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a b s t r a c t

In the past years there was a huge interest in experimental and theoretical studies in
the area of few-optical-cycle pulses and in the broader fast growing field of the so-
called extreme nonlinear optics. This review concentrates on theoretical studies performed
in the past decade concerning the description of few optical cycle solitons beyond the
slowly varying envelope approximation (SVEA). Here we systematically use the powerful
reductive expansionmethod (aliasmultiscale analysis) in order to derive simple integrable
and nonintegrable evolution models describing both nonlinear wave propagation and
interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple
scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von
Neumann equation for the density matrix of two-level atoms. We analyze in detail both
long-wave and short-wave propagationmodels. The propagation of ultrashort few-optical-
cycle solitons in quadratic and cubic nonlinear media are adequately described by generic
integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries
equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de
Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili
equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the
propagation of few-cycle optical solitons in both (1 + 1)- and (2 + 1)-dimensional
physical settings. A generalized modified Korteweg–de Vries equation is introduced in
order to describe robust few-optical-cycle dissipative solitons. We investigate in detail
the existence and robustness of both linearly polarized and circularly polarized few-cycle
solitons, that is, we also take into account the effect of the vectorial nature of the electric
field. Some of these results concerning the systematic use of the reductive expansion
method beyond the SVEA can be relatively easily extended to few-cycle solitons in the
general case ofmultilevel atoms. Prospects of the studies overviewed in thiswork are given
in the conclusions.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Following a series of challenging works on experimental generation and characterization of two-cycle and even sub-
two-cycle pulses from Kerr-lens mode-locked Ti: sapphire lasers [1–4], interest in intense ultrashort light pulses containing
only a few optical cycles has grown steadily in recent years since their first experimental realization more than one
decade ago. This mature research area has considerable potential for ultrafast optics applications in metrology of ultrafast
phenomena, in systems performing laser ablation (micromachining, etching, microsurgery), etc. It still presents many
exciting open problems from both a fundamental and an applied point of view. Notably, the ultrashort pulses possess
extensive applications to the field of light–matter interactions, high-order harmonic generation, extreme [5] and single-
cycle [6] nonlinear optics, and attosecond physics [7,8]; see Ref. [9] for a review of earlier works in this area.

We should point out that such ultrashort laser pulses with duration of only a few optical cycles are of much importance
because they are brief enough to resolve temporal dynamics on an atomic level. They are currently used to study chemical
reactions, molecular vibrations, electron motion in atoms and molecules, etc. Moreover, since few-cycle pulses are very
broadband and can become extremely intense, they became a useful tool for coherently exciting and controllingmatter on a
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microscopic scale. The availability of ultrashort and ultraintense laser pulses generated by the powerful technique of chirped
pulse amplification along with the development of high-fluence laser materials has opened up the field of optics in the
relativistic regime [10]. Thus theultrahigh electromagnetic field intensities producedby these techniques (I > 1018 W/cm2),
lead to relativistic effects generated by the motion of electrons in such laser fields [10]. We also note an overview by
Mourou and Tajima [11] on recent activity in the area of realization of future large laser facilities, namely exawatt-class
lasers. Such huge powers will be obtained by releasing a few kilojoules of energy into an ultrashort pulse with a duration of
only 10 fs.

The possibility to increase the laser peak powers relies on three revolutionary experimental achievements. The first laser
amplification technique, namely the chirped pulse amplificationwhich had a great influence on applications,was introduced
in 1985 by Strickland and Mourou [12]. The second important advance in this area has been the optical parametric chirped
pulse amplification introduced in 1992 by Dubietis et al.; see Ref. [13]. It is conceptually similar to the chirped pulsed
amplification, however, it relies on the parametric amplification of light. This second revolutionary amplification technique
is currently used for broadband, few-optical-cycle pulse amplification. The third important amplification technique, which
was introduced in 1999 by Malkin et al. [14], is a new compression technique based on backwards Raman scattering and
has the advantage of avoiding diffraction gratings. Very recently, Mourou et al. [15] have introduced a new amplification
technique, the so-called cascaded conversion compression, which has the capability to compress with good efficiency
nanosecond laser pulses with energy of about 10 kJ into femtosecond pulses having the same energy; exawatt peak powers
being therefore reachable.

