisfiability of the propositional formula. This result is not only an existence result : to every stable model of a program corresponds a (Boolean) model of the formula and reciprocally.

Corollary 1. Let Σ be a propositional formula, the normal logic program Π + (Σ) has a stable model if and only if Σ is satisfiable. Moreover, if m is a stable model of Π + (Σ) then π -1 (m, Σ) |= Σ ; if ν is a (Boolean) model for Σ then there exists a (unique) stable model m of Π + (Σ) such that π(ν) ⊆ m.
Example 3 (Example 2 continued). The propositional formula F has eight models, for example : ν 1 = {¬a, c, d, ¬b} |= F. Π(F ) has sixty-four stable models with eight {m i } 1≤i≤8 ones which contain s ; these eight stable models are such that π -1 (m i , F ) |= F, 1 ≤ i ≤ 8 ; for example the stable model

m 1 = {na, nb, c, d} ∪ {s , s 0 , s 1 , s 0 2 , s 1 2 , s 1 2 .0 , s 1 2 .0 2 , s 1 2 .0.1 , s 1 3 , s 1 3 .0 , s 1 4 } is such that π -1 (m 1 , F ) = {¬a, ¬b, c, d} = ν 1 .
The translation Π + allows one to decide not only if a propositional formula is satisfiable or not but also by the corollary 1 if a formula is a tautology or not indirectly by exhaustively computing the models (or their number). The translation Π -allows to decide directly if a propositional formula is a tautology or not as it is expressed in the following corollary of the theorem 2.

Corollary 2. Let Σ be a propositional formula, the normal logic program Π -(Σ) has no stable model if and only if Σ is a tautology. Moreover, if m is a stable model of Π -(Σ) then π -1 (m, Σ) falsifies the formula Σ ; if ν falsifies the formula Σ then there exists a (unique) stable model m of Π -(Σ) such that π(ν) ⊆ m.
Let us remark that if the formula Σ contains n different propositional variables, m occurrences of these variables and p operators then Π(Σ) contains at most 2n + m + 2p rules. So, our translation Π is polynomial with respect the length of the given formula. Moreover, as introduced in [START_REF] Niemelä | Logic programs with stable model semantics as a constraint programming paradigm[END_REF] we can say that Π is modular in the sense that the translation of a formula can be locally computed. Indeed, let us suppose that we have already computed the program Π(Σ) and decide to deal with a new formula as (Σ * Σ ), * ∈ O. Then, we just have to compute Π(Σ ), join it with Π(Σ) and add the one or two rules necessary to encode the operator * to obtain the whole desired translation 5 . The important point is that we do not have to recompute anything else for Σ.

It is also obvious that the translation is simple and may be optimized to decrease the number of introduced symbols and rules. We can see first that every occurrence of a variable introduces a new symbol (and a new rule) in the base cases of induction : a first optimization modifies those two base cases and mixes them with the induction cases. We can also increase the number of connectors and consider the "nand" (not and), "nor" (not or) and "non implication" connectors (the negation of the equivalence is the xor). With this second modification combined with the previous one, negation disappears from the translated connectors ; considered as a formal system the translation is very closed to the semantic tableaux of [START_REF] Smullyan | First Order Logic[END_REF].

Example 4 (Example 2 continued). The program P (F, ) may be optimised in

   (s ← s 0 , s 1 .), (s 0 ← c.), (s 0 ← b.), (s 1 ← not b.), (s 1 ← s 1 2 .), (s 1 2 ← s 1 2 .0 , s 1 3 .), (s 1 2 .0 ← not c.), (s 1 2 .0 ← d.), (s 1 3 ← c.), (s 1 3 ← s 1 4 .), (s 1 4 ← a, nd.), (s 1 4 ← not a, not nd.)    4 From Quantified Boolean Formulae to Normal Logic Programming
We have described in the previous section the translation of a propositional formula to a normal logic program such as to compute the stable models of the program corresponds to compute the models of the (Boolean) formula. We extend these results to the quantified Boolean formulae (QBF) thanks to a translation from a QBF to a normal logic program such as to compute the stable models of the program corresponds to compute the models (satisfying Skolem functions) of the QBF. The simplest way to extend results of the previous section is to apply the semantics of the universal quantifier which makes this quantification explicit as a conjunction:

(∀x Σ) = (Σ[x ← ]∧Σ[x ← ⊥]
) and then to apply on this formula, which only contains existentially quantified variables, the result obtained in the propositional case (this technique is very close to [START_REF] Biere | Resolve and expand[END_REF]). The obvious price of this method is the exponential increase of the obtained propositional formula and then of the normal logic program. The other price is the exponential increase of the number of intermediate symbols introduced during the translation of the connectors. These two exponential increasings may be avoided by computing a first order normal logic program. Unfortunately, a final exponential increasing of the actual program treated by the ASP solvers cannot be avoided since the actual ASP solvers are propositional ones. The technique we present here is inspired by the Skolemization and is close to the propositional symbolic skolemization of [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] : the existentially quantified variables are replaced by functions whose arguments are the universally quantified variables which precede them in the binder. Those functions are converted into predicate symbols in the normal logic program. Two new symbols 0 and 1 are introduced and an interpretation function i from {0, 1} to BOOL such that i(0) = f and i(1) = t. Definitions of π and π -1 are extended to Skolem functions and to n-ary predicates. Definition 6 (π ∀ and π -1 ∀ functions for QBF). Let π ∀ : 2 F → 2 A be a function such that, for every sk ∈ 2 F ,

π ∀ (sk) = {x(i -1 (u 1 ), . . . , i -1 (u n )) | x ∈ sk, u 1 , . . . , u n ∈ BOOL, x(u 1 , . . . , u n ) = t} ∪ {nx(i -1 (u 1 ), . . . , i -1 (u n )) | x ∈ sk, u 1 , . . . , u n ∈ BOOL, x(u 1 , . . . , u n ) = f } Let π -1 ∀ : 2 A × QBF → 2 F be a function such that, for every A ∈ 2 A and every Σ ∈ QBF , π -1 ∀ (A, Σ) = {x(i(U 1 ), . . . , i(U n )) = t | x(U 1 , . . . , U n ) ∈ A, Q(x) = ∃, U 1 , . . . , U n ∈ {0, 1}} ∪ {x(i(U 1 ), . . . , i(U n )) = f | nx(U 1 , . . . , U n ) ∈ A, Q(x) = ∃, U 1 , . . . , U n ∈ {0, 1}}
In the following definition, translation functions P ∀ Q and P ∀ have an argument S (for "Skolem") which associates to every existentially quantified variable the number of universally quantified variables which precede it (and then the arity of the function and of the predicate symbol). The translation function P ∀ Q corresponds to the treatment of the quantifiers: the existential quantification is treated in a similar way to the propositional case since the universal quantification introduces a rule expliciting the constant 1 as interpreted to t and the semantics of the quantifier as a conjunction (the interpretation of the constant 0 as f is not explicited since it is not useful : this fact illustrates the asymmetry in the non monotonic logic program, that deals with negation by the absence of something instead of its explicit representation). The intermediate symbols introduced in the propositional case are considered for the QBF case as existentially quantified variables coming from the decomposition by introduction of existentially quantified variables as in [START_REF] Stéphan | Boolean propagation based on literals for quantified boolean formulae[END_REF]. As existentially quantified variables, they are also skolemized : every intermediate symbol has as many arguments as universally quantified variables in the QBF.

