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The effect of an external continuous wave (cw) on the motion of solitons of the complex Ginzburg-Landau
(CGL) equation is investigated. It is shown that soliton motion, which is prevented by a strong braking due to
finite gain bandwitdh, can be induced by the cw. Then the effect of the cw on the collective behavior of a large
number of dissipative solitons is considered. Starting from a soliton crystal, we demonstrate that the soliton
motion is induced by the cw, so that either the soliton gas, liquid, or crystal can be obtained depending on the
intensity and the frequency of the cw.
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I. INTRODUCTION

The interaction of a large number of solitons was first
considered in the case of passive resonators [1–5], modeled
by the nonlinear Schrödinger (NLS) equation, without any
gain, but driven by an external source term. In the so-called
dissipative case, i.e., in the situation involving gain as a
laser, two- and three-soliton interactions have been considered
theoretically in the frame of the complex Ginzburg-Landau
(CGL) equation [6–10], and experimentally in fiber lasers
[11–14]. Further, in passively mode-locked high power fiber
lasers, a large number of solitons can coexist in the cavity when
operating in the anomalous dispersion regime [15–17], which
allowed experimental and numerical studies of the interaction
of a large number of solitons. Many different soliton patterns,
analogous to the different states of matter, have been reported
independently of the exact mode-locking mechanism revealing
some universal properties [18–25]: soliton crystal, soliton
liquid, and soliton gas. The resulting soliton distributions in a
fiber laser are interpreted as a consequence of their interactions
which can be repulsive or attractive or both at different scales.
Attractive interaction is claimed to be responsible of bound
states or soliton crystals [18,24], a repulsive long-distance
interaction is responsible of the harmonic mode-locking [26],
while in the soliton gas, the solitons move one with respect to
the other due to the absence of interaction (or to its excessive
weakness).

Most of the theoretical approaches cited above to describe
the dissipative soliton interaction are based on the CGL
equation, which is also one of the most relevant models
for the description of mode-locked fiber lasers. Namely,
the well-known master equation by Haus [27] is nothing
but the stationary version of CGL; fiber laser models of
cubic and cubic-quintic CGL type have been derived from
several specific setups [28–31]; further, extensive mathemat-
ical studies are devoted to this model [32]. However, all
existing interpretations (including the qualitative interpretation
of theoretical analysis whose correctness has not to be
questioned) are based on a mechanical analogy of soliton
motion, which fundamentally rests on the assumption that
the solitons, as quasiparticles, move freely in the absence of
interaction. Under this assumption, as mentioned above, the

formation of bound solitons or soliton crystal correspond to
a strong short-range interaction, the liquid to a weaker one,
the harmonic mode-locking to long-distance repulsion, and the
soliton gas to no interaction. The theoretical study of collective
motion is reliant on the question of finding some interaction
potential, which describes the interaction. The trouble is that
this picture cannot work because, in contrast to the solitons of
the NLS equation, the solitons of CGL cannot move freely due
to the spectral bandwidth term. We detail below the reasons
and meaning of this fact, although it has in principle been
known for a long time, and then try to recover the soliton
motion.

The experiment can give us a way of solving the problem.
Indeed, in many fiber lasers working in harmonic mode-
locking, a continuous wave (cw) component is present in
the optical spectrum [33–36], suggesting that this component
strongly influences soliton interaction [37]. Analogous obser-
vation has been made in lasers generating soliton pairs [38]
and also in large soliton assemblies. Specifically, it has been
shown that “soliton rains” can be triggered by the injection
of a cw laser [23]. Based on this observation, we recently
considered experimentally the influence of an injected external
cw on the collective behavior of a large number of dissipative
solitons in a passively mode-locked Er:Yb-doped double-clad
fiber laser [39]. We consider in the present paper the effect of
a frequency-shifted source term able to model such injection
of a cw component on solitons of the CGL equation. We will
show that in some sense it allows to restore the soliton motion,
but that the picture of the Newtonian mechanics still does not
apply to the solitons. Then, considering a soliton assembly, we
will see that its organization can be changed from crystal to
liquid or gas by the injected cw component.