From the fundamental point of view, other physical phenomena involving ultrashort optical pulses (with very broad
spectra) are of much interest at present. We mention here the supercontinuum generation (the spectral width exceeds
two octaves) in microstructured photonic crystal fibers, which is seeded by femtosecond pulses in the anomalous group
velocity dispersion regime of such fibers. Unique physical processes such as soliton fission, stimulated Raman scattering, and
dispersive wave generation were studied in detail; see, e.g., Refs. [16–18] and two comprehensive recent reviews [19,20].
Also, it is worthy to mention here a recent experimental work demonstrating the synthesis of a single cycle of light by using
compact erbium-doped fiber technology [21]; the obtained pulse duration of only 4.3 fs was close to the shortest possible
value for a data bit of information transmitted in the near-infrared spectrum of light, at a wavelength of 1300 nm; see
Ref. [21].

In the following we survey other recent relevant experimental and theoretical results in the area of few-cycle and strong
field optical physics. First we mention a recent review paper [22] on few-optical-cycle light pulses with passive carrier-
envelope phase (CEP) stabilization. One notices that the control of CEP of light pulses enables the generation of optical
waveforms with reproducible electric field profiles. The passive approach allows the generation of CEP-controlled few-
optical-cycle pulses covering a very broad range of parameters in terms of carrier frequency (from visible to mid-infrared),
energy (up to several millijoules) and repetition rate (up to hundreds of kHz); see Ref. [22] for more details. A light source,
using coherent wavelength multiplexing, that enables sub-cycle waveform shaping with a two-octave-spanning spectrum
and a pulse energy of 15 microjoules was recently developed in Ref. [23]. This optical source offers full phase control
and allows generation of any optical waveform supported by the amplified spectrum; see Ref. [23]. Extensive numerical
simulations of ultrafast noncritical cascaded second-harmonic generation in lithium niobate, which were performed in a
recent work [24], showed that few-cycle solitons can be formed that shed near- to mid-IR optical Cherenkov radiation
in the 2.2–4.5 micrometer range with few-cycle duration, excellent pulse quality, and a high conversion efficiency (up
to 25%). Note that alternative methods for generating energetic few-cycle mid-IR pulses, like optical rectification [25]
or noncollinear optical parametric amplification [26] proved to be either inefficient or very complex techniques. Thus
it was clearly proved in Ref. [24] by performing extensive numerical computations that cascaded second-harmonic
generation might provide an efficient bridge between near-IR femtosecond laser technology and ultrashort energetic
mid-IR pulses. In a subsequent experimental work performed by Wise’s group [27] it was shown the few-cycle soliton
compression with noncritical cascaded second-harmonic generation; energetic 47 fs infrared pulses were compressed in
a just 1-mm long bulk lithium niobate crystal to 17 fs (under four optical cycles) with high efficiency (about 80%). The
experimental results reported in Ref. [27] indicate that short semiconductor crystals can be used to compress multi-
cycle mid-infrared pulses towards few-cycle duration, thereby facilitating a mid-infrared front-end for high-harmonic
generation.

As concerning the creation of CEP-stabilized intense pulses we also mention the generation of 1.5 cycle pulses at
1.75 µm [28] and the generation of multi-µJ, CEP-stabilized, two-cycle pulses from an optical parametric chirped pulse
amplification system with up to 500 kHz repetition rate [29].

Other recent works on few-cycle pulses (FCPs) deal with few-cycle light bullets created by femtosecond filaments [30],
the study of ultrashort spatiotemporal optical solitons in quadratic nonlinear media [31], the ultrashort spatiotemporal
optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation
(SVEA) [32,33], single-cycle gap solitons generated in resonant two-level dense media with a subwavelength structure [34],
observation of few-cycle propagating surface plasmon polariton wavepackets [35], and the possibility of generating few-
cycle dissipative optical solitons [36–38]. In a recent work by Kozlov et al. [37] it was numerically demonstrated how to use
the coherent mode locking technique for the generation of single-cycle pulses directly from a laser. We also mention recent
studies of ultrafast pulse propagation in mode-locked laser cavities in the few femtosecond pulse regime and the derivation
of a master mode-locking equation for ultrashort pulses [39]. Another relevant recent theoretical work presents a class of
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few-cycle elliptically polarized solitary waves in isotropic Kerr media, propose a method of producing multisolitons with
different polarization states, and study their binary-collision dynamics [40].

