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Abstract Protometric studies were performed in aqueous solutions at 25°C and
0.1 mol-dm™3 ionic strength (NaClO,) to determine the complexing abilities of eight (o-
hydroxy-phenyl) mono- and di-methylenephosphonic acids (differently substituted by chro-
mophoric or auxochromic groups) towards thorium(IV). The number, the nature of the
species present in solution, their overall stability constants over a broad acidity range and
their individual electronic spectra, as resolved by computation, have been determined by
potentiometry and UV-visible spectrophotometry.

The formation of 1:1 species, partially protonated MLH, and totally deprotonated [ML],
as well as hydroxo species — mononuclear ML(OH),: and dinuclear M,L(OH), is reported
with thorium(IV). The results show that the complexing power, which is not very different
in the lanthanide series, is much higher for thorium(IV). The ratio Th**/Eu?* reaches eight
logjp units with some of the ligands.

Keywords Thorium(IV) complexes - o-Hydroxyphenyl - Mono- and
di-methylenephosphonic acids - Stability constants - Potentiometry - UV-visible
spectrophotometry

1. Introduction

Thorium(IV) as the central metal ion in complexes has been studied as a representative
model of the actinides. Kabachnik ef al. [1] studied potentiometrically the complexation of
the Th** ion at 25°C (KCl 0.1 mol-dm~3). They reported a constant logoB110 = 23.9 with
methylenediphosphonic acid, but with 1-hydroxyethane-1,1-diphophonic acid reported the
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presence of two equilibria:

Th** + H_,L°~ = Th(H_;L)~ log, Bi10 = 27.8
Th*" 4+ 2H_;L>~ = Th(H_L){" log,o Bi20 = 39.9

New techniques of separation and concentration of actinides based on polymeric agents
were used by Novikov et al. [2] for the interaction of poly (ethyleneimine-methylphosphonic)
acids with actinide ions in a homogenous phase. Sabharwal e al. [3] reported that the
extraction of thorium(IV) from bifunctional resins of phosphonic acids is a function of the
nitric acid concentration. Actinide complexation with phosphonate molecules in aqueous
solution was studied by Nash [4]. This thermodynamic and kinetic study showed that ligands
with a doubly ionizable phosphonate group (-PO3H,), such as 1,1- and 1,2- diphosphonics,
are very efficient in the processes of separation and in the treatment of nuclear wastes. A
liquid-liquid extraction method was developed by Tao et al. [S] who studied the extraction
of thorium nitrate with tri-N-butylphosphate (TBP). For Karayannis and co-workers [6],
thorium tetrachloride with neutral phosphate and phosphonate esters gave complexes with
polymeric configurations involving 8-coordinated metal ions. This fact has been widely
reported and comparison can be made in the case of thorium tetraacetate complexes with
EDTA and CDTA, which are highly stable (log;o8110 ~ 24) [7] as compared to those formed
with the triacetates NTA and HEDTA which have fewer coordinating atoms [8]. On the other
hand, 8-coordination, assured by the eight donor atoms of the pentaacetate (DTPA), gives
greater stability when complexed with thorium (log08110 > 27). When this coordination
is not assured, the formation of ThL complexes at acidic pH is followed by the formation
of hydroxy and eventually polymerized species. However, even though DTPA shows 8-
coordination of Th**, hydrolysis occurs at high pH with the formation of a monohydroxo
complex [1]. TTHA (triethylene-tetraamine-hexaacetic acid), which has a very high potential
for coordination, forms a very stable complex (log,, B110 > 27) [9]. The complexing power
of some phosphonic ligands with Co(II), Ni(Il), Cu(Il), Zn(II) and Cd(II) has been recently
reported by Benghanem et al. [10].

The study of thorium complexes has undergone renewed interest with their implication in
environmental chemistry and more so in the biological and medical sciences as in anti-viral
drugs [11], hypothalamus metabolism [12] and in William’s disease [13]. This is, therefore,
a detailed potentiometric and spectrophotometric study concerning the complexation of
the thorium cation with eight o-hydroxyphenyl ligands: 5 mono-methylene (triacids, HsL,

OH OH
R' PO(OH), (HO),OP PO(OH),
R R
Triacids (HsL) Pentaacids (HsL)
la:R=HandR’=H 2a:R=CH;
1b : PO(OH); in para, R and R’ in ortho =H 2b:R=NO»
1¢:R=NO,and R’=H 2¢:R=Cl

1d : R =CHs; and R’ =NO;
le :R=NO;and R’ = CHj;
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compounds la—1e) and 3 di-methylene (pentaacids, HsL, compounds 2a—2¢). The study
of the complexing power of these molecules has possible applications in the treatment of
radioactive liquid waste, because thorium may be considered to be a model tetravalent
actinide. Eventually, a comparison is made with complexation of lanthanides, as well as a
comparison of the complexing power with different ligands.

