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We propose a complex Ginzburg-Landau equation (CGLE) with localized linear gain as a two-dimensional
model for pattern formation proceeding via spontaneous breaking of the axial symmetry. Starting from steady-state
solutions produced by an extended variational approximation, simulations of the CGLE generate a vast class
of robust solitary structures. These are varieties of asymmetric rotating vortices carrying the topological charge
(TC), and four- to ten-pointed revolving stars, whose angular momentum is decoupled from the TC. The four-
and five-pointed stars feature a cyclic change of their structure in the course of the rotation.
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I. INTRODUCTION

The generation of self-organized dissipative structures
in nonlinear systems is driven by external energy and/or
matter supplies [1]. Various species of self-trapped localized
structures are represented by dissipative solitons acting as
attractors [2,3]. The self-organization is based on the bal-
ance of antagonistic effects, with gain compensating losses,
and nonlinearity-induced self-contraction arresting the linear
diffraction and/or dispersion. The ensuing formation of vast
varieties of patterns is apparently spontaneous, and in many
cases its origins are not yet understood well, in spite of the
great deal of work done on this subject. Generically, the
pattern formation proceeds via spontaneous breaking of an
underlying continuous symmetry, followed by the emergence
of novel forms which feature reduced symmetries [4]. Since
the pioneering work of Turing [5], many works have been
dealing with models for spontaneous pattern formation in
diverse settings; see, e.g., Refs. [6,7].

Complex Ginzburg-Landau equations (CGLEs) constitute
a class of ubiquitous models to describe the generation of
dissipative-solitonic structures in plenty of systems ranging
from nanophotonics, plasmonics, nonlinear optics, fluids, and
plasmas through superconductivity, superfluidity, quantum
field theory, and biological systems [2,3,8–11]. The great deal
of work done in this field has demonstrated cogently that
CGLEs are appropriate models for studying the spontaneous
pattern formation per se.

In this work, we demonstrate that the above-mentioned
crucially important aspect of the pattern formation, viz., the
spontaneous breaking of the continuous symmetry, leading
to the emergence of localized structures featuring reduced
symmetries, may be adequately modeled by a suitably chosen
two-dimensional (2D) CGLE with the competing cubic-
quintic (CQ) nonlinear terms. We resort to the synergy of
the variational approximation (VA) and parallelized numerical
simulations to demonstrate spontaneous formation of pre-
viously unexplored solitonic structures, which have diverse
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counterparts in nature. Using the CGLE with a spatially
modulated linear loss, which features a minimum at the center,
we have previously demonstrated that vortices may spon-
taneously evolve into stably rotating ellipsoidal or crescent
vortical structures [12]. The CGLE model developed in the
present work offers a vast potential for modeling transitions
between different types of spontaneously established patterns,
through the generation a broad class of localized states, such as
periodically metamorphosing and rotating four- to ten-pointed
stars, which resemble complex natural objects, but were not
produced by previously studied models.

As mentioned above, the dissipative-soliton pattern forma-
tion is the result of the concurrent balance between losses
and gain, and between diffraction and cubic self-focusing,
which must be supplemented by the quintic self-defocusing,
to prevent the collapse in the 2D geometry. The creation of
(2+1)D optical solitons (two transverse coordinates x and
y, with +1 standing for the propagation distance z, which
plays the role of the evolutional variable) in a CQ medium
has been recently directly demonstrated in an experiment
[13]. Dissipative solitons have been found in many varieties
of CGLEs [2,3,8,14–16]. In particular, (2+1)D solitons with
embedded vorticity m, featuring zero intensity at the center,
carry the angular momentum, M = mP, where P is their
total power (norm); see Eq. (3) below [17]. As a result of the
spontaneous pattern change, the intrinsic angular momentum
can transmute into explicit rotation of solitonic patterns,
as shown in the movie in the Supplemental Material [18]
(examples of this are known, e.g., in the form of azimuthons
[19] and vortex gap solitons [20]).