We alsomention the experimental study of intrinsic chirp of single-cycle pulses [41], the proposal of amethod to generate
extremely short unipolar half-cycle pulses based on resonant propagation of a few-cycle pulse through asymmetrical media
with periodic subwavelength structure [42], the demonstration of high quality sub-two-cycle pulses (with duration of
about 5 fs) from compression of broadband supercontinuum generated in all-normal dispersion photonic crystal fibers [43],
the realization of essentially dispersion-free and diffraction-limited focusing of few-cycle pulses (with duration of about
6 fs) through all-reflective microscope objectives [44], generation of unipolar pulses from nonunipolar optical pulses in a
quadratic nonlinearmedium [45], and the existence of guided optical solitons of femtosecondduration andnanoscopicmode
area, that is, femtosecond nanometer-sized optical solitons [46]. In recent comprehensive numerical simulations performed
by Li et al. [47] it was put forward an efficient and realizable scheme for the generation of ultrashort isolated attosecond
(as) pulses by the optimization of three-color laser fields. As a result, an isolated 23 as pulse can be obtained directly by
superimposing the supercontinuumharmonics near the cutoff region [47]. Note that this very short attosecond pulse (23 as)
is less than one atomic unit of time (the time scale of electron motion in atoms), which is about 24 as.

The continuing experimental progress in the study of the wave dynamics of FCPs in nonlinear optical media has paved
the way for the development of new theoretical approaches to model their propagation in physical systems. Three classes
of main dynamical models for FCPs have been put forward: (i) the quantum approach [48–52], (ii) the refinements within
the framework of SVEA of the nonlinear Schrödinger-type envelope equations [53–63], and the non-SVEA models [64–70,
70–82]. Extremely short pulses can be described by solving directly the Maxwell–Bloch equations for a two-level system.
Sech-type solutions have been derived [83]. The propagation of FCPs in Kerr media can be described beyond the SVEA by
using the modified Korteweg–de Vries (mKdV) [70–72], sine–Gordon (sG) [73–75], or mKdV–sG equations [76–80]. Note
also a reduced Maxwell–Duffing model, very close to the mKdV equation, for the description of extremely short pulses in
nonresonantmedia [84]. ThemKdV and sG equations are completely integrable bymeans of the inverse scattering transform
method [85,86], whereas the mKdV–sG equation is completely integrable only if some condition between its coefficients is
satisfied [87,88].

The traditional SVEA is no longer valid for ultrashort optical pulses with duration of only a few femtoseconds. Although
several generalizations of the SVEA have been proposed and have proven their efficiency (see the detailed discussion
in Ref. [89]. These generalizations are referred to as higher-order nonlinear Schrödinger equation (NLS) models, see
e.g. Refs. [53–56]), a completely different approach to the study of few-cycle pulses, which completely abandons the SVEA
was put forward in a series of published works during the past two decades. First, we mention that first-order nonlinear
evolution equations can be obtained under the so-called unidirectional approximation [90,91]. Non-SVEA models were
proposed within the framework of the unidirectional approximation; see, e.g., Refs. [18] and [56]. Second, to the best of
our knowledge, the necessity of using the non-SVEA approach for the adequate description of FCPs was put forward in
the early seminal work by Akhmediev, Mel’nikov and Nazarkin published in 1989 [92]. In a subsequent paper, Belenov and
Nazarkin [64] obtained exact solutions of nonlinear optics equations outside the approximation of slowly varying amplitudes
and phases for light pulses a fewwavelengths long andwith power densities of the order of 109–1018 W/cm2, clearly stating
that traditional SVEA methods ‘‘are becoming ineffective in describing wave processes at such small spatial and temporal scales
and at such high fields’’. We also mention that in a recent study of ultrafast pulse propagation in a mode-locked laser cavity
in the few femtosecond pulse it was clearly stated that the standard NLS-based approach of ultrafast pulse propagation,
though has been shown ‘‘to work quantitatively beyond its expected breakdown, into the tens of femtoseconds regime, and has
been used extensively for modeling supercontinuum generation . . . when pushed to the extreme of a few femtosecond pulses, the
NLS description becomes suspect . . .’’ [39].