2. Experimental

2.1. Reagents

All of the compounds were prepared according to the method previously described [14] and
their purity was further monitored by microanalysis:

Anal. Calc. for 1a: C: 44.70; H: 4.82 Found C: 44.80; H: 4.80
Anal. Calc. for 1b: C: 45.68; H: 4.82 Found C:45.83; H:4.70
Anal. Calc. for 1c: C: 37.15; H: 3.76 Found C:37.04; H: 3.53
Anal. Calc. for 1d: C: 38.90; H: 4.08 Found C: 39.40; H: 4.01
Anal. Calc. for 1e: C: 40.18; H: 4.32 Found C:39.93; H:4.11
Anal. Calc. for 2a: C: 34.12; H: 5.82 Found C: 34.37; H:5.58
Anal. Calc. for 2b: C: 29.40; H: 3.39; N: 4.28 Found C: 28.50; H: 3.73; N: 3.99
Anal. Calc. for 2¢: C: 28.91; H: 4.69 Found C:29.08; H: 4.40

They were used as free acids and their solutions were made by dissolution of a weighed
quantity in bi-distilled water. Solutions of 1 mol-dm~ NaClO,-6H,0 (Fluka p.a.) and
1 mol-dm~3 NaOH and HCI (Merck) were prepared with doubly distilled and boiled water.
The pH values of the solutions were adjusted by simple addition of acid (HCIO,) or of base
(NaOH), and monitored with a precision pH-meter. The solution of NaClO, was added to the
medium so that the ionic strength, /, remains constant and equal to 0.1 mol-dm~3. The base
titrant used was sodium hydroxide prepared from an aqueous dilution of the commercial so-
lution and its concentration was determined using a potassium hydrogen phthalate standard
solution.

The metallic salt was the commercial p.a. thorium nitrate Th(NO3)4-5H,0O. This salt
was dried at room temperature under vacuum before use. Its stock aqueous solution
1072 mol-dm™3 was titrated by complexometry with EDTA at pH-6 (sodium acetate), using
xylenol orange as indicator [15].

Ligand solutions were kept away from light in order to avoid degradation and were
prepared in the concentration range 1072 or 1073 mol-dm~>. A given amount of perchloric
acid was initially added to all ligand solutions in order to completely protonate the ligand.
The solution was then neutralized by NaOH solution 0.1 or 1 mol-dm™3 until —log;o[H] =
12. In the following discussion, —log;o[H™] will be abbreviated as pH.

The final analytical concentration of metal was 10~* or 10~ mol-dm~ for the po-
tentiometric study and 10~* mol-dm™> for measurements by spectrophotometry. NaClOy,
0.1 mol-dm—3, was used as the reference solution. The final solutions of metal and ligand
were prepared just before the measurements.

2.2. Potentiometric measurements

The potentiometric investigations of acid-base and metal-binding equilibria were carried out
at 25.0 & 0.1°C under an argon stream and at an ionic strength of 0.1 mol-dm~ (NaClOy).
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The complexation was studied in aqueous solution with equal analytical concentrations of
the ligand Cy. and the cation Cy; (1073 mol-dm—3 with 1b, 1d, 2¢ and 10~* mol-dm~—3 with
1a, 1c, le, 2a, 2b). The titrating agent, (0.1 or 0.01 mol-dm~>) NaOH, used was stored in
a polyethylene container equipped with a CO, trap. All experiments were performed in a
thermoregulated double-wall glass cell (25cm?) at 25.0 & 0.1 °C according to the method
previously described [16].

The stepwise addition of base was carried out with a microburette (Dosimat E 635, 1 cm?)
driven by an automatic titrator (Titroprocessor 636 Metrohm) able to deliver amounts of
solution as small as 1073 cm?®. The dynamic mode (variable addition of titrant, smaller
in the steep equivalence regions) was used to establish the titration curve and its first
derivative, and to collect the numerical data. The logarithm of the concentration of HY
was measured with a combined glass electrode (Ingold) in which the reference liquid was
replaced by a NaCl (0.01 mol-dm~3)-NaClO4 (0.09 mol-dm~3) solution of the same ionic
strength as the solution to be measured. The electrode was calibrated in concentration units,
using the experimental relation given below, with a and b being constants experimentally
determined with calibration solutions of 1072 and 1073 mol-dm~3 HCI in 0.1 mol-dm~3
NaClOg:

- logl()[H+]xrue = — 1Oglo[H_'—]read +a+b 10g10[H+]read

The quantities within square brackets are the concentrations of the species.

2.3. Spectrophotometric measurements

The UV-visible spectra between 200 and 550nm were recorded using a Shimadzu UV
2101 PC spectrophotometer equipped with a thermostat and matched 10 mm quartz cells.
The absorption variations of acid-base and metal-binding equilibria were carried out at
25.0 £ 0.1 °C and the ionic strength, /, of solutions was maintained constant at 0.1 mol-dm—3
with the help of the supporting electrolyte, NaClO,4. The concentration of the ligands should
not exceed 1073 mol-dm ™ to guarantee accurate and confident absorbance values between
0.2 and 2.0. All investigations in the presence of metal ions were carried out at a 1:1 mole ratio
of metal ion to ligand. No determination could be made with higher mole ratios due to precipi-
tation phenomena. Therefore, the analytical concentration of the metal and ligand was fixed at
10~* mol-dm~3. Under such experimental conditions, only mononuclear and dinuclear com-
plexes were envisaged. The spectra were recorded immediately after mixing the reagents and
it took less than one minute to obtain the absorption curve in the studied range from 200 to
550 nm.