II. MODEL FOR SELF-ORGANIZED PATTERN
FORMATION

The present model is based on the (2+1)D CGLE with the
CQ nonlinearity that governs the evolution of wave amplitude
E(x,y,z) in the nonlinear medium:

iEz + (1/2)(Exx + Eyy) + (1 − iε)|E|2E − (ν − iμ)|E|4E
= ig(r)E, (1)
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where positive coefficients ε, μ, and ν, account, respectively,
for the cubic gain, quintic loss, and quintic saturation of the
cubic self-focusing. A crucially important ingredient of the
model is represented by an “iceberg of the gain,” g(r) =
γ − �r2 (with radial variable r =

√
x2 + y2, gain amplitude

γ > 0, and gain curvature � > 0) protruding above the surface
of the “loss sea,” contrary to the above-mentioned model with
the “submerged iceberg,” where the main control parameter γ

is negative [12]. A straightforward physical implementation
of Eq. (1) is provided by optically pumped laser cavities
(especially end-pump solid-state ones). The pumped beam is
focused in order to increase the gain, hence the gain is localized
[21]. The transverse localization of the laser beam known
as “gain guiding” is used in titanium-sapphire, solid-state,
Raman, free-electron, and x-ray lasers [22]. The pump beam
is typically Gaussian with intensity I (r) = I0 exp(−r2/R2),
where R is its waist. The gain curvature � ∝ 1/R2 depends
mainly on R, so that the localized gain is determined by the
Taylor expansion of intensity I (r), which makes the model
generic [21–23]. The laser cavity can be adjusted by selecting
parameters of the saturable absorber [2,8,9,12,21–23]. Thus,
the pattern-formation scenarios reported below can be directly
realized in the lasers, as well as in other self-organized systems.

Barring rare exceptions [24], the CGLEs, due to their
complexity, do not admit exact solutions. Nevertheless, an
analytical approximation for dissipative solitons has been
developed using the VA adapted to dissipative systems
[11,12], see also Ref. [25]. The VA makes use of the following
Gaussian trial function representing the electric field of an
axisymmetric Gaussian laser beam with vorticity (topological
charge, TC) m = 1:

E = A(r/R) exp[−r2/(2R2) + iCr2 + iθ + i�], (2)

where amplitude A, radius R, wave-front curvature C, and
phase � have to be optimized. θ is the angular coordinate.
The total power and angular momentum of the vortex are,
respectively,

P =
∫ ∞

0
rdr

∫ 2π

0
dθ |E(r,θ )|2 = πA2R2,

(3)

M = i

∫ ∞

0
rdr

∫ 2π

0
dθ

∂E∗

∂θ
E.

Skipping straightforward details, the following system of
evolution equations is produced by the VA (although formally
similar to the one derived in Ref. [12], it produces essentially
different results, as shown below):

dA/dz = γA − �R2A + 5εA3/16 − 8μA5/81 − 2AC, (4)

dR/dz = 2CR − �R3 − εA2R/16 + 2μA4R/81, (5)

dC/dz = −2C2 + 1/(2R4) − A2/(16R2) + 2νA4/(81R2),

(6)

d�/dz = −2/R2 + 3A2/8 − 10νA4/81, (7)

with Eq. (7) decoupled from (4)–(6). Fixed points (FPs)
of these equations correspond to steady-state solutions
with a small wave-front curvature. Setting dR/dz = 0
in Eq. (5) leads to C = �R2/2 + εA2/32 − μA4/81. In
Eq. (6) with dC/dz = 0, small C2 may be neglected

giving R2 = 8(A2 − 32νA4/81)−1. The remaining relation
for the FP, following from Eqs. (4) with dA/dz = 0, is
γ + εA2/4 − 2μA4/27 = 2�R2, which gives rise to two
physically relevant steady-state solutions for amplitude A

(solutions for which both A and R are real and positive).
According to general principles of the analysis of dissipative
systems [24,11], the solution with larger A may be stable,
while the one with smaller A is always unstable. The former
solution satisfies condition C < 0, which is necessary for
the simultaneous stable balance of the diffraction and CQ
nonlinearity, and of the gain and loss, thus rendering the
dissipative solitons stable stationary modes [14,26].

The linear stability analysis of the FPs against small
perturbations of amplitude, radius, and wave-front cur-
vature within the framework of Eqs. (4)–(6) was per-
formed via the computation of eigenvalues produced
by the respective equation λ3 + α1λ