This review is organized as follows. In Section 2 we briefly present the basic notions of the reductive perturbation
method (multiscale expansion) and its applications to the general soliton theory. As a typical example of the application of
the multiscale analysis, we give a direct derivation of a macroscopic nonlinear Schrödinger equation from Maxwell–Bloch
equations for two-level atoms. One-dimensional approximate models for few-cycle optical solitons in two-level media are
introduced in Section 3. First, two-cycle optical solitons in the long-wave approximation regime and the corresponding
derivation of a modified Korteweg–de Vries equation are presented. Then, we also consider two-cycle optical solitons in
the short-wave approximation regime, which are adequately described by a sine–Gordon equation. Ultrashort pulses in
quadratically nonlinear media in the form of half-cycle optical solitons (with a definite polarity of the electric field) are also
introduced in Section 3. In Section 4 we derive a general model for few-cycle optical soliton propagation, namely a modified
Korteweg–de Vries–sine–Gordon equation, which describes two-cycle optical pulses propagating in two-component
nonlinearmedia.We alsomake a detailed comparison between themost generalmodified Korteweg–de Vries–sine–Gordon
model and other non slowly varying envelope approximation models introduced in the study of ultrashort solitons, such as
the short-pulse equation, the modified Korteweg–de Vries equation, and the sine–Gordon equation. Moreover, the salient
features of interactions of few-optical-cycle solitons are discussed in Section 5. Section 6 is devoted to the study of circularly
polarized few-optical-cycle solitons in nonlinear media in both long wave and short wave approximation regimes. The
unique features of few-optical-cycle dissipative solitons are discussed in Section 7. Section 8 deals with the generalization
of these studies to (2 + 1)-dimensional physical settings, that is, to the description of spatiotemporal few-optical-cycle
solitons beyond the slowly varying envelope approximation. Finally, in Section 9 we present our conclusions and we give
some prospects of the studies overviewed in this paper.
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2. The reductive perturbation method

2.1. Basic notions of the method and its applications

The reductive expansion method or multiscale analysis is a very powerful way of deriving simplified models describing
both nonlinear wave propagation and interaction; see e.g., a tutorial review of this topic [93]. Here we only describe the
basic notions of this mathematical method which is widespread in the modern soliton theory. We give a few examples
concerning (1 + 1)-dimensional problems: (a) the envelope equations described by the universal nonlinear Schrödinger
equation, (b) the Korteweg–de Vries and modified Korteweg–de Vries equations which adequately describe the long-wave-
approximation regime, for quadratic and cubic nonlinearities respectively, and (c) the sine–Gordon equation describing
the short-wave-approximation regime. A simple definition of the multiscale expansion is as follows: it is a perturbative
approach, whose first order is a linear approximation, that allows us to write, not only small corrections valid for the same
evolution time as in the linear approximation regime, but also their cumulative effect for a very long evolution time. Note
that the reductive perturbation method is intimately related to soliton theory and it is frequently used in works devoted to
the mathematical aspects of solitons.