The ‘flask’ method was used which consists of preparing solutions separately in 20 mL
measuring flasks, each containing the same quantities of ligand-metal, to which NaOH was
added progressively to encompass the pH range from 1-12. This study permits calculation
of the formation constants of the complexes as well as their molar extinction coefficients,
which were then used to draw the individual electronic spectra of the species present in
solution. The quantitative interpretation was carried out with two types of molecules (triacids:
1c, 1d, 1e; and pentaacid: 2b) containing the chromophore group NO, on the aromatic
nucleus. Other molecules were not studied because of their feeble and insignificant spectral
variations.

@ Springer
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2.4. Computations

All of the equilibrium constants and their equations corresponding to the different equilibria
involved in this study are described in our earlier publication [16].

2.4.1. Potentiometric data

Approximate values of the stepwise protonation constants, K;, the overall protonation con-
stants, Bo;;, of the ligands [16, 17] and the hydrolysis constants, S1¢-;, of thorium(IV) [18]
were determined earlier and have been reported in the literature. The overall stability con-
stants, By , ., of the complexes are computed. Treatment of the potentiometric data was
done using several titrations, each including not less than 150 points, with the help of the
SIRKO program [19]. The values reported in the tables are the mean values of the results
of N independent runs, given with their 95% confidence interval 20 y_; where o is the
standard deviation. The R-factor (Ry) is the result of a statistical test related to the fit between
the experimental and the calculated curves.

2.4.2. Spectrophotometric data

The whole set of spectrophotometric data (23 solutions and 32 wavelengths) obtained
for different pH values was analyzed using the multiwavelength program Letagrop-Spefo
[20], which refines the overall stability constants S, , . of the complexes. The protona-
tion constants, Bo .., of the deprotonated forms of the ligands were constant during the
refinement procedure, as were the formation constants, .., of the hydroxo species for
which z are negative. The calculated values are presented with a 99% confidence interval
(£30). The overall stability constants, B , -, of the complexes correspond to the following
equilibrium:

XM7H 4yl 4 zHY = ML H O
,Bx,y,z _ [MXLyH(me—yn-O—z)+]/[Mm+]x[Lnf]y [H+]z

where x pertains to the metal (M), y is for the ligand (L) and z for the proton (H). In the case
of hydroxo species, z is negative.

Using these data, the individual electronic spectra for each species could be constructed.
For a given model, the quality of the fit is judged from the value of U, the sum of the squares
of the differences between the experimental and calculated absorptions for N solutions at L
wavelengths. If the value of U is smaller than 0.02 for (N, L), it is considered a good fit for
such rather complicated multiparameter systems.

3. Results

A detailed quantitative interpretation of the potentiometric and spectrophotometric data was
carried out and is presented below. The complete experimental data used for this interpretation
are given as supplementary material in the Addenda.
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Fig. 1 Titration curves for the ligands and Th(IV)-ligand complexes in aqueous solution. (C;, = Cm =
1073 mol-dm—3, 25°C, I = 0.1 mol-dm—3 NaClOy)

3.1. Potentiometric determinations

For the sake of clarity the interpretation of the experimental data is separated from that of
the calculated parameters.

3.2.1. pH titrations

The titration curves of the ligand in the presence of Th**+ are shown in Fig. 1. They are all
characterized by an important decrease in the overall pH suggesting the formation of very
stable complexes. However, the complexation with Th*+ appears to vary from one ligand to
the other, much more than was the case with the lanthanides [17].

(a) Triacids

— Ligand 1a. The titration curve of 1a in the presence of Th** is characterized by a very
significant pH decrease around seven base equivalents. An inflexion at four equivalents
corresponds to the formation of ThL™ and this is followed by a steep increase in pH
between four and six equivalents with an inflexion at five equivalents corresponding
to the formation of ThL(OH). This curve continues to increase indicating the probable
formation of other species, which were identified later with theoretical calculations.

— Ligand 1b. The addition of Th** to a solution of ligand 1b and its titration by NaOH
result in an inflexion at three equivalents which corresponds to ThL™, followed by three
clear inflexions corresponding: at four equivalents to ThL(OH), at five to ThL(OH),
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and at six to ThL(OH), . There is another inflexion marked by a strong pH increase at
4.5 equivalents corresponding to the formation of the binuclear species, ThyL(OH), .
This model was found, after the testing of different models during calculations, to be
the most suitable.

— Ligand 1c. The experimental curve of this ligand with Th*+ shows a feeble decrease
in pH indicating weak complexation with this ligand. A jump in pH between one and
three base equivalents is due to the neutralization of the protons of the ligand and
the formation of ThL™ at three equivalents. This is followed by a large buffer zone
within the limits of three and eight equivalents corresponding to different hydroxide
species that are difficult to identify directly from the experimental curves. A posteriori
calculations propose that the best model observed between pH 3.71 and 10.02 is: ThL™,
ThL(OH), ThL(OH), and ThL(OH);".