Definition 7 (P ∀

Q , P ∀ and Π ∀ functions). Let Σ, Σ 0 and Σ 1 be QBF, V a set of variables, n and N ∀ in N, o an occurrence and S a function from V to N.

Let P ∀ Q : QBF × N × N × (V → N) → P be a function such that if Σ = (∃x Σ 0 ) then P ∀ Q (Σ, N ∀ , n, S) = P ∀ Q (Σ 0 , N ∀ , n, S ∪ {(x → n)}) ∪{(x(U 1 , . . . , U n ) ← not nx(U 1 , . . . , U n ).), (nx(U 1 , . . . , U n ) ← not x(U 1 , . . . , U n ).)} if Σ = (∀x Σ 0 ) then P ∀ Q (Σ, N ∀ , n, S) = P ∀ Q (Σ 0 , N ∀ , n + 1, S) ∪{(x(U 1 , . . . , U N ∀ ) ← U n+1 = 1.)} ∪{(s 0 n (U 1 , . . . , U n ) ← s 0 n+1 (U 1 , . . . , U n , 0), s 0 n+1 (U 1 , . . . , U n , 1).)} if Σ is a propositional formula then P ∀ Q (Σ, N ∀ , n, S) = P ∀ (Σ, 0 N ∀ , N ∀ , S) Let P ∀ : P ROP × {0, 1} * × N × (V → N) → P be a function such that
Existentially quantified variable considered as a formula if Σ = x and

(x → n) ∈ S then P ∀ (Σ, o, N ∀ , S) = {(s o (U 1 , . . . , U N ∀ ) ← x(U 1 , . . . , U n ).)} Universally quantified variable considered as a formula if Σ = x and (x → n) ∈ S then P ∀ (Σ, o, N ∀ , S) = {(s o (U 1 , . . . , U N ∀ ) ← x(U 1 , . . . , U N ∀ ).)} if Σ = ¬Σ 0 then P ∀ (Σ, o, N ∀ , S) = (s o (U 1 , . . . , U N ∀ ) ← not s o.0 (U 1 , . . . , U N ∀ ).) ∪P ∀ (Σ 0 , o.0, N ∀ , S) if Σ = (Σ 0 ∧Σ 1 ) then P ∀ (Σ, o, N ∀ , S) = {(s o (U 1 , . . . , U N ∀ ) ← s o.0 (U 1 , . . . , U N ∀ ), s o.1 (U 1 , . . . , U N ∀ ).)} ∪P ∀ (Σ 0 , o.0, N ∀ , S) ∪ P ∀ (Σ 1 , o.1, N ∀ , S) if Σ = (Σ 0 ∨Σ 1 ) then P ∀ (Σ, o, N ∀ , S) = (s o (U 1 , . . . , U N ∀ ) ← s o.0 (U 1 , . . . , U N ∀ ).), (s o (U 1 , . . . , U N ∀ ) ← s o.1 (U 1 , . . . , U N ∀ ).) ∪P ∀ (Σ 0 , o.0, N ∀ , S) ∪ P ∀ (Σ 1 , o.1, N ∀ , S) if Σ = (Σ 0 →Σ 1 ) then P ∀ (Σ, o, N ∀ , S) = (s o (U 1 , . . . , U N ∀ ) ← not s o.0 (U 1 , . . . , U N ∀ ).), (s o (U 1 , . . . , U N ∀ ) ← s o.1 (U 1 , . . . , U N ∀ ).) ∪P ∀ (Σ 0 , o.0, N ∀ , S) ∪ P ∀ (Σ 1 , o.1, N ∀ , S) if Σ = (Σ 0 ↔Σ 1 ) then P ∀ (Σ, o, N ∀ , S) = (s o (U 1 , . . . , U N ∀ ) ← s o.0 (U 1 , . . . , U N ∀ ), s o.1 (U 1 , . . . , U N ∀ ).), (s o (U 1 , . . . , U N ∀ ) ← not s o.0 (U 1 , . . . , U N ∀ ), not s o.1 (U 1 , . . . , U N ∀ ).) ∪P ∀ (Σ 0 , o.0, N ∀ , S) ∪ P ∀ (Σ 1 , o.1, N ∀ , S) if Σ = (Σ 0 ⊕Σ 1 ) then P ∀ (Σ, o, N ∀ , S) = (s o (U 1 , . . . , U N ∀ ) ← s o.0 (U 1 , . . . , U N ∀ ), not s o.1 (U 1 , . . . , U N ∀ ).), (s o (U 1 , . . . , U N ∀ ) ← not s o.0 (U 1 , . . . , U N ∀ ), s o.1 (U 1 , . . . , U N ∀ ).) ∪P ∀ (Σ 0 , o.0, N ∀ , S) ∪ P ∀ (Σ 1 , o.1, N ∀ , S)
Let Σ be a QBF and N ∀ the number of universally quantified variables of Σ. Let Π ∀ (Σ) : QBF → P be a function such that Π ∀ (Σ) = P ∀ (Σ, N ∀ , 0, ∅).

By construction the translation is polynomial.

Example 5 (Example 3 continued). Let F ∃a∀b∃c∀d = ∃a∀b∃c∀dF be a QBF with F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))). We obtain

Π ∀ (F ∃a∀b∃c∀d ) = P ∃a∀b∃c∀d ∪       
(a ← not na.), (na ← not a.), (b(U 1 , U 2 ) ← U 1 = 1.), (s ← s 0 (0), s 0 (1).), (c(U 1 ) ← not nc(U 1 ).), (nc(U 1 ) ← not c(U 1 ).),

(d(U 1 , U 2 ) ← U 2 = 1.), (s 0 (U 1 ) ← s 0 2 (U 1 , 0), s 0 2 (U 1 , 1).)       
with P ∃a∀b∃c∀d equal to P (F, 0 2 ) in which all s o (resp. b, c and d) are replaced by s o (U 1 , U 2 ) (resp. b(U 1 , U 2 ), c(U 1 ) and d(U 1 , U 2 )) and with intermediary call P ∀ (F, 2, 2, {(a → 0), (c → 1)}).

Let F ∀a∃b∀c∃d = ∀a∃b∀c∃dF be a QBF. We obtain

Π ∀ (F ∀a∃b∀c∃d ) = P ∀a∃b∀c∃d ∪        (a(U 1 , U 2 ) ← U 1 = 1.), (s ← s 0 (0), s 0 (1).), (b(U 1 ) ← not nb(U 1 ).), (nb(U 1 ) ← not b(U 1 ).), (c(U 1 , U 2 ) ← U 2 = 1.), (s 0 (U 1 ) ← s 0 2 (U 1 , 0), s 0 2 (U 1 , 1).), (d(U 1 , U 2 ) ← not nd(U 1 , U 2 ).), (nd(U 1 , U 2 ) ← not d(U 1 , U 2 ).)        with P ∀a∃b∀c∃d equal to P (F, 0 2 ) in which all s o (resp. a, b, c and d) are re- placed by s o (U 1 , U 2 ) (resp. a(U 1 , U 2 ), b(U 1 ), c(U 1 , U 2 ) and d(U 1 , U 2 )) and with intermediary call P ∀ (F, 2, 2, {(b → 1), (d → 2)}).
Let the reader note that the obtained program is a first order one in which only two constants (0 and 1) occur. So, as usual in ASP, this program has to be considered as a (exponential) compressed version of the propositional program in which every variable is replaced by 0 or 1. As in the SAT case, the function Π is extended to the function Π + (resp. Π -) to restrict the stable models corresponding to the (Boolean) models (resp. corresponding to the valuations which falsify the formula). We define the function Π ∀ + (resp. Π ∀ -) as an extension of the function Π ∀ to restrict the Skolem functions to those which satisfy (resp. not satisfy) the QBF.