We next give two generic examples of multiple scales by analyzing the NLS equation describing envelope solitons in
optical fibers and the universal KdV equation arising, e.g., in hydrodynamics and in the study of ultrashort pulse propagation
in quadratically nonlinear optical media beyond the SVEA (see Section 3.3). First, regarding envelope solitons, let us consider
optical solitons in fibers. The wavelength, the pulse length, and the propagation distance, are three lengths measured along
the fiber axis, that are first distinguished by their different orders of magnitude. Experimental setups may rather measure
some of the corresponding durations: optical period, pulse duration, and propagation time, which simply deduce from
lengths by multiplying by the light velocity. Considering a quantity either as a length or as a time does not induce any
change to the analysis. The formation of a soliton occurs only if some relationships are satisfied between these orders of
magnitude, and between them and that of the wave amplitude. Thus, multiple scales exist in the physics itself. Second, in
the case of the KdV equation in hydrodynamics the formation of a KdV soliton assumes relations to be satisfied between the
amplitude of the solitary wave, its length, the canal depth, and the propagation distance. All these quantities are lengths,
whose orders of magnitude differ, but are in no way arbitrary. From the physical nature of the phenomenon itself, we again
have multiple scales.

The mathematical formalism of the multiple scale analysis involves the introduction of some small perturbation
parameter ε, so that the orders of magnitude of the various effects are determined by means of their order in an expansion
in a series of powers of ε. This induces homogeneity properties of the considered mathematical expressions. Therefore, the
model equations which are derived this way must satisfy these homogeneity properties. Due to this constraint the number
of possible nonlinear evolution equations is hence rather small. Only a few generic equations are shown to account for
analogous phenomena in very different physical settings. Such nonlinear evolution equations are called universal. Generally,
in (1+1) dimensions and for conservative systems, only one degree of freedom is involved in the dynamics and the universal
evolution equation is completely integrable. However, the integrability property is very rare, and the model equations
obtained as asymptotics fail to be integrable in most cases, as soon as the dimensionality of either the dependent or the
independent variables increases. Then, the complete integrability may still be ensured if and only if some relationships
between the coefficients of the nonlinear evolution equation are fulfilled.

To the best of our knowledge, the reductive perturbationmethod, or multiscale analysis, was first introduced by Gardner
and Morikawa in 1960 in an unpublished report on hydromagnetic waves in a cold plasma (New York University Report
NYU-9082, Courant Institute of Mathematical Sciences). This method has been applied in 1966 byWashimi and Taniuti [94]
to the study of ion-acoustic solitary waves of small amplitudes. Later on, Taniuti and Wei [95] provided a general method
of the derivation of the Korteweg–de Vries equation by using the reductive perturbation technique. Su and Gardner [96]
derived both the Korteweg–de Vries and Burgers’ equations. Taniuti and his co-workers initiated the perturbation method
for ‘a nonlinearwavemodulation’, leading to the generic nonlinear Schrödinger equation. Thus theNLS equationwas derived
by Taniuti using a multiscale method, in two fundamental works [97,98].

2.1.1. Length scales for envelope solitons
The nonlinear evolution of dispersivewave packets, e.g., those propagating through optical fibers, involves several length

scales, the phase velocity of the wave being a constant in this specific case [85]. The first length scale is the wavelength λ
of the carrier, that will be the reference length (zero order). The length L of the wave packet must be large with regard
to the wavelength, so that an approximation of slowly varying envelope type can be envisaged. A third scale length is the
propagation distance D; see Fig. 1. We require that the effect of dispersion appears on propagation distances of the order
of D, which is much larger than the pulse length L. We are briefly discussing here the formation of envelope solitons, that
is, an equilibrium between the dispersion effect and the nonlinear effect should occur. The propagation distances D will
thus typically have the same order of magnitude as the dispersion length (temporal Fresnel length) Lf = (∆t)2/(2πk2).
Here k2 = d2ω/dk2 measures the dispersion, and ∆t is the initial pulse duration (in the picosecond range for envelope
solitons in fibers). We mention that in the seminal experiment of Mollenauer et al. [99] on envelope solitons in optical
fibers the wavelength was λ = 1.55 µm, the propagation distance, i.e. the length of the fiber was D = 700m, and the
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Fig. 1. (Color online) The various length scales for envelope solitons. Here λ is the wavelength, L is the pulse length, which is large with respect to λ, and
D is the propagation distance, which is large with respect to L.

