Effects of in vitro and in vivo dietary supplementation with saponins on rumen fermentation with particular reference to volatile fatty acids, ammonia and methane

A Budan^{1,2}, N Tessier¹, C Pierre¹, D Guilet², D R Yáñez-Ruiz⁴, V Fievez³

¹Nor-Feed Sud, Beaucouzé, France, ²laboratoire substances d'origine naturelle et analogues structuraux, Université d'Angers, France, ³Laboratory for animal nutrition and animal products, Ghent University, Belgium, ⁴Estación Experimental del Zaidín, CSIC, Granada, Spain *Email:alexandre.budan@nor-feedsud.fr*

Introduction Saponins occur in plants as secondary metabolites. These compounds are able to shift the rumen fermentations resulting in decreased ammonia (NH₃) concentration in the rumen fluid and mitigation in methane (CH₄) production (Wina *et al.*, 2005). *In vivo* results are not always consistent with data obtained *in vitro*. The aim of this study was (i) to evaluate *in vitro* the effects of a product based on saponins (Yuquina[®] M extract, Nor-Feed Sud, France) on VFA, CH₄ and NH₃, and (ii) to compare the *in vivo* results to data obtained from *in vitro* experiments on goats using similar diets and amount of Yuquina[®] M extract/mL of rumen fluid.

Material and methods The total saponin content in Yuquina® M extract (YME) was estimated by gravimetric method according to Yao *et al.* (2010). The saponin content was calculated as the mass of dried butanolic extract. A substrate based on grass silage/maize silage/concentrate (30/30/40) was incubated without or added with any of 12 doses of YME (from 0.04 to 40 g/L DM, with results of 0.1, 0.2 and 1.0 g/L DM shown in Table 1) for *in vitro* rumen fermentations, conducted as described by Castro-Montoya *et al.* (2012). After 24 h at 39 °C, flasks were sampled for gas, NH₃ and VFA determination. A 17 days *in vivo* trial was conducted with 24 dry Murciano-Granadina goats split into 1 control group and 3 treated groups. Animals were fed twice a day a diet similar to the substrate used *in vitro*. Concentration in YME for treated animals was 0.525, 1.050 and 5.250 g/goat/day DM. Methane measurement was done at the end of the experiment in respiratory chambers during two consecutive days. Afterwards rumen content was sampled for VFA and NH₃ analysis. Feed intake was recorded and urine was collected for purine derivative analysis. Means were compared by two-way unbalanced variance analysis (ANOVA) with subsequent post-hoc multiple comparison test of Duncan using XLSTAT (version 2011.2.04, Addinsoft, USA).

Results Total saponin content was estimated at 341 mg/g in YME by gravimetric method. Similar effects were observed *in vitro* and *in vivo*. Compared to the control, methane production decreased significantly from 0.2 g YME/L DM *in vitro* and from 0.525 g YME/goat/day DM *in vivo* (p<0.05). Total VFA production (*in vitro*) and concentration (*in vivo*) increased significantly at the highest dosages (p<0.05). Ammonia, isobutyrate and isovalerate decreased from the lowest dosages *in vitro* and *in vivo*. On the contrary, the acetate/propionate ratio decreased *in vitro* only. YME significantly decreased feed intake (-8%, p<0.05) at the highest dose in goats. The concentration of total urinary purine derivatives was numerically higher (+25%) from 0.525 g/goat/day DM.

Table 1 Rumen fluid parameters

	In vitro (g YME/L DM)					In vivo (g YME/goat/day DM)				
Concentration	0.00	0.1	0.2	1.0	s.e.d	0.000	0.525	1.050	5.250	s.e.d
Total VFA (mmol/L)	40.6 ^a	39.2ª	41.4 ^a	46.7 ^b	1.0	36.5 ^a	41.8 ^{ab}	40.7 ^a	58.9 ^b	3.7
Molar proportion (%)										
Acetate	63.2^{a}	63.7^{a}	63.7^{a}	61.0^{b}	0.3	60.1	63.4	63.2	62.8	0.8
Propionate	21.3 ^a	21.6 a	22.3^{ab}	26.2^{c}	0.6	15.9	15.7	17.2	16.8	0.5
Butyrate	11.9 ^a	11.6 ^{ab}	11.3 ^b	10.2^{c}	0.2	12.5	12.0	10.4	13.1	0.5
Isobutyrate	0.8^{a}	0.6^{b}	0.5^{b}	0.4^{b}	0.1	4.7^{a}	3.5 ^{ab}	3.8^{ab}	3.0^{b}	0.2
Valerate	1.2	1.2	1.2	1.1	0.3	1.9	1.5	1.6	1.5	0.1
Isovalerate	1.2ª	1.1 ^b	0.9^{c}	0.8^{d}	0.1	5.0^{a}	3.9^{b}	3.8^{b}	3.0^{b}	0.3
Acetate/propionate	2.97^{a}	2.95^{a}	2.86^{b}	2.33^{c}	0.1	3.85	4.06	3.78	3.79	0.1
$NH_3 (mg/100mL)$	14.5 ^a	11.3 ^{ab}	10.1^{b}	10.8^{b}	0.7	21.7^{a}	18.6 ^{ab}	17.8 ^{ab}	15.1 ^b	1.2
CH ₄ (mmol/day)	0.337^{a}	0.332^{a}	0.322^{b}	0.298^{c}	0.005	798.5 ^a	582.8^{b}	666.8^{ab}	495.8^{b}	42.8
Relative CH ₄ *	332.9^{a}	340.5^{a}	310.0^{a}	255.9 ^b	10.7	27.7	22.1	25.3	31.8	1.9

^{*} CH₄/VFA (mmol/mol) in vitro and CH₄/feed intake (L/kg) in vivo

Conclusions These results show that the concentration in YME to reduce rumen NH₃ is lower than the concentration to decrease CH₄ production *in vitro*. The lowest dose was enough to observe both NH₃ and CH₄ inhibition *in vivo*. Consequently, dose effect was observed only *in vitro* and it could be interesting to evaluate the lowest efficient dose of YME *in vivo*.

Acknowledgements Financial support by the European Commission (FP7-SME-262270-SMEthane) is gratefully acknowledged.

References

Castro Montoya, J., De Campeneere, S., Van Ranst, G. & Fievez, V. 2012. Anim. Feed Sci. Technol. 176, 47-60. Wina, E., Muetzel, S., Becker, K., 2005. Journal of Agriculture and Food Chemistry. 53, 8093–8105. Yao, S., Ma, L., Luo, J.-G., Wang, J.-S., Kong, L.-Y., 2010. L. Helvetica Chimica Acta. 93, 361–374.

 $^{^{}a, b, c}$: Means in the same row with different superscripts differ (P < 0.05 for *in vitro* and P < 0.10 for *in vivo* trial)