2 + α2λ − α3 = 0,
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FIG. 1. (Color online) Stability domains produced by the VA-
generated fixed points, which are used as the input for direct
simulations of Eq. (1), in the plane of the nonlinear-gain strength,
ε, and the linear-gain curvature, � (dimensionless units). Stable
axisymmetric vortices are established in region A. In region B, the
spontaneous symmetry breaking expels the vortical phase dislocation,
resulting in the transition to a bell-shaped axisymmetric mode without
the central crater. In intermediate area C, the vortex mutates into a
rotating crescent-shaped soliton that fills only half of the original
crater, thus breaking the inner circular symmetry. In region D, the
vortex crater gets slanted but remains centrosymmetric. In area E, the
modulational instability spontaneously breaks the axial symmetry,
converting the circular vortex into a rotating elliptic one. In area
F, the ring splits into two bell-shaped fragments. For larger � in
region G, they merge into a stable double-hump shape. In the region
of star-shaped patterns, S, small variations of � and ε result in the
self-trapping of revolving four-, five-, six-, seven-, eight-, nine-, and
ten-pointed stars with zero TC (examples are shown on the right). The
strongly asymmetric steadily rotating “cobra” pattern, shown at the
bottom of the right column, appears in interstices between different
regions. Structure fails to form only in region U.
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stable FPs being identified by the Routh-Hurwitz
conditions [11]: α1 ≡ 2�R2 − 5εA2/8 + 32μA4/81 > 0,
α2 ≡ 8νA4R−2/81 − �A2R2(3ε/2 − 80μA2/81) > 0, α3 ≡
(A2 − 16R−2)� − (ε − 16μA2/9)A2R−4 > 0, and α1α2 −
α3 > 0. They cover the entire area charted in Fig. 1 in the plane
of the nonlinear-gain and linear-gain curvature parameters, ε

and �, which are most essential for the control of the patterns
and transitions between them. For effective saturable absorbers
in laser cavities, such as those created by means of a Kerr lens,
nonlinear polarization rotation, or an appropriate dopant, these
parameters can be easily adjusted in the experiment [21–23].
For instance, different concentrations of the rhodamine dye
in ethanol, used as a dopant, can be used in order to recover
different values of the nonlinear-gain parameter, ε in Fig. 1.
The linear-gain curvature parameters � can be adjusted to
fit values in Fig. 1 by changing the pump-beam intensity.
Other coefficients are fixed here as ν = 0.4, μ = 1.4, and
γ = 0.08, which adequately represent the generic situation
(varying these parameters does not entail essential changes).
Steady-state solutions do not exist in the white corners of
Fig. 1.

Next, Gaussian electric field (2) with parameters of the
stable FP adopted by the VA was used as the input for
parallelized [27] simulations of Eq. (1). As a result, a variety
of stable patterns have been generated, some of them similar
to the one assumed by Eq. (2), and some completely different,
as summarized in Fig. 1.

III. SELF-GENERATED DISSIPATIVE VORTEX SOLITONS

In area A of Fig. 1, stable axisymmetric vortex solitons
(shown by insets) quickly self-trap by z = 10. In fact, only in
this area does the model give rise to the simple vortex solitons
assumed by Eq. (2), while in other domains unique patterns
appear. First, in “filamentation” region F, the modulation
instability breaks the vortices into two fragments (see the inset
also labeled F), as the total power P given by Eq. (3) is not
strong enough to keep the vortex structure stable. In contrast, in
area G, the power and strength of the pinning to the localized
gain (provided by the pump laser) are much larger, leading
to coalescence of the fragments into a revolving double-hump
soliton above an “effective threshold” for the pattern formation
(see movie [18]); cf. Ref. [17]. An example of this stable
pattern is shown in inset G.

In region E adjacent to F, with larger cubic-gain coefficient
ε, the modulational instability is not strong enough to destroy
the vortex, but it breaks the axial symmetry and deforms it
into a stable elliptic rotating vortex. Adjacent to A, but on the
opposite side (region D), the vortex remains centrosymmetric,
but with a slanted shape (see inset D in Fig. 1). At still larger ε,
in region C, the circular symmetry of the vortex is broken by
its transformation into a crescent mode, featuring a half-filled
vortical ring.

The common feature of these modes is that they start the
self-organization as axisymmetric vortices, and the sponta-
neous symmetry breaking sets in after a period of a quasistable
evolution, which may last for up to thousands of propagation
units (unless a symmetry-breaking perturbation is added
initially). The robustness of the finally established symmetry-
reduced modes has been confirmed by the propagation over

FIG. 2. (Color online) The spontaneous formation of four-
pointed patterns. The input ring structure (a) evolves into a vortex
soliton at z � 40 (b), whose spontaneous symmetry breaking in (c)
produces a Celtic-cross structure (at z � 1400) that subsequently
transmutes into other varieties of cross patterns from z � 1440 until
z � 1560 (d)–(g). (h) After a half period (TM � 400), a rotated
Celtic-cross reappears at z � 1600. Graph M shows oscillations
of the angular momentum between M = −0.18 and M = +0.18
(dimensionless units).

z > 20 000. On the other hand, small gain curvature � cannot
prevent quick destruction of vortices in the bottom region U
(“unstable”) of Fig. 1.