Definition 8 (Π +

∀ and Π - ∀ functions). Let Σ be a QBF. Let Π + ∀ and Π - ∀ : QBF → P be functions such that

Π + ∀ (Σ) = Π ∀ (Σ) ∪ {(← not s .)} Π - ∀ (Σ) = Π ∀ (Σ) ∪ {(← s .)}
As for the corollary 1 of theorem 2 which computes the (Boolean) model of a propositional formula thanks to the stable models of an associated normal logic program, the following corollary to the theorem 3 allows one to extract from the stable models of an associated normal logic program the Skolem functions which satisfy a QBF. 

sk = ba (t) = t, ba (f ) = t, dac (t, t) = t, dac (t, f ) = f , dac (f , t) = t, dac (f , f ) = t
which corresponds to the valid policy or winning strategy 4 (1, 0), s 0 2 .1 4 (0, 1)} So, we have π -1 ∀ (m, F ∀a∃b∀c∃d ) = sk and π ∀ (sk) ⊆ m. Since the symbols s and s 0 represent the semantics of the universal quantification for the variables a and c, it is necessary to all their instances to be in the stable model. Only the atom s 0 2 .1 4 (1, 1) is not in the stable model since it represents the sub-formula (a↔¬d) for the variable a interpreted to t (the first 1 of s 0 2 .1 4 (1, 1)) and the variable d interpreted to t (since the atom d(1, 1) is in the stable model) and have to be interpreted to f .

       a → b; c → d, ¬c → ¬d , ¬a → b; c → d, ¬c → d        and Π + ∀ (F ∀a∃b∀c∃d ) has a (unique) stable model m = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)}∪ {a(1, 0), a(1, 1), c(0, 1), c(1, 1)}∪ {s , s 0 (0), s 0 (1), s 0 2 (0, 0), s 0 2 (1, 0), s 0 2 (0, 1), s 0 2 (1, 1)}∪ s o (A, C) | A, C ∈ {0, 1}, o ∈ {0 3 , 0 2 .1, 0 2 .1 2 , 0 2 .1 2 .0, 0 2 .1 3 } ∪ {s 0 2 .1 4 (0, 0), s 0 2 .1

Implementation

The theoretical principles exposed in previous sections have been implemented in three different tools : edimacs2nlp, qbf2nlp, qedimacs2nlp, freely available 6 . These tools admit two kinds of input formats: EDIMACS format for SAT competition 7 and QBF 1.0 format (extended with implication, equivalence and xor) for QBF competition 8 . As mentioned previously, some improvements of our formal method have been introduced in the operational translators that we have developed. For instance, all the theory is based on binary operators, but in EDIMACS format we can represent n-ary operators and our tools are able to deal with them. In example 8 we show the real ASP program for example 7 with no option (two options are possible : -lparse to hide the intermediate symbols and -noreduce to generate a program with no optimization).

:-not sigma .

is the output of qbf2nlp on file in QBF 1.0 format

/forall [a] /exists [b] /forall [c] /exists [d] ((c | b) & (b -> ((c -> d) & (c | (a <-> !d)))))
for the QBF ∀a∃b∀c∃d((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))).

We want to evaluate if our approach represents an efficient alternative to computing the (Boolean) model of a propositional formula or the satisfying Skolem functions of a QBF. We have selected five ASP solvers: DLV [START_REF] Leone | The dlv system for knowledge representation and reasoning[END_REF] (July 14th, 2006), CLASP [START_REF] Gebser | Conflict-driven answer set solving[END_REF] (CLASP 1.0.1), noMoRe++ [START_REF] Anger | The nomore++ system[END_REF] (noMoRe++ v1.5), smodels [START_REF] Niemelä | Evaluating an algorithm for default reasoning[END_REF] (smodels-2.32) and ASSAT [START_REF] Lin | Assat: computing answer sets of a logic program by SAT solvers[END_REF] (ASSAT 2.0); ASSAT has an approach inverse to ours, it computes stable models by calling an underlying SAT solver, in this study: MiniSat [9] (MiniSat 2.0 beta). We first study the results of our approach on propositional formulae and then on QBF.

From SAT to ASP

We have chosen to evaluate and compare our approach in propositional case on the set of QG6 problems [START_REF] Meier | Applying SAT solving in classification of finite algebras[END_REF] which has the advantage to be available in CNF format (from 1301 to 2109 variables and from 6089 to 9964 clauses) and non-CNF format (either 252 or 324 variables and from 3532 to 7850 disjunctions or conjunctions) ; there are 83 satisfiable instances and 173 unsatisfiable instances. The CNF version was obtained by directly expressing the problem of classifying quasigroups into CNF as opposed to the translation of non-clausal formulas into CNF. We compare the run time and the percentage of successful runs of ASP solvers on the result of our translations applied to the SAT non-CNF instances and those of the SAT non-CNF solver SatMate [START_REF] Jain | Satisfiability checking of non-clausal formulas using general matings[END_REF] (SatMate.20.05.2006) the only one which admits the file format of the set of problems QG6. We also include in the comparison the run time and percentage of successful runs for the SAT CNF solvers zChaff [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] (zChaff 2007.3.12.) and MiniSat. The experiments have been realized on a 2 × Intel Xeon CP U 2.80Ghz with 2GB of memory. Table 1 shows if the problems are satisfiable (SAT) or not (UNSAT), the number of solved problems (NbR), the average run time in seconds (ATR) and the average run time in seconds when the run succeeds (ATRS).

Our approach associated with the ASP solvers CLASP and ASSAT is really efficient on this set of problems since it performs better than the SAT non-CNF solver SatMate (dedicated to this set of problems) and zChaff (on the CNF benchmarks) ; only MiniSat is better in number of solved problems and run time. It is worth noting that if the time limit is set to 500 hours (instead of 1 hour), SatMate does not solve more problems but the other solvers do.

From QBF to ASP

All current ASP solvers deal with first order programs, but they use a "frontend", external like Lparse [START_REF] Syrjänen | Implementation of local grounding for logic programs for stable model semantics[END_REF] (Lparse 1.0.17) or GrinGo [START_REF] Gebser | Gringo: A new grounder for answer set programming[END_REF] (GrinGo 1.0.0) or internal for DLV. Thus, the replacement of the variables by constants (in our case 0 and 1) called the grounding step leads to a program with an exponential size.

We first evaluate our approach on the set of benchmarks of the QBFE-VAL07 evaluation9 ; all the instances have an ∃∀ alternation of quantifiers and only negation, conjunction and disjunction connectors. The result have been obtained for a "Core Duo T2400" with 3GB of memory. Table 2 shows the instance, the number of existentially/universally quantified variables (NbV), the run time for smodels and for CLASP, the number of choice points given by smodels (Nb CP), the number of atoms and the number of rules of the normal logic program grounded by Lparse.

On problems of class "counter", we can remark that smodels has no need of choice point to find the solution. It clearly justifies that ASP is a good framework to deal with the computation of solutions of QBF. It is worth noting that when the memory is insufficient or the run time limit (1 hour) is exceeded it is always due to the grounding step.