Fig. 2. (Color online) The different length scales of the KdV soliton: A is the small amplitude, L is the longwavelength, andD is themuch longer propagation
distance.

pulse duration was ∆t = 7 ps, which corresponds to a pulse length L = 1.4mm. With the above notations, ∆t = nL/c ,
and k2 = (2n′

+ ωn′′)/c , where n′ and n′′ are the first and second derivatives of the refractive index n with regard to the
pulsationω = 2πc/λ. Hence, we getD = Lf = [n2/(2n′ω+n′′ω2)](L2/λ). It is easily seen that the ratio n2/(2n′ω+n′′ω2) is
dimensionless. Themost simple procedure is to treat it as a number of order ε0. From this, it is deduced that ε ∼ λ/L ∼ L/D.
Thus we have the following length scales: λ ∼ εL ∼ ε2D. In this way we have identified the small perturbation parameter
ε for this physical situation. The temporal and spatial slow variables τ , respectively ζ , are then given by: τ = ε(t − z/V )
and ζ = ε2z. The generic NLS equation describing envelope solitons will be derived by using the quantum formalism in
Section 2.2. Note that it is obtained at the order ε3 of the perturbative scheme.

2.1.2. Length scales for long-wave and short-wave expansions
We briefly consider here some typical examples of long-wave expansions in the study of solitons. One of the first works

devoted to this issuewas that of Su andGardner [96]. In that paperwere derived both Burgers’ equation and theKdVequation
for the description of shallow water waves. (Let us mention that the KdV equation and the KdV soliton were derived for the
first time by Boussinesq in 1872 [100], 23 years before Korteweg and de Vries.)We note that the Burgers’ equation describes
an equilibriumbetween nonlinearity and dissipation, and the formation of smooth shock profiles, whereas the KdV equation
describes an equilibrium between nonlinearity and dispersion and the formation of localized waveforms propagating and
interacting with each other without shape deformation; such robust localized waves were called solitons. The nonlinearity
of the KdV equation is quadratic. However, these localized structures described by these two universal nonlinear partial
differential equations exist in several physical settings; we only mention here that there exists an electromagnetic wave
mode in ferromagnetic media which obeys either the Burgers’ equation [101] or the KdV one [102], depending on the values
of the wave amplitude and the damping constant.

We consider a solitary wave with a long wavelength L, a weak amplitude A, propagating on a distance D. The propagation
distanceD is much longer than thewavelength L; see Fig. 2. The orders of magnitude of A,D, and L are not independent. They
can be expressed by means of a single small parameter ε, through A ∝ ε2, L ∝ 1/ε, and D ∝ 1/ε3, as it is shown in Fig. 2.
The relative size of the various terms can be determined as follows. The generic KdV equation is ∂τ g +Pg∂ξg +Q∂3ξ g = 0. It
involves a third-order derivative ∂3ξ g , which accounts for dispersion to be counteracted by nonlinearity. If the length of the
solitary wave is large, L ∼ 1/ε with ε ≪ 1, then the dispersion term is about ∂3ξ g ∼ ε3g . It must arise at the propagation
distance D, accounted for in the equation by the term ∂τ g ∼ g/D. Hence D ∼ ε−3. Regarding the nonlinear term, which has
the form g∂ξg , it has an order ofmagnitude g2/L ∼ εg2. The formation of the soliton requires that the nonlinear effect exactly
balances the dispersion effect. Therefore the nonlinear and dispersion terms should have the same order of magnitude, that
is, ε3g = εg2. Hence we get the order of magnitude of g ∼ ε2, and correspondingly, the order of magnitude of the wave
amplitude A ∼ ε2; see Fig. 2. For this physical situation the temporal and spatial slow variables τ , respectively ζ , are then
given by τ = ε(t − z/V ) and ζ = ε3z.