— Ligand 1d. When Th*t is added to a solution of 1d, the titration curve indicates a
significant lowering of pH even beyond six equivalents of base and this is not solely
because of the hydrolysis of the cation. This curve is characterized principally by a very
clear inflexion at 4.5 equivalents that corresponds to the formation of the binuclear
species, Th,L(OH), . Evidently, there are other species present but they cannot be
identified only from the experimental form of the curve. Interpretation of the data
to pH-10.8 leads to a good set of parameters for the system composed of: ThL*,
ThL(OH), ThL(OH); , ThL(OH)i’ and Th,L(OH), .

— Ligand 1e. The addition of Th** to this ligand results in the decrease of the pH curve
until seven base equivalents have been added. A first zone, characterized between one
and three equivalents, corresponds to deprotonation of the ligand. This is followed by
a second zone characterized by different inflexions at three equivalents, ThL*, and
four equivalents, ThL(OH). The numerical interpretation gives the best result for the
model: ThL*, ThL(OH), ThL(OH); , ThL(OH);~ and ThL(OH);".

(b) Pentaacids

In regards to the pentaacids 2a and 2b, a steep decrease of pH is observed, limited by an
inflexion around four equivalents which corresponds without doubt to the species ThLH.
A second zone with a high increase of pH is defined between four and nine equivalents
that is certainly due to the presence of other species which can not be directly identified
here, but can be by testing different models. On the other hand, for 2¢ the curve shows,
as for all previous ligands, an inflexion at four equivalents, ThLH, and a zone between
four and nine equivalents showing clearly inflexions at five equivalents, ThL™, at six
equivalents, ThL(OH)?>~, and at seven equivalents, ThL(OH); . A certain increase of pH
beyond this range suggests the possible presence of another species.

3.1.2. Numerical interpretation

The interpretation of the experimental data and testing of different models were carried out
with the help of the Sirko_P program [19], in which the values of the protonation constants
of the ligands [16, 17] and the hydrolysis constants of the Th** cation [18] used were
determined earlier. This treatment allowed the determination of the logarithms of the overall
stability constants, logi08y,y, -, and the standard deviation o y _ for the different complexes.
These results are grouped in Table 1.

The models that were postulated during the interpretation of the titration curves were
confirmed by these calculations with determination of the stoichiometry, number and nature
of species in each case.
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Table 1 Values of logi0B11: £ oy —1 (N = 8) determined by the Sirko_P program for the complexes formed
with Th*t in aqueous solution from potentiometric data (25°C, 1 = 0.1 mol-dm—3 NaClOy)

Ligand xyz Species logi0Byy: £ 0,—1 pHrange Rt (%)
1a with Cy = Cp, = 10~% M? 110 ThL™* 14.55 £ 0.10 3.69 t0 9.91 1.10
11-1 ThL(OH) 9.35+0.13
11-2 Th(OH); 1.85+0.22
11-3 ThL(OH);™ —6.98 £0.23
1b with Cy = CL = 1073 M2 110 ThL* 15.50 £ 0.18
11-1 ThL(OH) 11.16 £ 0.23 2.63 to 10.80 3.50
11-2 ThL(OH), 5.05+0.28
11-4 ThL(OH);~ —12.59 £ 0.25
21-6 ThL(OH)¢ —8.61 £0.57
lc with Cy = CL = 107* M2 110 ThL™* 12.40 £ 0.01
11-1 ThL(OH) 6.29 +0.03 3.71 to 10.02 2.10
11-2 ThL(OH), —2.73 £0.04
11-3 ThL(OH);™ —11.22 +£0.01
1d with Cy = CL = 1073 M2 110 ThL™* 13.80 £ 0.70
11-1 ThL(OH) 11.55 £ 0.62 2.76 to 10.82 3.40
11-2 ThL(OH), 6.10 + 0.69
11-4 ThL(OH);~ —11.63 £ 0.94
21-6 ThyL(OH)¢ —6.82 £ 0.71
le with Cyy = CL = 10~* M2 110 ThL* 11.97 £ 0.04
11-1 ThL(OH) 5.95 +0.01 3.88t0 10.16 2.10
11-2 ThL(OH), —2.80 + 0.05
11-3 ThL(OH);™ —11.82 +0.08
11-4 ThL(OH);~ —22.43+0.30
2a with Cyy = CL = 10~* M*? 110 ThL™ 16.42 £ 0.29
111 ThLH 23.15+£0.35
11-1 ThL(OH)>~ 8.36 +0.25 3.47t0 9.68 1.30
11-2 ThL(OH);~ 0.02 £ 0.01
11-4 ThL(OH);~ —18.16 £ 0.27
2b with Cy = Cp = 107* M? 110 ThL™ 13.37 £ 0.04
111 ThLH 20.12 £ 0.03 3.67 t0 9.98 0.75
11-1  ThL(OH)*~ 4.68 +0.30
11-2 ThL(OH);~ —4.02 £ 0.47
11-4 ThL(OH),~ —23.63 +0.50
2¢ with Cy = Cp, = 1073 M? 110 ThL™ 19.48 £+ 0.38
111 ThLH 24.63 £ 0.40
11-1 ThL(OH)?>~ 11.06 £ 0.37 2.49 to 10.65 3.70
11-2 ThL(OH);~ 3.17 £ 0.38
11-3 ThL(OH);~ —6.74 £ 0.57
114 ThL(OH);~ —16.56 + 0.29

aM denotes the concentration in units of mol - L™

3.2. Spectrophotometric determinations

Under this sub-heading, only ligand 1c, 1d, 1e and 2b will be studied as only they contain
the chromophore group NO,, and hence undergo significant spectral variations that can be
exploited relatively easily.
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Fig. 2 Experimental UV-visible spectra of the complexes of ligand X with Th*+

3.2.1. UV-visible experimental spectra

The spectral variations with respect to the pH of different solutions corresponding to the
four ligands and the thorium(IV) cation in the ratio [L]o/[M]o = 1 are presented in Fig. 2.