In [START_REF] Egly | Computing stable models with quantified boolean formulas: Some experimental results[END_REF] the authors introduce a methodology to compute answer sets of disjunctive logic programs10 by means of QBF. So, by chaining their polynomial translation from a disjunctive logic program to a QBF and our polynomial translation from QBF to first order normal logic program, we obtain a complete procedure to compute answer sets of disjunctive programs by means of any answer set programming solver, even if it is not dedicated to disjunctive programs. We have experimented this point on the strategic companie example as it is described in [START_REF] Leone | The dlv system for knowledge representation and reasoning[END_REF]. We have generated 10 disjunctive programs for each number of companies between 10 and 17. Every disjunctive program contains 2 rules with variables. The experiments have been realized on an Intel P entium 4 CP U 1.40Ghz with 2GB of memory. For all these programs the CPU time for DLV (grounding step plus computation of one model) is lower than 0.01 second. On these disjunctive programs we have applied our translation : Table 3 shows the number of companies (NBC), the number of rules of the disjunctive program (NBDR = 4NBC+2), the average number of first order rules in the normal program after the 2 translations (NBNR) and the average number of normal grounded rules after instantiation (NBGR) processed either by Lparse or GrinGo; Table 4 reports the results of the application of Lparse plus smodels (time spent in Lparse with its pourcentage w.r.t. total time, time spent in CLASP with its pourcentage w.r.t. total time, total time and standard deviation σ); Table 5 reports the results of the application of GrinGo plus smodels; Table 6 reports the results of the application of Lparse plus CLASP; Table 7 reports the results of the application of GrinGo plus CLASP; Table 8 reports the results of the application of DLV (with its internal grounder).

Concluding discussion

In the first part of this work, we have generalized a translation from SAT to ASP allowing one to use any existing ASP solver as a SAT solver for every kind of propositional formula without syntactic restrictions like CNF as required for In a certain way, our translation deals with the input logical formula as it has been already done by [START_REF] Plaisted | A structure-preserving clause form translation[END_REF][START_REF] Egly | On different structure-preserving translations to normal form[END_REF] since we introduce a label for every subformula. But our methodology can not be reduce to the application of such a normal form translation followed by a conversion to a normal logic program as in [START_REF] Niemelä | Logic programs with stable model semantics as a constraint programming paradigm[END_REF]. For instance, if the given formula is Σ = (a → (b ∨ c)) , the normal form translations presented in [START_REF] Plaisted | A structure-preserving clause form translation[END_REF][START_REF] Egly | On different structure-preserving translations to normal form[END_REF] lead to the clause set C = {L a , ¬L a ∨¬a∨L b∨c , ¬L b∨c ∨b∨c}. Then, applying the transformation for CNF formulas recalled in subsection 2.2 leads to a program containing five pairs of rules (x ← not nx.), (nx ← not x.) one for each variable x ∈ C, included the new variables encoding the labels of formulae. With our translation, we obtain a program Π(Σ) containing three pairs of rules only those for variables occurring in the input formula Σ. In fact, it is easy to check that chaining the two already known techniques leads to n+m pair of rules of this type if n is the number of propositional variables and m the number of operators occurring in the formula, when our methodology leads only to n pairs (note that in whole generality n m). This is an important feature for efficiency of the resolution since for up-to-date ASP solvers each pair of such rules induces a choice point to determine if x or nx belongs to a solution. In our translation, the search space is not enlarged to useless variables but is limited to the original ones.

Experiments show that our approach is realistic for non trivial problems even if it does not speed up the global computation time. In fact, we knew that some very deep studies are required to improve the performances of the better SAT solvers available today, and the improvement of calculus performance for SAT was not our main goal. But, establishing a clear mapping between propositional models and stable models was the first necessary step to reach our initial goal : solving the problem of QBF validity by using ASP paradigm. That is why in this article we have defined (theoretically and practically) a translation process that provides the user with a normal logic program whose stable models encode (if they exist) the Skolem functions validating the given QBF. The lack of various benchmarks does not allow us to realize a deep evaluation of the performance of our proposal. Therefore, we verify that space complexity resulting from the grounding preprocessing in ASP is the central problem for us and it reflects the particular nature of QBF. But, this point is not surprising with respect to the theory of complexity. Indeed, our translation takes a QBF and generates a normal logic program whose size is still polynomial with respect to the size of the input QBF. Here we take the advantage of the usage of variables in ASP that allows one to write programs representing in intension and in a very compact way, a knowledge base that can have an exponential size if we represent it in extension. But, when the program is processed by an ASP solver, the problem of exponential size, inherent to QBF, arises again since all the available ASP solvers begin their computation by a grounding phase in order to deal with a propositional program.

In conclusion, we can say that the theoretical concepts and the tools that we have introduced here are new and provide QBF researchers with a practical tool that can be useful to compute solutions, to verify solutions, to build benchmarks,. . . For the ASP community, our work exhibits a kind of benchmarks particularly difficult because of their size. It points out that one of the challenges for the ASP community is to be able to deal with very large programs, maybe by escaping the grounding phase and dealing with first order programs. If one day such a goal is reached then it would be of great interest for our approach of QBF solving.

Proofs

Proof of Theorem 1. Let Σ be a propositional formula such that V(Σ) = {x}. Σ has two valuations {x} and {¬x}. π({x}) = {x} and π({¬x}) = {nx}. Let ν be a set of literals, S a set of atoms and the normal logic program such that P Q (ν) = (x ← not nx.), (nx ← not x.)

If S = ∅ P Q (ν) S = (x.), (nx.) C n (P Q (ν) S ) = {x, nx} = S ; If S = {x} P Q (ν) S = (x.) C n (P Q (ν) S ) = {x} = S ; If S = {nx} P Q (ν) S = (nx.) C n (P Q (ν) S ) = {nx} = S ; If S = {x, nx} P Q (ν) S = ∅ C n (P Q (ν) S ) = ∅ = S.
So, P Q (ν) has two stable models {x} and {nx}. π -1 ({x}, Σ) = {x} and π -1 ({nx}, Σ) = {¬x}.

The theorem holds for ν = V(Σ) and |V(Σ)| = 1.

Let Σ be a propositional formula such that V(Σ ) = V(Σ) ∪ {x} with x a new propositional symbol such that x ∈ V(Σ). Σ has two valuations for each valuation ν of Σ: ν ∪ {x} and ν ∪ {¬x}. Assuming the theorem holds for a set of literals ν and a propositional formula Σ, P Q (V(Σ)) has a stable model π(ν) if and only if ν is a valuation of Σ. Then, π(ν ∪ {x}) = π(ν) ∪ {x} and π(ν ∪ {¬x}) = π(ν) ∪ {nx}.

Let ν be a set of literals, S a set of atoms and P Q (ν ) a normal logic program such that P Q (ν ) = P Q (ν) ∪ (x ← not nx.), (nx ← not x.)

The atoms x and nx are not present in any body or head of a rule in P Q (ν), because x ∈ V(Σ). Then the union of a stable model of P Q (ν) and a stable model of (x ← not nx.), (nx ← not x.) is a stable model of P Q (ν ).