II. MOBILITY OF CGL SOLITONS

The CGL equation reads as

∂E

∂z
= δE +

(
β + i

D

2

)
∂2E

∂t2

+ (ε + i) E |E|2 + (μ + iν) E |E|4 , (1)

where E is the electric field amplitude, and the real normalized
coefficients δ, β, D = ±1, ε, μ, and ν account for (algebraic)
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FIG. 1. (Color online) Braking of the soliton for nonzero β.

net linear gain, spectral gain bandwidth, dispersion, cubic
and quintic nonlinear gain, and fourth-order nonlinear index,
respectively. When Eq. (1) describes the behavior of a
laser cavity, z is the number of round-trips, replaced by a
continuous variable by means of a mean-field approximation.
As mentioned above, the term β∂2E/∂t2, which accounts
for finite spectral bandwidth of the gain, breaks the Galilean
invariance of the CGL equation, and prevents any motion of
the solitons. More specifically, if β is zero, and E0(z,t) is a
solution to Eq. (1), then

E = E0 (z,t − wz) exp i[Dwt − (Dw2/2)z] (2)

is another solution moving at inverse speed w.
This is illustrated by numerical resolution of the CGL

equation, see Figs. 1 and 2. Equation (1) is solved by means of
a standard fourth-order Runge-Kutta algorithm in the Fourier
domain, the nonlinear terms being evaluated at each substep
by means of inverse and direct fast Fourier transforms. We use
an initial data of the form

E(z = 0,t) = E0(0,t)ei�ω1t , (3)

where E0(z,t) is a stationary solution of Eq. (1) and �ω1 a
frequency shift. When β is zero, the frequency shift induces the
inverse velocity w = D�ω1, according to Eq. (2). We use the
parameters δ = −0.01, β = 0.5, D = 1, ε = 0.4, μ = −0.05,
and ν = 0 (here and throughout the paper, except for Fig. 2
where β is replaced with zero). Further, �ω1 = 1.5 in the data
presented in Figs. 1 and 2. Since β is not zero, the solution
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FIG. 2. (Color online) Motion of the soliton for β = 0.

given by Eq. (2) does not exist, and numerical solution shows
that the soliton with given initial momentum very soon slows
down and stops, as can be seen in the example in Fig. 1. The
strong braking of the moving soliton due to the limited gain
bandwidth term clearly appears. The amplitude and shape of
the soliton appreciably change during the braking process; in
fact, higher values of �ω1 may lead to the destruction of the
soliton. If we switch β to zero, using the same parameters
and initial data as above, the motion occurs, as shown in
Fig. 2, in accordance with the Galilean invariance expressed by
Eq. (2). Some oscillations arise due to the fact that the initial
data are not exactly a steady state with β = 0 (the steady state
exists but is unstable).

To address the question, whether soliton motion can be
restored by the injected cw, we consider the equation

∂E

∂z
= δE +

(
β + i

D

2

)
∂2E

∂t2
+ (ε + i) E |E|2

+ (μ + iν) E |E|4 + A exp (−i�ω0t) , (4)

which is Eq. (1) with an additional source term. A ac-
counts for the amplitude of the injected cw and �ω0 is
the frequency shift. A z-dependent phase factor could be
introduced in the frequency-shifted source term. However,
since there is no reason that the injecting laser is synchronized
with the injected one, this factor, which represents the
phase mismatch between both cavities, can be whatever.
In the absence of any reasonably founded evaluation of
such a factor, we prefer to omit it. Equation (4) is solved
by the same method as Eq. (1) above, with the same
parameters.