(a) Ligands 1¢, 1e and 2b

It is remarked that the spectra of these three ligands are characterized by their nearly identical
evolution with respect to pH. The principal absorption band, which corresponds to the totally
protonated molecule, appears at 320nm (¢ = 9270 L-mol~'-cm™") for 1¢, at 325nm (¢ =
9020 L-mol~'-cm™") for 1e, and at 328 nm (¢ = 8070 L-mol~'-cm~") for 2b, disappears and
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leaves a new band at 332, 360 and 375 nm, respectively. This indicates the total disappearance
of the protonated species and suggests instant complexation even at low pH.

Increasing the pH to eight produces a regular bathochromic shift with significant absorp-
tion variations. For pH > 8, an intense maximum is observed at 415 nm for 1c¢ and at 440 nm
for 1e and 2b, corresponding to the totally deprotonated complex.

In highly alkaline media (pH > 10), the successive spectra are superposed, indicating
that the totally deprotonated species are preserved. This is supported by the presence of
only a single intense band for the trianion (or the totally deprotonated ligand), at 422 nm for
1c and at 437 nm for 1e. In case of 2b, this band which corresponds to the pentaanion (or
the totally deprotonated ligand) is situated at 446 nm, which means there is still some free
deprotonated ligand here.

(b) Ligand 1d

Three absorption maxima with bathochromic shifts are observed. However, the accompany-
ing spectral variations are quite low. It may also be recalled here that for all the ligands, the
ligand-thorium(IV) spectra present isosbestic points, clearly indicating the presence of two
species in equilibrium.

3.2.2. Stability constants

The logarithm of the apparent overall stability constants for the equilibria under study were
calculated using the Letagrop program [20] and are presented in Table 2. This also gives
the stoichiometry of the different identified species in the pH range of 1.49 to 11.44. The
protonation constants of the ligand and those of the hydrolysis of the metal were determined
beforehand and were fixed for the calculation of these stability constants.

The Boi. values were obtained by titration, which led simultaneously to two sets of
optimized parameters: the overall stability constants and the extinction coefficients ¢ of all
species involved in the complexation reactions. Using these data, the calculated values, or
By values, are indicated here with the usual 99% confidence interval (+30).

3.2.3. Individual electronic spectra
With the help of the calculated stability constants and the specific extinction coefficients,

the individual electronic spectra of the ligand-thorium(IV) complexes were calculated. The
spectra of all the identified species are given in Fig. 3.

4. Discussion
4.1. Nature of the complexes formed

For simplicity, the charges of the complexes will be omitted in the following discussion.

4.1.1. Triacids

In the pH range of 4 and 9, the potentiometric and spectrophotometric studies show the
presence of the identical species types: ML, MLOH and ML(OH),. No protonated species
were identified by the technique of potentiometry, whereas spectrophotometry helped in the
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Fig. 3 Calculated electronic spectra of the complexes of ligand X with Th**

detection of MLH for 1¢ and 1e, but not for 1d, most probably because of the restricted range
of pH interpreted. In the case of 1¢, MLH, was identified.

In the alkaline zone, potentiometric measurements showed either ML(OH); for 1a and
1c and ML(OH), for 1b and 1d, or both of them in the case of 1le. The presence of the
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Table 3 Mean values of the logarithm of the stability constants of thorium(IV)

Ligand MLH, MLH ML MLOH MIL(OH), ML(OH); ML(OH); M;L(OH)s
1c - - 12.407  6.297 —2.73P —11.227 - -
19.24°  16.50° 10.65% 5.50° —2.87° - - -
1d - - 13.807  11.557  6.107 - —11.637 —6.827
- - 12.39¢ 10.80° 5.16° - —10.98° —5.43°
1le - - 11.977  5.95° —2.807 —11.827 —22.437 -
- 13.73% 10.61° 6.57° —2.95° —11.29°¢ - -
2b - 20.127 13377 4.68” —4.027 - —26.637 -
26.53°  21.15% 13.17°  4.72° —5.10° - —27.05° -

mono- and binuclear species, ML(OH)4 and M,;L(OH)e, identified potentiometrically, was
confirmed spectrophotometrically for 1d.

4.1.2. Pentaacids

With all the ligands, potentiometric data indicated the presence of MLH, ML, MLOH,
ML(OH), and ML(OH)4. However, in case of ligand 2¢, in addition to these five species,
ML(OH)3 was identified. Spectrophotometric measurements confirmed in the case of 2b
the presence of MLH, ML, MLOH and ML(OH), with the added presence of MLH,. No
binuclear species were found with the pentaacids, in keeping with the absence of an inflexion
corresponding to the addition of 4.5 equivalents of base after neutralization.