Let π(ν) be a stable model of P Q (ν) :

If S = π(ν) ∪ ∅ P Q (ν ) S = P Q (ν) S ∪ (x.), (nx.) C n (P Q (ν ) S ) = π(ν) ∪ {x, nx} = S If S = π(ν) ∪ {x} P Q (ν ) S = P Q (ν) S ∪ (x.) C n (P Q (ν ) S ) = π(ν) ∪ {x} = S If S = π(ν) ∪ {nx} P Q (ν ) S = P Q (ν) S ∪ (nx.) C n (P Q (ν ) S ) = π(ν) ∪ {nx} = S If S = π(ν) ∪ {x, nx} P Q (ν ) S = P Q (ν) S ∪ ∅
C n (P Q (ν ) S ) = π(ν) ∪ ∅ = S P Q (ν ) has two stable models for each stable model π(ν) of P Q (ν): π(ν)∪{x} and π(ν) ∪ {nx}. π -1 (π(ν) ∪ {x}, Σ) = ν ∪ {x} and π -1 (π(ν) ∪ {nx}, Σ) = ν ∪ {¬x}. By induction the theorem holds.

Proof of Lemma 1. Let Σ init and Σ be propositional formulae such that Σ is a subformula of Σ init . Let Π (Σ) be a normal logic program such that Π (Σ) = P Q (V(Σ init )) ∪ P (Σ, o), o be the occurrence of Σ and m be a stable model of Π (Σ). We prove the following lemma: "The set of literals ν is a valuation of V(Σ init ) if and only if there exists a stable model m of Π (Σ) such that π(ν) ⊆ m."

The proof of this lemma is by induction.

• Σ = x. Π (Σ) = P Q (V(Σ init ) \ {x}) ∪ P Q ({x}) ∪ P (Σ, o) = P Q (V(Σ init ) \ {x}) ∪ (x ← not nx.), (nx ← not x.), (s o ← x.)
Let ν be a valuation of V(Σ init ) and if x ∈ ν then ν = ν \ {x} else ν = ν \ {¬x} (ν is a valuation of V(Σ init \{x})). By Theorem 1, P Q (V(Σ init )\{x}) has necessarily a stable model π(ν ). Assuming Lemma 1 holds for Σ 1 and Σ 2 subformulae of Σ and m a stable model of Π (Σ) :

• Σ = ¬Σ 1 . Π (Σ) = P Q (V(Σ init )) ∪ P (Σ 1 , o.0) ∪ {(s o ← not s o.0 .)} = Π (Σ 1 ) ∪ {(s o ← not s o.0 ).)} Let ν be a valuation of Σ init . By induction hypothesis, there exists a stable model m 1 of Π (Σ 1 ) such that π(ν) ⊆ m 1 . If s o.0 ∈ m 1 then m 1 ∪ {s o } is a stable model for Π (Σ) and π(ν) ⊆ m 1 ∪ {s o }, if s o.0 ∈ m 1 then m 1 is a stable model for Π (Σ) and π(ν) ⊆ m. The converse is trivial. • Σ = (Σ 1 ∧Σ 2 ). Cases for ∨, →, ⊕ and ↔ are similar. Π (Σ) = P Q (V(Σ init )) ∪ P (Σ 1 , o.0) ∪ P (Σ 2 , o.1) ∪ {(s o ← s o.0 , s o.1 .)} = Π (Σ 1 ) ∪ Π (Σ 2 ) ∪ {(s o ← s o.0 , s o.1 .
)} Let ν be a valuation of Σ init . By induction hypothesis, there exists a stable model m 1 of Π (Σ 1 ) such that π(ν) ⊆ m 1 and there exists a stable model m Therefore by induction the lemma holds. Since Σ is a subformula of Σ init , it also holds for Σ init . Hence Lemma 1 holds.

2 of Π (Σ 2 ) such that π(ν) ⊆ m 2 . Since V(Σ init ) is in common between Π (Σ 1 )
Proof of Lemma 2 and Theorem 2. Let Σ be a propositional formula such that Σ is a subformula of Σ init . Let Π (Σ) be a normal logic program such that Π (Σ) = P Q (V(Σ init )) ∪ P (Σ, o), o be the occurence of Σ and m be a stable model of Π (Σ). Proof of Lemma 2 is by induction. Theorem 2 follows from Lemma 2 with Σ = Σ init . • Σ = (Σ 1 ∧Σ 2 ). Cases for ∨, →, ⊕ and ↔ are similar. Therefore by induction Lemma 2 holds.

• Σ = x. Π (Σ) = P Q (V(Σ init ) \ {x}) ∪ P Q ({x}) ∪ P (Σ, o) = P Q (V(Σ init ) \ {x}) ∪ (x ← not nx.), (nx ← not x.), (s o ← x.) s o ∈ m if and only if x ∈ m because (s o ← x.) is the only rule whose head is s o . Then, x ∈ π -1 (m, Σ) and π -1 (m, Σ) |= Σ. If π -1 (m, Σ) |= Σ then x ∈ π -1 (m,
• Σ = ¬Σ 1 . Π (Σ) = P Q (V(Σ init )) ∪ P (Σ 1 , o.0) ∪ (s o ← not s o.0 .) = Π (Σ 1 ) ∪ (s o ← not s o.0 ).) s o ∈ m if
o.0 ∈ m is equivalent to π -1 (m, Σ 1 ) |= Σ 1 , therefore π -1 (m, Σ) |= Σ 1 (because V(Σ 1 ) = V(Σ)) and π -1 (m, Σ) |= Σ. Conversely, if π -1 (m, Σ) |= Σ, then π -1 (m, Σ) |= Σ 1 ,
Π (Σ) = P Q (V(Σ init )) ∪ P (Σ 1 , o.0) ∪ P (Σ 2 , o.1) ∪ (s o ← s o.0 , s o.1 .) = Π (Σ 1 ) ∪ Π (Σ 2 ) ∪ (s o ← s o.0 , s o.1 .) s o ∈ m if
o.1 ∈ m is equivalent to π -1 (m, Σ 1 ) |= Σ 1 and π -1 (m, Σ 2 ) |= Σ 2 , therefore π -1 (m, Σ) |= Σ 1 and π -1 (m, Σ) |= Σ 2 (because V(Σ 1 ) ⊆ V(Σ) and V(Σ 2 ) ⊆ V(Σ)) and π -1 (m, Σ) |= Σ. Conversely, if π -1 (m, Σ) |= Σ, then π -1 (m, Σ) |= Σ 1 and π -1 (m, Σ) |= Σ 2 equivalent
Proof of Corollary 1 and Corollary 2. We prove Corollary 1. Proof is similar for Corollary 2.

• Let m be a stable model of Π + (Σ). Due to the rule (← not s .), s ∈ m. m is also a stable model of Π(Σ) (since m = Cn(Π(Σ) m ) = Cn(Π + (Σ) m )).

Then by Theorem 2, π -1 (m, Σ) |= Σ and Σ is satisfiable.

• Conversely, let Σ be satisfiable and ν a (Boolean) model of Σ. According to Lemma 1, there exists a stable model m

⊇ π(ν) of Π(Σ). According to Theorem 2, if ν |= Σ then s ∈ m. m = Cn(Π(Σ) m ) and since s ∈ m, m = Cn(Π + (Σ) m ). So m is stable model of Π + (Σ) such that m ⊇ π(ν).
Then there exists a stable model m ⊇ π(ν) of Π + (Σ).

Hence Corollary 1 holds.

Proof of Theorem 3. We prove more than the theorem : "Let Σ be a QBF. If m is a stable model of Π ∀ (Σ) such that s ∈ m then π -1 ∀ (m, Σ) is a set of Skolem functions which satisfy the QBF ; if sk is a set of Skolem functions which satisfy Σ then there exists a stable model m of Π ∀ (Σ) such that π ∀ (sk) ⊆ m and s ∈ m."