We perform a first set of computations, starting from initial
data of the form (3) where E0 is a one-soliton solution to the
CGL equation (1) [i.e., Eq. (4) with A = 0], and varying A,
�ω0, and �ω1. It is seen that the pulse acquires some velocity,
which depends on A and �ω0, but not on �ω1. In other words,
the soliton moves, but the speed is entirely determined by the
injected cw signal: the Galilean invariance is not restored at all.
We then set �ω1 = 0, and evaluate the soliton speed (relative
to the linear velocity, obviously), or more exactly, the inverse
velocity w = �t/�z, as a function of the amplitude A and the
detuning �ω0 of the cw component.

The results are presented in Fig. 3. At small detuning,
and above some amplitude threshold (slightly larger than
A = 0.001 at �ω0 = 0), the cw component destabilizes the
single soliton, and one further soliton may form, or more. See
an example obtained for a relatively low amplitude A = 0.01
and low detuning �ν0 = 0.05 in Fig. 4. The rate at which
the instability develops increases as the amplitude A increases
and as the detuning �ω0 = 2π�ν0 decreases. The number
of solitons generated at the end of the process increases
in the same conditions, until they fill the computation box.
An example of instability, starting from a two-soliton input
(a linear superposition of two well-separated fundamental
solitons), for A = 0.15 and ν0 = 0.12 is shown in Fig. 5.
Note that, at such a relatively high amplitude of injected cw,
before the permanent regime is reached, a cw wave with rather
important amplitude forms in parts of the cavity [the dark gray
(red) zones about z = 20 in Fig. 5], however, it is not stable and
a series of pulses arises from it. In a laser cavity, the instability
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FIG. 3. (Color online) Soliton inverse velocity w = �t/�z

against detuning �ν0 = �ω0/2π for a few values of the injected cw
amplitude, namely A = 0.004 (green dotted line), 0.002 (red dashed
line), and 0.001 (blue solid line).

we just described is counterbalanced by the saturation of the
gain, which is not taken into account by the CGL model we
are considering here. Hence this instability is a property of
the mathematical CGL model, which does not correspond to a
property of the laser. We limited the computation of velocity to
the stability domain of the one soliton. Notice that in this case
the velocity w has a very low value, less than 10−4 (we record
them by running the resolution of the propagation equation
until z = 20 000).

III. CHANGING “STATES OF MATTER” IN A ASSEMBLY
OF SOLITONS

Let us now turn to a large assembly of solitons. We still
solve numerically Eq. (4), with the same fixed parameters as
above and varying the injected cw amplitude A and frequency
shift �ν0 = �ω0/2π , but now we use as initial data a soliton
crystal solution of Eq. (1) filling the whole computation
box, and record the permanent (but not stationary in general)
regime which is reached after some transient. This transient
corresponds to the stage of development of the instability
mentioned in the previous section, however, the soliton crystal
may remain stable in the presence of the cw component with
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FIG. 4. (Color online) The instability of a single soliton for small
cw detuning �ν0 = 0.05; the injected cw amplitude is A = 0.01.
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FIG. 5. (Color online) The instability of a two-soliton input for
larger cw amplitude is A = 0.15. The cw detuning is �ν0 = 0.12.

amplitude in the considered range (0.1 to 2), in contrast with
the single soliton. The results do not depend on the sign of
�ν0; depending on its value, the pulse train may behave as a
crystal (Fig. 6), a liquid (Fig. 7), or a gas (Fig. 8), which all
are computed for the same value of the injected cw amplitude
(A = 1.5). Note that this value is quite high with respect to the
one considered in the previous section.

The optical spectra computed by means of a fast Fourier
transform of the field E for the same three examples are given
in Fig. 9, and the autocorrelation trace

∫ +∞

−∞
|E(τ − t)E(τ )|2dτ,

averaged on ten numerical steps, are shown on Fig. 10.
The various outcomes are shown versus the amplitude and

detuning in Fig. 11. The soliton crystal remains if the amplitude
is small or the detuning large, a gas is produced in the opposite
case. Intermediate patterns form, of liquid or polycrystal type,
in between.