4.2. Comparison of the constants

An examination of Table 3 shows good agreement between the values of the stability
constants calculated on the basis of the two experimental methods. The values with the
superscript (p) result from potentiometric measurements whereas those marked by (s), are
spectrophotometric values.

The values of 819 are much more different from each other than in case of lanthanides
[16, 17]. For the triacids, values of logjo 8110 vary between 12 and 15.5, whereas in the case
of the pentaacids the variation is between 13 and 19.5. For thorium, the ligand 1b is not
the weakest complexing agent as it is in the case with lanthanides. On the contrary, it is the
strongest complexing ligand in the triacid series; 2¢ being the same in the case of pentaacids.

4.3. Distribution curves of the complexes: speciation

The values of the stability constants were used along with the Haltafall program [21] to
calculate the percentage formation of the different species resulting from ligand-Th** com-
plexation. The distribution curves of all of these species are shown in Fig. 4. The concentra-
tions of the different species were calculated as a function of —logio[H*] at CL = Cpys+ =
10~* mol-dm~ for 1a, 1c, 1e, 2a and 2b, and at C. = Cyy+ = 107> mol-dm~ for 1b, 1d
and 2c.

4.3.1. Triacids

The curves obtained for the triacids 1a, 1b, 1c, 1d and 1e clearly indicate a high complexing
ability of these ligands. Indeed, it can be observed that the most stable hydroxide of the
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Fig. 4 Distribution curves of the complexes of ligand X with Th*+

metal, Th(OH)>*, does not exist in the whole range of pH, which is indicative of the fact
that all the metal has been complexed by the ligand. The preponderant complex in the range
of pH 4 to 9 is ThL(OH): 85% with 1a, 78% with 1b, and 92% with 1c, 1d and 1e. There is
a significant coexistence with the species ThL™, around 80%, with all the ligands except for
1d. Eventually, it may be remarked that the species M,L(OH)¢ is formed only with 1b and
1d and attains, at best, 20%.

4.3.2. Pentaacids

As regards pentaacids, the presence of the protonated species LH, and LHj is observed. In
acidic medium, pH-4 to 6, the predominant species is ThLH and is formed at around 95%
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Table 4 Complexing selectivity, S, for the ligands studied: S(MM/M') =
Biio M)/Brio(M')

Ligand
Cation la 1b 1c 1d le 2a 2b 2¢
Th** 145 155 124 138 120 164 134 195
Eu’t 10.6 7.5 9.1 10.3 101 12.0 119 122
Reference [16] [16] [16] [16] [16] [17]1 [17] [17]

S(Th**t/Eudt) 3.9 8.0 33 3.5 1.9 4.4 1.5 8.3

with ligands 2a and 2¢ and around 80% with 2b. Within the pH limits of 6 to 8, it is ThL™
that is formed significantly: 68% with 2a and 2b, and up to 95% with 2c.

4.4. Comparison between lanthanides(IIl) and thorium(IV)

Strictly speaking, actinides(III) should be compared to lanthanides(III); however, the for-
mer are very similar to the latter. Hence, here thorium(IV) has been compared to the lan-
thanides(IIl) in order to observe the influence of charge on the complexing power of the
ion. As could be predicted, the complexes of thorium are much stronger than those of the
lanthanides. Table 4 shows that the selectivity for Th*+/Eu?* reaches eight log;o units for
1b and 2¢, whereas it is about 2—4 log;( units for the other ligands.

4.5. Comparison with other ligands

Table 5 indicates that none of the ligands studied is as strong as DTPA or TTHA, or even
EDTA or HEDTA. However, they are all either comparable, or slightly superior, to NTA in
their complexing ability. Ligand 2¢ is an exception as its complexing power exceeds that of
HEDTA.

Figure 5 represents the percentage of free Th**, calculated as a function of —log;o[H*]
for the different ligands, all at Cp. = Cjyy = 10~ mol-dm—3.

5. Conclusion

This study of the complexation of Th*+ with different phenol-methylenephosphonic acids
shows the presence of up to six different species in solution, depending upon the pH. The
potentiometric and spectrophotometric data used with different computer programs (Sirko_P
and Letagrop_Spefo) give convergent results. The calculated stability constants are quite
high but remain inferior to those with TTHA and DTPA, and even to EDTA and HEDTA.
The complexing power of thorium(IV) is compared with and found to be superior to those of

Table 5 Logarithms of stability

constants of the 1:1:0 complexes Ligand logioB110 Ref.

formed from different

complexing agents with Th** in EDTA 232 (71

aqueous solution DTPA >27 [7]
NTA 124 [8]
HEDTA 18.5 [8]
TTHA >27 [9]

&
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Fig. 5 Fraction of calculated free Th** concentration vs. —logjo[H] for the eight ligands

the lanthanides(III). This is quite logical as generally the complexing ability increases with
increasing cationic charge.

Addenda

Experimental potentiometric data for the ligand-thorium(IV) complexation studies used for
testing of models and for the calculation of stability constants (V = volume of NaOH added
to solution).