The proof is in two steps. First we prove that there exists a normal logic program nlp F (and an atom s ) for a QBF F such that : If m is a stable model of nlp F such that s ∈ m then π -1 ∀ (m, Σ) is a set of Skolem functions which satisfy the QBF ; if sk is a set of Skolem functions which satisfy Σ then there exists a stable model m of nlp F such that π ∀ (sk) ⊆ m and s ∈ m. Then, we prove that nlp F has the same stable models (w.r.t. the atoms containing Skolem function symbols) as Π ∀ (F ).

The starting point of the first part of this proof is the Propositional Skolemization of [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] which extracts from a QBF an equivalent SAT instance by Skolemization of an equivalent First-Order Logic (FOL) formula. Let L be a first-order language with PS = {p/1} the set of predicate symbols and CS = {1, 0} the set of constant symbols (the set of function symbols is empty). Let M be a structure such that the interpretation of predicate p is: p(1) is true and p(0) is false. Let f ol : QBF → F OL be the function that replaces in a QBF the propositional symbol x by an atom p(x). If the domain of the structure is the Boolean domain, [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] states that a QBF F is satisfiability equivalent to f ol(F ). Proof continued. Using the Skolem theorem we obtain that F is satisfiable if and only if sk(f ol(F )) is also satisfiable (with a bijection between the models of the QBF and the satisfying Skolem functions). In f ol(F ), we keep the name of the existential variables as Skolem constant or function symbols. We apply the Skolem theorem and obtain a formula with only universal quantifiers. The last step of Propositional Skolemization flattens the FOL formula to a SAT instance (this function called prop is not detailled since we do not use it). Finally, [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] states that prop(sk(f ol(F ))) is a satisfiability equivalent propositional formula to F . We replace the application of prop function by a more simple one called univ which expands the universal quantifiers as follow : univ(sk(f ol(F ))) = Proof continued. Since univ(sk(f ol(F ))) is free of variables it may be consider as a propositional formula. We rename all "propositional symbol" p(x) by the "propositional symbol" x.

Let π ∀ : 2 F → 2 L be a function such that, for every sk ∈ 2 F , π ∀ (sk) = {x(i -1 (u 1 ), . . . , i -1 (u n )) | x ∈ sk, u 1 , . . . , u n ∈ BOOL, x(u 1 , . . . , u n ) = t}∪ {¬x(i -1 (u 1 ), . . . , i -1 (u n )) | x ∈ sk, u 1 , . . . , u n ∈ BOOL, x(u 1 , . . . , u n ) = f } Example continued. (1) If m is a stable model of Π(univ(sk(f ol(F )))) such that s ∈ m then π -1 (m, univ(sk(f ol(F )))) |= univ(sk(f ol(F ))).

Let sk be a set of Skolem functions such that π -1 (m, univ(sk(f ol(F )))) = π ∀ (sk) then π -1 (m, univ(sk(f ol(F )))) = π -1 ∀ (m, F ) is a set of Skolem functions that satisfy F .

(2) If sk is a set of Skolem functions which satisfy F then π ∀ (sk) is a (Boolean) model of univ(sk(f ol(F ))) then there exists a stable model m of Π(univ(sk(f ol(F )))) such that π(π ∀ (sk)) = π ∀ (sk) ⊆ m and s ∈ m.

We have proven the first part.

Example continued. m = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)}∪ {a(1, 0), a(1, 1), c(0, 1), c(1, 1)}∪ {s , s0(0), s0(1), s 0 2 (0, 0), s 0 2 (1, 0), s 0 2 (0, 1), s 0 2 (1, 1)}∪ ˘so(A, C) | A, C ∈ {0, 1}, o ∈ {0 3 , 0 2 .1, 0 2 .1 2 , 0 2 .1 2 .0, 0 2 .1 3 } ¯∪ {s 0 2 .1 4 (0, 0), s 0 2 .1 4 (1, 0), s 0 2 .1 4 (0, 1)}

(c ← a 1

 1 , . . . , a n , not b 1 , . . . , not b m .) n ≥ 0, m ≥ 0 where c, a 1 , . . . , a n , b 1 , . . . , b m are atoms all gathered in the set A; P represents the set of all programs. For a rule r, we note head(r) = c its head, body + (r) = {a 1 , . . . , a n } its positive body and body -(r) = {b 1 , . . . , b m } its negative body. The Gelfond-Lifschitz reduct of a program P by an atom set X is the program P X = {(head(r) ← body + (r).) | body -(r) ∩ X = ∅}. Since it has no default negation, such a program is definite and then it has a unique minimal Herbrand model denoted with Cn(P ). By definition, a stable model of P is an atom set S ⊆ A such that S = Cn(P S ). Let us note that a program may have no, one or many stable models. For instance, {(a.), (b ← a, not d.), (c ← a, not b.)} has the unique stable model {a, b}, {(a ← not b.), (b ← not a.)} has two stable models {a} and {b} and {(a.), (b ← a, not d.), (d ← b.

Theorem 3 .

 3 Let Σ be a QBF and m be a stable model of Π ∀ (Σ). s ∈ m if and only if Σ is valid. Example 6 (Example 5 continued). The QBF F ∃a∀b∃c∀d = ∃a∀b∃c∀dF has no satisfying Skolem function and Π ∀ (F ∃a∀b∃c∀d ) has no stable model.

  If x ∈ ν then m = π(ν ) ∪ {x, s o } is a stable model of Π (Σ) such that π(ν) ⊆ m else ¬x ∈ ν and m = π(ν ) ∪ {nx} is a stable model of Π (Σ) such that π(ν) ⊆ m.Conversely, let ν be a set of literals and m be a stable model of Π (Σ) such that π(ν) ⊆ m. Either x, s o ∈ m and nx ∈ m, or x, s o ∈ m and nx ∈ m. By Theorem 1, the set of literals ν , such that ν = ν \ {x} in first case and ν = ν \ {¬x} in the second case, is a valuation of V(Σ init \ {x}). Then in both cases ν is a valuation of V(Σ init ).

  and Π (Σ 2 ), andHead(P (Σ 1 , o.0)) ∩ Head(P (Σ 2 , o.1)) =: if s o.0 ∈ m 1 and s o.1 ∈ m 2 then m = m 1 ∪ m 2 ∪ {s o } is a stable model of Π (Σ) and π(ν) ⊆ m, otherwise, m = m 1 ∪ m 2 is a stable model of Π (Σ)and π(ν) ⊆ m. The converse is trivial.

  to s o.0 ∈ m and s o.1 ∈ m by hypothesis. Due to the rule (s o ← s o.0 , s o.1 .), s 0 ∈ m. Then Lemma 2 holds for this case.

  Example 7 continued.Let F ∀a∃b∀c∃d = ∀a∃b∀c∃d((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))). f ol(F ∀a∃b∀c∃d ) = ∀a∃b∀c∃d((p(c)∨p(b))∧(p(b)→((p(c)→p(d))∧(p(c)∨(p(a)↔¬p(d))))))Proof continued. Let sk : F OL → F OL be the function that computes the Skolem form of a (prenex) FOL formula (replacing the existential variables by new Skolem function symbols which depend on the universal variables that have those existential variables in their scope).