Hence, in the frame of the CGL equation, the injection
of a cw component allows to control the “states of matter”
corresponding to the soliton distribution and also allows, only
tuning the frequency of the cw, to change the multisoliton
structure, from soliton crystal to soliton gas, via soliton liquid
and polycrystal.
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FIG. 6. (Color online) Evolution of the temporal soliton pattern:
Soliton crystal. For the value of the detuning �ν0 = 1.2.
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FIG. 7. (Color online) Evolution of the temporal soliton pattern:
Soliton liquid. For the value of the detuning �ν0 = 0.9.

IV. DISCUSSION

We started from the observation that the CGL solitons
cannot move, which prevents their perpetual motion in a soliton
gas, although the latter behavior has been experimentally
observed in fiber lasers. The question was whether an injected
cw component was able to put the solitons in motion. We first
have shown that, if its amplitude is small, the cw component
induces soliton motion. However, the soliton is not really free
to move because the velocity depends on the detuning and
amplitude of the injected cw component as a single-valued
function. It varies strongly with the detuning and amplitudes,
suffering high oscillations in absolute value and sign changes,
especially for small detunings.

The one-soliton solution to the CGL equation does not
remain stable if the amplitude of the injected cw is increased,
especially at low detunings: other pulses form, as the amplitude
is increased, until they fill the computation box. This instability
is not physical since gain saturation occurs in a real laser, but
we have to take it into account in the mathematical analysis
of CGL.

In correlation with the formation of a great number of
solitons under the effect of the cw component, we inspected the
influence of the cw component on a large assembly of solitons.
We considered a soliton crystal, and show that, varying only
the detuning of the cw component, it was possible to transform
it into soliton liquid or gas, or to leave it unchanged. Hence
the presence of a cw component can induce the apparent
“Brownian motion” in a soliton gas. It was shown above that
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FIG. 8. (Color online) Evolution of the temporal soliton pattern:
Soliton gas. For the value of the detuning �ν0 = 0.8.
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FIG. 9. (Color online) Spectrum for the same three values of
detuning as in Figs. 6, 7, and 8. (a) soliton crystal, (b) soliton liquid,
and (c) soliton gas.

the velocity induced by the cw component is entirely defined by
it. However, at the high amplitudes of injected cw considered
in Sec. III, the nonlinear interaction between cw component
and pulses is much more complex. In particular, one can expect
that the amplitude of the considered radiative wave varies all
along the cavity. Since we have seen that a tiny variation of
the cw component in either amplitude or frequency was able
to change radically the soliton velocity, the variations of the
radiative waves change the soliton in the same way, and the
resulting changes are apparently random.
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FIG. 10. (Color online) Autocorrelation trace for the same three
values of detuning as in Figs. 6, 7, and 8. (a) soliton crystal, (b) soliton
liquid, and (c) soliton gas.
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FIG. 11. (Color online) The different regimes versus the detuning
�ω0 and the amplitude A = Acw of the injected cw component.

This is the explanation of the erratic motion in a soliton
gas: radiative waves form in a quite erratic way. They induce

soliton motion. The relation between the radiative waves and
soliton velocity is single-valued but very complicated, so its
deterministic character does not prevent the general motion to
appear as stochastic. This is a first step towards the theoretical
description of the collective behavior of large assemblies of
solitons, whose study has been up to now purely descriptive.
However, many points remain to be clarified. We still need a
simplified model, describing soliton interactions as quasipar-
ticles ones, although we understand that the usual Newtonian
picture might be irrelevant here. The better understanding of
the motion mechanism will help to the construction of this
model. On the other hand, the influence of several further
phenomena, which are present in the laser cavity and not
accounted for by the CGL equation, especially gain saturation
and gain relaxation, remain to be clarified.
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