Effects of in vitro and in vivo dietary supplementation with saponins on rumen fermentation with particular reference to volatile fatty acids, ammonia and methane A Budan^{1,2}, N Tessier¹, C Pierre¹, D Guilet², D R Yáñez-Ruiz⁴, V Fievez³ ¹Nor-Feed Sud, Beaucouzé, France, ²laboratoire substances d'origine naturelle et analogues structuraux, Université d'Angers, France, ³Laboratory for animal nutrition and animal products, Ghent University, Belgium, ⁴Estación Experimental del Zaidín, CSIC, Granada, Spain *Email:alexandre.budan@nor-feedsud.fr* **Introduction** Saponins occur in plants as secondary metabolites. These compounds are able to shift the rumen fermentations resulting in decreased ammonia (NH₃) concentration in the rumen fluid and mitigation in methane (CH₄) production (Wina *et al.*, 2005). *In vivo* results are not always consistent with data obtained *in vitro*. The aim of this study was (i) to evaluate *in vitro* the effects of a product based on saponins (Yuquina[®] M extract, Nor-Feed Sud, France) on VFA, CH₄ and NH₃, and (ii) to compare the *in vivo* results to data obtained from *in vitro* experiments on goats using similar diets and amount of Yuquina[®] M extract/mL of rumen fluid. Material and methods The total saponin content in Yuquina® M extract (YME) was estimated by gravimetric method according to Yao *et al.* (2010). The saponin content was calculated as the mass of dried butanolic extract. A substrate based on grass silage/maize silage/concentrate (30/30/40) was incubated without or added with any of 12 doses of YME (from 0.04 to 40 g/L DM, with results of 0.1, 0.2 and 1.0 g/L DM shown in Table 1) for *in vitro* rumen fermentations, conducted as described by Castro-Montoya *et al.* (2012). After 24 h at 39 °C, flasks were sampled for gas, NH₃ and VFA determination. A 17 days *in vivo* trial was conducted with 24 dry Murciano-Granadina goats split into 1 control group and 3 treated groups. Animals were fed twice a day a diet similar to the substrate used *in vitro*. Concentration in YME for treated animals was 0.525, 1.050 and 5.250 g/goat/day DM. Methane measurement was done at the end of the experiment in respiratory chambers during two consecutive days. Afterwards rumen content was sampled for VFA and NH₃ analysis. Feed intake was recorded and urine was collected for purine derivative analysis. Means were compared by two-way unbalanced variance analysis (ANOVA) with subsequent post-hoc multiple comparison test of Duncan using XLSTAT (version 2011.2.04, Addinsoft, USA). **Results** Total saponin content was estimated at 341 mg/g in YME by gravimetric method. Similar effects were observed *in vitro* and *in vivo*. Compared to the control, methane production decreased significantly from 0.2 g YME/L DM *in vitro* and from 0.525 g YME/goat/day DM *in vivo* (p<0.05). Total VFA production (*in vitro*) and concentration (*in vivo*) increased significantly at the highest dosages (p<0.05). Ammonia, isobutyrate and isovalerate decreased from the lowest dosages *in vitro* and *in vivo*. On the contrary, the acetate/propionate ratio decreased *in vitro* only. YME significantly decreased feed intake (-8%, p<0.05) at the highest dose in goats. The concentration of total urinary purine derivatives was numerically higher (+25%) from 0.525 g/goat/day DM. **Table 1** Rumen fluid parameters | | In vitro (g YME/L DM) | | | | | In vivo (g YME/goat/day DM) | | | | | |----------------------------|-----------------------|--------------------|-------------------|--------------------|-------|-----------------------------|--------------------|--------------------|-------------------|-------| | Concentration | 0.00 | 0.1 | 0.2 | 1.0 | s.e.d | 0.000 | 0.525 | 1.050 | 5.250 | s.e.d | | Total VFA (mmol/L) | 40.6 ^a | 39.2ª | 41.4 ^a | 46.7 ^b | 1.0 | 36.5 ^a | 41.8 ^{ab} | 40.7 ^a | 58.9 ^b | 3.7 | | Molar proportion (%) | | | | | | | | | | | | Acetate | 63.2^{a} | 63.7^{a} | 63.7^{a} | 61.0^{b} | 0.3 | 60.1 | 63.4 | 63.2 | 62.8 | 0.8 | | Propionate | 21.3 ^a | 21.6 a | 22.3^{ab} | 26.2^{c} | 0.6 | 15.9 | 15.7 | 17.2 | 16.8 | 0.5 | | Butyrate | 11.9 ^a | 11.6 ^{ab} | 11.3 ^b | 10.2^{c} | 0.2 | 12.5 | 12.0 | 10.4 | 13.1 | 0.5 | | Isobutyrate | 0.8^{a} | 0.6^{b} | 0.5^{b} | 0.4^{b} | 0.1 | 4.7^{a} | 3.5 ^{ab} | 3.8^{ab} | 3.0^{b} | 0.2 | | Valerate | 1.2 | 1.2 | 1.2 | 1.1 | 0.3 | 1.9 | 1.5 | 1.6 | 1.5 | 0.1 | | Isovalerate | 1.2ª | 1.1 ^b | 0.9^{c} | 0.8^{d} | 0.1 | 5.0^{a} | 3.9^{b} | 3.8^{b} | 3.0^{b} | 0.3 | | Acetate/propionate | 2.97^{a} | 2.95^{a} | 2.86^{b} | 2.33^{c} | 0.1 | 3.85 | 4.06 | 3.78 | 3.79 | 0.1 | | $NH_3 (mg/100mL)$ | 14.5 ^a | 11.3 ^{ab} | 10.1^{b} | 10.8^{b} | 0.7 | 21.7^{a} | 18.6 ^{ab} | 17.8 ^{ab} | 15.1 ^b | 1.2 | | CH ₄ (mmol/day) | 0.337^{a} | 0.332^{a} | 0.322^{b} | 0.298^{c} | 0.005 | 798.5 ^a | 582.8^{b} | 666.8^{ab} | 495.8^{b} | 42.8 | | Relative CH ₄ * | 332.9^{a} | 340.5^{a} | 310.0^{a} | 255.9 ^b | 10.7 | 27.7 | 22.1 | 25.3 | 31.8 | 1.9 | ^{*} CH₄/VFA (mmol/mol) in vitro and CH₄/feed intake (L/kg) in vivo **Conclusions** These results show that the concentration in YME to reduce rumen NH₃ is lower than the concentration to decrease CH₄ production *in vitro*. The lowest dose was enough to observe both NH₃ and CH₄ inhibition *in vivo*. Consequently, dose effect was observed only *in vitro* and it could be interesting to evaluate the lowest efficient dose of YME *in vivo*. **Acknowledgements** Financial support by the European Commission (FP7-SME-262270-SMEthane) is gratefully acknowledged. ## References Castro Montoya, J., De Campeneere, S., Van Ranst, G. & Fievez, V. 2012. Anim. Feed Sci. Technol. 176, 47-60. Wina, E., Muetzel, S., Becker, K., 2005. Journal of Agriculture and Food Chemistry. 53, 8093–8105. Yao, S., Ma, L., Luo, J.-G., Wang, J.-S., Kong, L.-Y., 2010. L. Helvetica Chimica Acta. 93, 361–374. $^{^{}a, b, c}$: Means in the same row with different superscripts differ (P < 0.05 for *in vitro* and P < 0.10 for *in vivo* trial)