At larger values of � and ε (in region B), the original mode
undergoes a faster transient evolution, lasting for several hun-
dreds of units, in the form of oscillating breathers, before losing
the intrinsic vorticity. Thus, a spontaneous change of the shape
occurs, expelling the phase dislocation [see also Fig. 4(a)]
and filling the corresponding “crater,” while the former vortex
transmutes into a stable fundamental (2+1)D soliton (with
m = 0), as seen in inset B (a detailed dynamical picture is
provided in the movie in the Supplemental Material [18]).

The most remarkable manifestation of the spontaneous
formation of complex patterns induced by the symmetry
breaking above the effective threshold is the transmutation
of vortices into various stars (see the right-hand-side column
in Fig. 1), caused by small changes of � and ε in region S. How
the circular symmetry is broken can be seen in detail in movies
S1–S6 [18] that display the dynamics of the spontaneous
emergence of four-, five-, six-, eight-, and ten-pointed stars, as
well as of double-hump localized structures. For instance, at
ε = 1.7 and � = 0.018, close to the junction of domains C and
D, the input vortex [Fig. 2(a)] at first self-traps into a vortex
soliton [Fig. 2(b)]. Then, the vortex loses its inner circular
symmetry at z � 140, transforming into a crescent, while the
phase dislocation continues to drift, until it escapes at z � 730
[18]. Therefore, the outer circular symmetry is gone too. At
z > 900, persistent oscillations commence, corresponding to
a robust breather with period TA � 5 and a superimposed
beat period, TB � 40. During another, much longer, beat
period, TM � 400, the angular momentum oscillates between
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FIG. 3. (Color online) The evolution of the revolving five- and
six-pointed stars. The five-pointed star at z = 1000 (a) gets fatter
from z � 1010 until z � 1020 (b) and (c), before rotating by 30° at
z � 1040 (d). The period of the cyclic evolution is TC � 40. Angular
momentum M oscillates between M = −8.3 and M = −9.7, with
period TM � 360 (dimensionless units). (e) The transient six-pointed
star self-traps into the permanent shape. (f)–(h) The rotation of the
star in the course of T /6 � 36 from z � 1080 until z � 1116 (only one
sixth of the period is displayed, as the symmetry of the star makes the
subsequent evolution tantamount to that shown here). Variations of
amplitude A in the course of the soliton self-formation are displayed
in the bottom plot (dimensionless units).

M = −0.18 and M = +0.18 (see graph M in Fig. 2). In the
course of beatings, a “Celtic-cross” shape transmutes into a
sequence of crosslike ones [see Figs. 2(c)–2(g)], and eventually
returns to a rotated “Celtic cross” [Fig. 2(h)] [18]. The
robustness of the cyclic shape transmutations in this regime
was tested up to z = 70 000. Reducing the gain curvature to
� = 0.014, at the same ε = 1.7, increases the number of arms
in the pattern, converting it into a five-pointed star, as shown
in Figs. 3(a)–3(d) [18]. The scenario of breaking the axial
symmetry to the reduced (fivefold) form is the same as in the
previous case. However, the angular momentum now oscillates
between M = −8.3 and M = −9.7, with period TM � 360 as
in diagram M in Fig. 3. This star rotates and simultaneously
changes its shape, with period TC � 40, between four particular
five-pointed configurations.

Gradually decreasing the gain curvature (�), and increasing
the nonlinear gain (ε), a sequence of six-, seven-, eight-,
nine-, and ten-pointed stars is generated. After a transient
period, each of them rotates at a constant angular velocity,
keeping a permanent shape, unlike the cyclic “metamorphosis”
featured by the four- and fivefold solitons. An example of a
revolving six-pointed star (which resembles snowflakes [28])
is displayed in Figs. 3(e)–3(h), for � = 0.013 and ε = 1.75
(see movie in Supplemental Material [18]). The evolution of
amplitude A in the course of the soliton self-organization