Ligand 1a-Thorium(I'V)

V(mL) pH V(mL) pH V(mL) pH V(mL) pH

0.000 3711 0.301 4.698 0.439 7.247 0.621 9.048
0.001 3702 0.321 4.871 0.449 7401 0.643 9.132
0.002 3.701 0.331 5.002 0.461 7.586 0.666 9.212
0.003 3.699 0.340 5111 0.471 7.826  0.690 9.290
0.029 3751 0.352 5351 0.476 7.817 0.715 9.361
0.058 3.819 0.357 5479 0477 7.843 0.741 9.422
0.085 3.878 0.361 5.594 0.488 8.052 0.768 9.498
0.113 3.942  0.367 5.790 0.498 8.196 0.794 9.562
0.140 4.013 0374 5.976  0.505 8.279  0.820 9.621
0.166 4.091 0.380 6.171 0.515 8.360 0.848 9.675
0.191 4.176  0.388 6.335 0.531 8514 0.877 9.731
0.216 4269 0.396 6.522 0.546 8.635 0.905 9.771
0.238 4367 0.405 6.705 0.563 8.745 0.936 9.820
0.260 4475 0414 6.892 0.581 8.850 0.966 9.861
0.281 4582 0424 6.977 0.601 8.950 0.996 9.903

1.000 9.913

@ Springer



J Solution Chem (2006) 35:889-916

905

Ligand 1b-Thorium(IV)

V(mL) pH V(mL) pH V(@mL) pH V(mL) pH
0.000 2.700 0.311 4130 0473 6.980 0.670 9.611
0.001 2.691 0.320 4299 0476 7.095 0.687 9.736
0.002 2.686 0.330 4409 0.482 7.278 0.704 9.846
0.003 2.685 0.343 4505 0.489 7.452 0.723 9.968
0.016 2.698 0.361 4538 0.497 7.616 0.741 10.059
0.048 2.741  0.390 4.674 0.506 7.773 0.762 10.147
0.079 2.790 0411 4833 0.517 7.932 0.785 10.238
0.109 2.844 0428 5.067 0.528 8.074 0.807 10.321
0.138 2.908 0.434 5.229 0.541 8.209 0.831 10.407
0.165 2976 0.436 5.281 0.555 8.375 0.855 10.481
0.192 3.057 0.443 5.582  0.569 8.517 0.88 10.547
0.217 3.153 0.445 5.691 0.583 8.652 0.906 10.613
0.238 3261 0.447 5.809 0.598 8.840 0.933 10.674
0.258 3391 0452 5.981 0.611 9.039 0.960 10.727
0.273 3.528 0.454 6.074 0.620 9.134  0.989 10.776
0.286 3.679 0.461 6.358 0.627 9.229  1.000 10.803
0.296 3.838 0.466 6.676  0.640 9.347
0.304 3971 0.468 6.781 0.655 9.482
Ligand 1c-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH
0.000 3713  0.292 4744  0.389 7.359 0.617 9.232
0.001 3.706  0.302 4881 0.396 7.540 0.642 9.307
0.002 3.706 0.311 5.028 0.404 7.697 0.667 9.378
0.003 3.708 0.319 5.188 0.413 7.866 0.693 9.443
0.024 3.755 0.325 5.347 0423 8.020 0.719 9.504
0.052 3.826 0.331 5.540 0434 8.176  0.747 9.567
0.078 3.885 0.335 5.684 0.446 8.316 0.774 9.628
0.105 3.942 0.339 5.848 0.459 8.441 0.802 9.689
0.133 4.010 0.344 6.042 0475 8.569 0.829 9.746
0.161 4.081 0.349 6.189 0.491 8.678 0.858 9.795
0.187 4.159 0.356 6.358 0.509 8.786  0.887 9.844
0.212 4248 0.365 6.553 0.528 8.884 0916 9.888
0.235 4345 0.373 6.810 0.549 8.979 0.947 9.932
0.257 4.458 0.380 7.068 0.571 9.068 0.977 9.979
0.277 4592 0.384 7.195 0.594 9.153 1.000 10.010
Ligand 1d-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH
0.000 2,732 0.380 3.799 0.483 6.859 0.674 9.582
0.001 2.719  0.398 3.902 0.487 7.045  0.691 9.748
0.002 2717 0418 4,128 0.492 7.254  0.706 9.851
0.003 2.710 0424 4226 0.498 7428 0.724 9.964
0.010 2,715 0430 4328 0.505 7.614 0.742 10.067
0.044 2.759 0.440 4.651 0.512 7.777 0.763 10.152
&
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Ligand 1d-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH

0.075 2.805 0.442 4742 0.521 7.930 0.785 10.252
0.105 2.859 0.445 4.849 0.532 8.084 0.807 10.317
0.134 2915 0.450 5209 0.544 8.252  0.832 10.382
0.163 2979 0.451 5.190 0.555 8.402 0.859 10.485
0.190 3.047 0452 5.256  0.568 8.546  0.882 10.542
0.217 3.119 0.456 5.508 0.582 8.684 0.909 10.608
0.243 3.200 0.461 5.672  0.596 8.820 0.936 10.662
0.267 3.287 0.462 5.753  0.612 8.975 0.964 10.706
0.291 3376 0.467 5.968 0.626 9.119 0.994 10.754
0.314 3.474 0472 6.230 0.641 9.293  1.000 10.771
0.337 3571 0476 6.483 0.653 9.378