  Example continued. sk(f ol(F ∀a∃b∀c∃d )) = ∀a∀c((p(c)∨p(b(a)))∧(p(b(a))→((p(c)→p(d(a, c)))∧(p(c)∨(p(a)↔¬p(d(a, c)))))))

(

  b1...b N ∀ )∈{0,1} N ∀ σ b1...b N ∀ . with for each b 1 . . . b N ∀ ∈ {0, 1} N ∀ , σ b1...b N ∀ is sk(f ol(F )) in which for each universal variable u i , p(u i ) is replaced by p(u i (b 1 , . . . , b N ∀ )), for each universal variable u i , ¬p(u i (b 1 , . . . , b N ∀ )) if b i = 0 and p(u i (b 1 , . . . , b N ∀ )) if b i = 1 isadded (with a conjunction), for each existential variable e (and Skolem function symbol e) the atoms p(e(u 1 , . . . , u n )) is replaced by p(e(b 1 , . . . , b n )).

  Example continued.Let ∀a∀cM = sk(f ol(F ∀a∃b∀c∃d )).univ(sk(f ol(F ∀a∃b∀c∃d ))) = [M [a ← 1][c ← 1] ∧ p(a(1, 1)) ∧ p(c(1, 1))] ∧[M [a ← 1][c ← 0] ∧ p(a(1, 0)) ∧ ¬p(c(1, 0))] ∧[M [a ← 0][c ← 1] ∧ ¬p(a(0, 1)) ∧ p(c(0, 1))] ∧[M [a ← 0][c ← 0] ∧ ¬p(a(0, 0)) ∧ ¬p(c(0, 0))]

  sk =  ba(t) = t, ba(f ) = t, dac(t, t) = t, dac(t, f ) = f , dac(f , t) = t, dac(f , f ) = t ff π ∀ (sk) = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0), ¬d(1, 0)}Proof continued. By definition of satisfiability of QBF: if a set of Skolem functions sk satisfy a QBF F then π ∀ (sk) is a model for univ(sk(f ol(F ))) ; if ν is a (Boolean) model of univ(sk(f ol(F ))) then there exists a set of Skolem functions sk such that ν = π ∀ (sk) and sk satisfy F . Now we can apply Theorem 2 and Corollary 1 to univ(sk(f ol(F ))) which is a propositional formula:

  Corollary 3. Let Σ be a QBF, the normal logic program Π + ∀ (Σ) has a stable model if and only if Σ is valid. Moreover, if m is a stable model of Π +

∀ (Σ) then π -1 ∀ (m, Σ) is a set of Skolem functions which satisfy the QBF ; if sk is a set of Skolem functions which satisfy Σ then there exists a (unique) stable model m of Π + ∀ (Σ) such that π ∀ (sk) ⊆ m. Example 7 (Example 6 continued). The QBF F ∀a∃b∀c∃d = ∀a∃b∀c∃dF has a (unique) set of satisfying Skolem functions:

Table 1 :

 1 Experimental results for SAT.

Table 2 :

 2 Experimental results for QBFEVAL07.

	Instance	NbV smodels CLASP Nb CP Nb atoms	Nb rules
	counter5 2	15/10	0,180	0,141	0	2 824	2 869
	counter6 2	18/12	0,432	0,423	0	10 108	10 173
	counter7 2	21/14	2,420	2,574	0	37 741	37 830
	counter8 2	24/16	20,465	22,292	0	144 547	144 664
	counter4 4	20/16	3,290	4,911	0	131 925	131 988
	counter4 5	24/20	55,730 513,861	0 2 098 267 2 098 352
	counter5 4	25/20	64,923 531,140	0 2 099 278 2 099 373
	ring4 2	21/14	1,006	1,075	24	34 466	34 665
	ring5 2	24/16	4,024	5,734	25	135 085	135 314
	ring6 2	27/18	22,300	45,870	10	534 572	534 831
	ring4 3	28/21 154,864	M	305 4 197 482 4 199 521
	semaphore 2	21/14	1,090	1,130	5	34 967	35 156
	semaphore 3	28/21 159,452	M	9 4 198 407 4 198 996
	semaphore3 2	27/18	18,327	43,140	5	529 994	530 284

Table 3 :

 3 Number of rules.

	NBC		CPU Lparse + smodels	
		Lparse	smodels	Total	σ
	10	0.27 (55%)	0.17 (35%)	0.49	0.11
	11	0.68 (59%)	0.42 (37%)	1.15	0.30
	12	1.76 (57%)	1.28 (41%)	3.10	0.87
	13	6.74 (50%)	6.67 (50%)	13.46	8.76
	14	18.17 (56%)	14.21 (44%)	32.43	19.57
	15	74.10 (75%)	24.79 (25%)	98.95	32.46
	16	248.25 (71%)	102.57 (29%) 350.87	143.24
	17	1047.67 (75%) 347.04 (25%) 1394.28 373.71

Table 4 :

 4 Results for Lparse + smodels.

	NBC		CPU GrinGo + smodels	
		GrinGo	smodels	Total	σ
	10	0.27 (63%)	0.11 (24%)	0.43	0.09
	11	0.56 (52%)	0.47 (43%)	1.09	0.59
	12	1.15 (44%)	1.42 (54%)	2.63	1.32
	13	2.33 (13%)	15.78 (87%)	18.17	21.55
	14	4.75 (14%)	29.83 (86%)	34.64	45.75
	15	10.01 (11%) 77.85 (89%)	87.93	101.24
	16	19.96 (7%)	274.56 (93%)	294.60	291.79
	17	42.85 (3%)	1189.43 (97%) 1232.37 1648.32

Table 5 :

 5 Results for GrinGo + smodels.

	NBC	CPU Lparse + CLASP	
		Lparse	CLASP	Total	σ
	10	0,21 (64%)	0,07 (23%)	0,33	0.06
	11	0,57 (73%)	0,17 (22%)	0,72	0.27
	12	1,59 (80%)	0,37 (19%)	2,00	0.23
	13	6,46 (88%)	0,82 (11%)	7,35	3.69
	14	17,68 (91%)	1,79 ( 9%)	19,52	1.75
	15	77,43 (95%)	4,29 ( 5%)	81,78	12.50
	16	265,95 (96%)	10,02 ( 4%) 276,03	43.53
	17	1257,33 (98%) 29,71 ( 2%) 1287,11 255.18

Table 6 :

 6 Results for Lparse + CLASP.

	NBC	CPU GrinGo + CLASP	
		GrinGo	CLASP	Total σ
	10	0,30 (73%)	0,06 (15%)	0,41	0.04
	11	0,56 (74%)	0,14 (18%)	0,76	0.05
	12	1,16 (76%)	0,30 (20%)	1,52	0.06
	13	2,42 (77%)	0,65 (21%)	3,14	0.24
	14	4,93 (76%)	1,46 (23%)	6,45	0.24
	15	10,28 (76%) 3,24 (24%)	13,59 0.51
	16	20,68 (72%) 8,07 (28%)	28,83 0.88
	17	43,50 (67%) 20,96 (33%) 64,53 2.56

Table 7 :

 7 Results for GrinGo + CLASP.

	NBC		CPU DLV		
		Instantiation Model generator Total	σ
	10	0,26 (70%)	0,03 ( 8%)	0,37	0.04
	11	0,54 (68%)	0,16 (20%)	0,80	0.20
	12	1,19 (66%)	0,42 (23%)	1,81	0.41
	13	2,70 (50%)	2,34 (43%)	5,43	4.13
	14	5,44 (55%)	3,69 (37%)	9,86	4.81
	15	11,96 (43%)	14,00 (51%)	27,54	25.27
	16	25,04 (32%)	49,36 (64%)	77,37	43.57
	17	35,73 (14%)	212,34 (85%)	250,88 188.15

Table 8 :

 8 Results for DLV.

most of SAT solvers.