FIG. 4. (Color online) The evolution of the revolving eight- and
ten-pointed stars. To establish the reduced symmetry, the phase
dislocation is expelled from the vortical structure (a), and an
“octopus” soliton emerges at z � 960 (b), which rotates, in the course
of T /8 � 24, through (c) at z � 972 into an identical configuration
at z � 984 (d). Its spontaneous self-organization is illustrated by the
bottom plot displaying the evolution of the amplitude, A(z). (e)–(h)
The rotation of a ten-pointed star (“decapod”), from (e) at z � 1200
to (h) at z � 1248 in the course of T /10�48. Its self-generation is
illustrated by the bottom plot for A(z).

is presented in the same figure. In this case, the angular
momentum, defined as per Eq. (3), is M = −24. Further, a
typical eightfold “octopus” is presented in Figs. 4(a)–4(d), for
the same ε but a smaller gain curvature, � = 0.007, featuring a
smaller radius of the pattern’s core [18]. The self-formation of
the eight-pointed soliton star is shown in diagram A. Finally,
the spontaneous self-organization of a ten-pointed star for
ε = 1.95 and � = 0.01 is shown in Figs. 4(e)–4(h), and
additionally illustrated by the plot for amplitude A versus
propagation distance z, which is displayed beneath panels
4(e)–4(h) [18]. All the stars are stable objects with a nonzero
angular momentum but zero TC.

Structures with more than ten rays turn out to be transients
evolving towards axially symmetric bell-shaped solitons in
area B of Fig. 1. Lastly, at borderlines between B, S, and
U areas there occur strongly asymmetric steadily rotating
structures in the form of “cobras” (shown in the right bottom
corner of Fig. 1).

It is precisely the spatially inhomogeneous linear gain
(γ > 0) protruding above the loss sea, which drives, above
an effective threshold, in synergy with the nonlinear gain, the
spontaneous transition from vortices with topological charge
m = 1 to the various species of fundamental solitons with m

= 0, including the above-mentioned class of the star-shaped
solitons. Such a spontaneous transition is not possible with the
gain submerged into the sea of loss, which was the distinctive
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feature of the model considered in Ref. [12]. Therefore, the
two models are substantially different, although they include
similar terms. As a result, in the model with γ < 0, i.e., without
the explicit linear gain, the stability chart in the same parameter
plane is totally different [12].

It is relevant to stress the difference of the variety of patterns
produced by the spontaneous breaking of the axial symmetry
in systems of the CGLE type from their conservative coun-
terparts, based on nonlinear Schrödinger equations (NLSEs).
In the latter case, the angular momentum is always related to
the TC, while the CGLE allows decoupling of the momentum
from the TC, and (2+1)D NLSEs do not give rise to star-shaped
patterns [29].

IV. CONCLUSIONS

In conclusion, we have established that the evolution of the
2D complex Ginzburg-Landau equation with the cubic-quintic
nonlinearity and localized linear gain gives rise to spontaneous
formation of many species of patterns, including asymmetric
vortices, modes which feature cyclic metamorphosis, and
revolving stars without intrinsic TC (topological charge). Start-
ing from the input provided by the variational approximation,
systematic simulations have generated the localized structures
whose stability areas are charted in Fig. 1 (only in a small
part of the parameter space, the input decays without initiating
the pattern formation). The instability-induced spontaneous
reduction of the continuous rotational symmetry to a discrete
subsymmetry is the generic route to the pattern formation in
the present setting. In particular, the modulational instability
breaks the vortex into two fragments, which fuse into a

double-hump pattern above an effective threshold for the
pattern formation, depending of the pump-beam intensity.
More sophisticated species of the robust localized modes
include four- and fivefold ones, which evolve through cycles of
periodically changing forms. On the other hand, six-, seven-,
eight-, nine-, and ten-pointed stars steadily revolve, keeping
the constant shape and constant angular momentum, with zero
TC, unlike vortices, whose angular momentum is proportional
to the TC. Stable, oddly shaped rotating patterns (cobras) occur
in interstices between stability domains of the different species.

The proposed (2+1)D CGLE model establishes the com-
plex pattern-formation phenomenology in laser cavities and
other nonlinear photonic systems. As a consequence, it may
be used to monitor real-time stability, and to detect fluctuations
causing slight changes of the cavity (ε) and pump (�) control
parameters in operating lasers, that can be visualized by the
change of patterns (e.g., the increase of the number of arms in
the star structures). The model may also help in understanding
generic features of the pattern formation in other areas, with
potential applications to the design of information-processing
analog schemes [30].
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