Note that the generic KdV equation describing half-cycle optical solitons in quadratic nonlinear media will be derived by
using the quantum formalism in Section 3.3.Wewill see that it is obtained at the order ε6 of the perturbative scheme applied
to the Maxwell wave equation. In Section 3.1 we will derive a generic modified KdV equation describing two-cycle optical
solitons in cubic (Kerr) nonlinear media by using the quantum formalism based on the density matrix. The temporal and
spatial slow variables are the same as in the case of the KdV equation because we are dealing with a long-wave expansion,
however in the case of modified KdV solitons the nonlinearity is cubic, in contrast with KdV which involves a quadratic
nonlinearity. Consequently, the wave amplitude scales differently: A ∼ ε1. The generic evolution equation for the case of
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Fig. 3. (Color online) The length scales of the short-wave solitons: A is the large amplitude, L is the shortwavelength andD is the relatively long propagation
distance.

short-wave approximation is the sine–Gordon partial differential equation. It will be derived in Section 3.2 by using the
quantum formalism. In this case we have the following scalings: L ∼ ε and D ∼ ε0, and we introduce the following rescaled
variables τ = (1/ε)(t − z/V ) and ζ = ε0z = z; hence τ is nomore a slow variable but becomes a fast one, whereas ζ , being
still slow with respect to τ , becomes a zero order variable. The amplitude scales very differently here, it is indeed formally
a large amplitude, A ∼ 1/ε; see Fig. 3.

2.2. Direct derivation of a macroscopic nonlinear Schrödinger equation from Maxwell–Bloch equations

In this section we show that by using the multiscale expansion technique and the quantum mechanical matrix density
formalism, it is possible to derive in a rigorousway theNLS equation,which is amacroscopic nonlinear evolution equation for
a light pulse in a nonlinear medium; see Ref. [103] for a comprehensive study of this issue. In the following we only consider
the simple case of a monochromatic plane wave, interacting with independent two-level atoms. We will show that for the
linear part of this particular, though relevant case, the obtained results agree with those of the linear dispersion theory.
However, the expression of the nonlinear (Kerr-type) coefficient in the NLS equation appreciably differs from that derived
from the computation of the so-called nonlinear susceptibilities, see e.g. the standard book [104], except in the simple case
of a linearly polarized transversewave, i.e., when the atomic dipoles are oriented perpendicular to the propagation direction,
see Ref. [103].

Notice that in the field of nonlinear optics the so-called ‘nonlinear susceptibilities’ expansion formalism is commonly
used; it is an expansion of a phenomenological response function in a power series of the electric field. This technique has
been proved to be a very useful theoretical framework for the physical interpretation ofmany nonlinear optical phenomena,
and for the analysis of quantitative measurements of the nonlinear properties of optical materials, though this approach is
not completely satisfactory for both theoreticians and experimenters; for a fresh look at these subtle issues see the recent
comprehensive textbook on nonlinear optics (phenomena, materials and devices) [105]. However, in other areas, such as
hydrodynamics or wave propagation in ferromagnetic media, the use of nonlinear-susceptibilities-like techniques has been
avoided. Instead, in these two fields the standard framework is themultiscale analysiswhich allows us to get in a systematic
and rigorous way the wave-packets evolution equations directly from the basic equations, such as the Navier–Stokes in
hydrodynamics, or the Maxwell–Landau ones in ferromagnetism. Thus the traditional framework for studying water waves
was the multiscale expansion, which also allowed us the treatment of multidimensional problems, e.g., the study of wave
packets [106], and of solitary waves [107]. Notice that electromagnetic waves in magnetic media have also been studied
using multiscale analysis [108–110].

Following the work [103] we will see that using the quantum mechanical density matrix formalism, and the multiscale
analysis, allows a direct derivation of a macroscopic nonlinear evolution equation of the NLS-type for the propagation of
light pulses in nonlinear media. For the sake of simplicity, we restrict ourselves to the problem of the interaction between
a plane wave and a set of independent identical two-level atoms.

2.2.1. The Maxwell–Bloch equations and the multiscale analysis.
In this section we write down the basic Maxwell–Bloch equations for a collection of two-level atoms and we briefly

discuss the essential points of the multiscale expansion technique, which allow us a rigorous derivation of the macroscopic
NLS equation from the microscopic quantum theory; see Ref. [103] for a detailed first study of this issue. We consider a
homogeneous medium, in which the dynamics of each atom is described by a two-level Hamiltonian

H0 = h̄

ωa 0
0 ωb


. (2.1)

The atomic dipolar electric momentum is described by the operator µ⃗, with

µs =


0 µs
µ∗

s 0


, (s = x, y, z). (2.2)