0.359 3.677 0478 6.620 0.661 9477

Ligand 1e-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH

0.000 3.905 0.302 4911 0.401 7.516  0.628 9.398
0.001 3.899 0313 5.058 0.409 7.741  0.653 9.476
0.002 3.897 0.322 5205 0.416 7910 0.678 9.542
0.003 3.895 0.330 5.354 0.421 7971 0.704 9.609
0.029 3.944 0.337 5.533 0435 8.201 0.731 9.670
0.058 4.010 0.343 5.706  0.445 8341 0.758 9.731
0.086 4.068 0.347 5.834 0.457 8.483 0.786 9.782
0.114 4.123  0.352 6.056 0.471 8.610 0.815 9.836
0.142 4.188 0.357 6.238 0.486 8.739 0.844 9.897
0.170 4257 0.362 6.404 0.502 8.855 0.872 9.951
0.196 4.338 0.365 6.499 0.519 8.958 0.900 10.001
0.221 4424 0371 6.681 0.539 9.058 0.929 10.042
0.244 4.522  0.378 6.898 0.560 9.154  0.960 10.091
0.266 4.634 0.386 7.148 0.581 9.242  0.990 10.133
0.286 4766 0.392 7.280  0.604 9.323  1.000 10.155

Ligand 2a-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH

0.000 3.494 0.315 4292 0462 6.828 0.658 8.412
0.001 3488 0.334 4446 0472 7.004 0.673 8.537
0.002 3.484 0.346 4571 0.483 7.073  0.687 8.646
0.003 3.484 0.359 4.735 0.501 7.264  0.705 8.761
0.018 3.505 0.368 4903 0.516 7.506 0.723 8.865
0.048 3.555 0375 5.033  0.526 7.652 0.743 8.957
0.078 3.601 0.384 5219 0535 7.567 0.765 9.053
0.108 3.648 0.391 5.293 0.543 7.560 0.787 9.137
0.138 3.701 0.399 5.577 0576 7.822  0.810 9.215
0.167 3.757 0.408 5.758 0.593 7.832  0.834 9.295
0.196 3.822 0416 5.966 0.606 7.996 0.859 9.367
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0.223 3.893 0425 6.144 0.609 7959 0.884 9.433
0.249 3973 0433 6.301 0.623 8.127 0911 9.491
0.274 4.071 0442 6472 0.637 8204 0.939 9.553
0.295 4.177 0452 6.657 0.643 8269 0.966 9.606
1.000 9.675
Ligand 2b-Thorium(IV)
V(mL) pH V(mL) pH V(mL) pH V(mL) pH
0.000 3.704 0.307 4411 0.460 6.936 0.676 9.011
0.001 3.701 0.327 4526 0.469 7.139  0.695 9.117
0.002 3.694 0.345 4.673 0478 7.308 0.714 9.210
0.003 3.691 0.358 4811 0.488 7.484 0.736 9.305
0.015 3.706  0.370 4970 0.498 7.667 0.758 9.386
0.031 3.733  0.379 5.117 0.508 7.707 0.782 9.464
0.060 3.785 0.387 5.275 0.531 7.910 0.806 9.545
0.090 3.829 0.394 5.452  0.547 7.985 0.831 9.614
0.120 3.877 0.401 5.628 0.568 8.135 0.857 9.685
0.150 3.927 0.409 5.805 0.586 8.343 0.883 9.744
0.179 3986 0417 6.010 0.593 8.422 00910 9.798
0.207 4.049 0.425 6.198  0.607 8.559 0.939 9.859
0.235 4122 0433 6.380 0.621 8.671 0.966 9.907
0.261 4206 0.441 6.548 0.637 8.764 0.996 9.957
0.285 4299 0.451 6.762 0.657 8.897 1.000 9.968
Ligand 2¢-Thorium(IV)
V(mL) pH V(mL) pH V(@mL) pH V(mL) pH
0.003 2.556 041 3.846 0.505 7.217 0.734 9.381
0.025 2.573 0418 4.012 0.512 7.359 0.748 9.499
0.039 2.585 0.424 4.169 0.521 7.496 0.764 9.619
0.072 2.622  0.429 4306 0.533 7.652 0.781 9.734
0.104 2.658 0.436 4.549 0.545 7.783  0.799 9.853
0.135 2.697 0.439 4.674 0.559 7.902 0.818 9.954
0.167 2.744 0.444 4916 0.575 8.022 0.838 10.047
0.197 2.793 0.448 5.094 0.593 8.137 0.86 10.203
0.226 2.85 0.453 5292 0.611 8.257 0.877 10.289
0.255 2915 0457 5481 0.63 8.387 0.893 10.348
0.282 2.987 0.462 5.731 0.647 8.526 0916 10.422
0.308 3.072 0.467 5.964 0.664 8.723  0.941 10.512
0.332 3.17 0.473 6.174 0.672 8.815 0.965 10.568
0.353 3.281 0478 6.373  0.685 8.877 0.992 10.652
0.372 3407 0485 6.6 0.69 8.914 1.000 10.676
0.389 3.557 0.491 6.801 0.708 9.126
0.401 3.702 0.498 7.002 0.721 9.264
&
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