  Σ) and by definition of π -1 , x ∈ m. Due to the rule (s o ← x.), m is a stable model of Π (Σ) if and only if s o ∈ m. Lemma 2 holds for this case.

	Assuming Lemma 2 holds for Σ 1 and Σ 2 subformulas of Σ and m a stable
	model of Π (Σ) :

  and only if s o.0 ∈ m because (s o ← not s o.0 .) is the only rule whose head is s o . By hypothesis, s

  equivalent to s o.0 ∈ m by hypothesis. Due to the rule (s o ← not s o.0 .), s 0 ∈ m. Then Lemma 2 holds for this case.

  and only if s o.0 ∈ m and s o.1 ∈ m because (s o ← s o.0 , s o.1 .) is the only rule whose head is s

o . By hypothesis (since m is a stable model of Π (Σ 1 ) and Π (Σ 2 )), s o.0 ∈ m and s

For every b ∈ BOOL, the valuation ν(z) = b, ν(x) = xz(b), ν(y) = ŷz(b) is a (Boolean) model of ((x∨y)↔z).

For sake of simplicity we use program in the sequel.

Such a headless rule is called a constraint and is given for a rule like (bug ← not c, not bug.) where bug is a new symbol.

taking into account that we have to use a new symbol s = s in Π(Σ )

http://forge.info.univ-angers.fr/ ~damota/asp/en/index.php

http://www.satcompetition.org/2005/edimacs.pdf

http://www.qbflib.org/boole.html

http://www.qbflib.org/

programs with a disjunction in the head of rules

Example 8 (Example 7 continued). The generated file bool(0).

bool [START_REF] Anger | The nomore++ system[END_REF]. b(U0) :-not nb(U0),bool(U0). nb(U0) :-not b(U0),bool(U0). d(U0,U1) :-not nd(U0,U1),bool(U0),bool(U1). nd(U0,U1) :-not d(U0,U1),bool(U0),bool(U1). sigma_2(U0,U1) :-U1=1,bool(U0),bool(U1). sigma_2(U0,U1) :-b(U0),bool(U0),bool(U1). sigma_3(U0,U1) :-U1=0,bool(U0),bool(U1). sigma_3(U0,U1) :-d(U0,U1),bool(U0),bool(U1). sigma_4(U0,U1) :-U0=1,nd(U0,U1),bool(U0),bool(U1). sigma_4(U0,U1) :-U0=0,not nd(U0,U1),bool(U0),bool(U1). sigma_5(U0,U1) :-U1=1,bool(U0),bool(U1). sigma_5(U0,U1) :-sigma_4(U0,U1),bool(U0),bool(U1). sigma_6(U0,U1) :-sigma_3(U0,U1),sigma_5(U0,U1),bool(U0),bool(U1). sigma_7(U0,U1) :-not b(U0),bool(U0),bool(U1). sigma_7(U0,U1) :-sigma_6(U0,U1),bool(U0),bool(U1). sigma_8(U0,U1) :-sigma_2(U0,U1),sigma_7(U0,U1),bool(U0),bool(U1). sigma :-sigma_1(0),sigma_1(1). sigma_1(U0) :-sigma_8(U0,0),sigma_8(U0,1),bool(U0).

π ∀ (sk) = {b [START_REF] Anger | The nomore++ system[END_REF], b(0), d(1, 1), d(0, 1), d(0, 0), ¬d(1, 0)} π(m, univ(sk(f ol(F ∀a∃b∀c∃d ))) = {b [START_REF] Anger | The nomore++ system[END_REF], b(0), d(1, 1), d(0, 1), d(0, 0), ¬d(1, 0)} = π ∀ (sk) π(π ∀ (sk)) = {b [START_REF] Anger | The nomore++ system[END_REF], b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)} = π ∀ (sk) Proof continued. Without lose of generality and by commutativity and associativity of conjunction, we isolate under the root s 0 the translation of the conjunction of the added atoms. Let nlp 1 = Π(univ(sk(f ol(F )))) and m 1 one of its stable models. By construction and Lemma 1, for all universal variable u i and for all b 1 . . . b

), (c(0, 1) ← not nc(0, 1).), (nc(0, 1) ← not c(0, 1).), (c(0, 0) ← not nc(0, 0).), (nc(0, 0) ← not c(0, 0).), (a(1, 1) ← not na(1, 1).), (na(1, 1) ← not a(1, 1).), (a(1, 0) ← not na(1, 0).), (na(1, 0) ← not a(1, 0).), (a(0, 1) ← not na(0, 1).), (na(0, 1) ← not a(0, 1).), (a(0, 0) ← not na(0, 0).), (na(0, 0) ← not a(0, 0).), (d(1, 1) ← not nd(1, 1).), (nd(1, 1) ← not d(1, 1).), (d(1, 0) ← not nd(1, 0).), (nd(1, 0) ← not d(1, 0).), (d(0, 1) ← not nd(0, 1).), (nd(0, 1) ← not d(0, 1).), (d(0, 0) ← not nd(0, 0).), (nd(0, 0) ← not d(0, 0).), (b(1) ← not nb(1).), (nb(1) ← not b(1).), (b(0) ← not nb(0).), (nb(0) ← not b(0).)} ∪σ11 ∪ σ01 ∪ σ10 ∪ σ00 with σ11 = {(s . 

Proof continued. Let nlp 2 be the normal logic program obtained from nlp 1 by deleting all rules with s .0.o as head (rules obtained by translation of the added atoms), deleting s .0 in (s ← s .0 , s .1 .), deleting all rules containing ), (c(0, 1).), (a(1, 1).), (a(1, 0).), (d(1, 1) ← not nd(1, 1).), (nd(1, 1) ← not d(1, 1).), (d(1, 0) ← not nd(1, 0).), (nd(1, 0) ← not d(1, 0).), (d(0, 1) ← not nd(0, 1).), (nd(0, 1) ← not d(0, 1).), (d(0, 0) ← not nd(0, 0).), (nd(0, 0) ← not d(0, 0).), (b(1) ← not nb(1).), (nb(1) ← not b(1).), (b(0) ← not nb(0).), (nb(0 

, 1) ← not d(1, 1).), (d(1, 0) ← not nd(1, 0).), (nd(1, 0) ← not d(1, 0).), (d(0, 1) ← not nd(0, 1).), (nd(0, 1) ← not d(0, 1).), (d(0, 0) ← not nd(0, 0).), (nd(0, 0) ← not d(0, 0).), (b(1) ← not nb(1).), (nb(1) ← not b(1).), (b(0) ← not nb(0).), (nb(0) ← not b(0).)} ∪ σ11 ∪ σ01 ∪ σ10 ∪ σ00 with σ11 = {(s (1, 1) ← s .0(1, 1), s .1(1, 1).), (s .0(1, 1) ← s .0 2 (1, 1).), (s .0(1, 1) ← s .0.1(1, 1).), (s .0 2 (1, 1) ← c(1, 1).), (s .0. From (1) plus (1') and (2') plus (2) the theorem holds.

Proof of Corollary 3. The proof of Corollary 3 is similar to this of Corollary 1