The electric field E⃗ is governed by the Maxwell equations; in the absence of magnetic effects they reduce to

∇⃗(∇⃗ · E⃗)−∆E⃗ = −c−2∂2t (E⃗ + 4π P⃗). (2.3)

Here P⃗ is the polarization density, c is the light velocity in vacuum. Throughout this review paper we denote by ∂t the
derivative operator ∂

∂t with regard to the time variable t , and ∇⃗ is the three-dimensional gradient operator. The coupling
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between the atoms and the electric field is taken into account by a coupling energy term −µ⃗ · E⃗ in the total Hamiltonian H ,
that reads as

H = H0 − µ⃗ · E⃗, (2.4)

and by the expression of the polarization density P⃗ ,

P⃗ = NTr(ρµ⃗), (2.5)

where N is the number of atoms per volume unit.
The time evolution of the density matrix is given by the so-called Schrödinger–von Neumann equation:

ih̄∂tρ = [H, ρ] , (2.6)

where ρ is the density matrix. Notice that the set of Eqs. (2.3)–(2.6) is sometimes called the Maxwell–Bloch equations,
although this name usually denotes a reduction of this set of equations; see, e.g., [104].

The electric field can thus be written as

E⃗ =


n≥1,p∈Z

εneipϕ E⃗p
n, (2.7)

where the quantities E⃗p
n are functions of the slow variables τ and ζ , asτ = ε


t −

z
V


,

ζ = ε2z.
(2.8)

Thus the electric field describes a quasi-monochromatic plane wave, slowly modulated along its propagation direction,
so that it yields a wave packet that propagates over distances which are very large with respect to the length of the
‘temporal’ wavepacket itself. In the above relationships defining the slow temporal and spatial variables, ε is a small
reductive parameter in the multiscale analysis, V is the group velocity of the wave to be determined in a consistent way
in the process of multiscale expansion, and ϕ = kz − ωt is the phase of the fundamental harmonic frequency (i.e., we take
p = 1 in the expansion of E⃗ in order to get the fundamental harmonic). Thus, for the sake of simplicity, the propagation
direction is chosen to be the z axis, and the problem is a purely one-dimensional one.

We assume that the dominant term in the series expansion (2.7) is of order ε1:

E⃗ = ε

E⃗1
1e

iϕ
+ cc


(2.9)

(here cc denotes the complex conjugate), so that the incident wave contains only the frequencyω/2π and its sidebands due
to the finite pulse length. The scaling given by Eqs. (2.7)–(2.9) is the one that is commonly used for the derivation of the NLS
equation in different physical settings; see e.g., Ref. [85].

At this point a few comments are necessary on the order of magnitude of different physical quantities involved in the
description of radiation–matter interaction. Notice that the electric field is of order ε, thus it is a ‘small’ quantity. However,
when using phenomenological response functions, it is rather difficult to give a reference point for this smallness. From
another point of view, the typical values of the laserwave fields needed for usual experiments in nonlinear optics are large, at
least with regard to the optical fields attainable without using laser sources. In the present context, the wave field compares
to the intra-atomic electric field, ormore precisely, the electrostatic energy of the atomic dipole in the presence of the electric
field compares to the difference h̄Ω = h̄(ωb − ωa) between the energies of the atomic levels. Thus the zero-th order in the
spatial variable is that of the optical wavelength, which may seem a bit strange for a theory valid at the atomic scale, where
the spatial scale is less than a nanometer, even though it concerns optical wavelengths (about one micrometer). However,
from the energetic point of view, we must compare the energy h̄ω of the incident photon to the energy difference between
the atomic levels h̄Ω . It is a well-known fact that only the transitions corresponding to frequencies of the same order of
magnitude as the wave frequency ω affect appreciably the wave propagation. Summarizing these comments on different
scales involved in the reductive perturbation approach we should stress that in this specific physical situation the energy
scale fixes the frequency scale; then the time scale is that of the corresponding wave oscillation period, and the length scale
can be simply deduced by using the numerical value of the light velocity c.

The polarization density P⃗ and the densitymatrix ρ are expanded in the sameway as in (2.7), except that ρ has a ε0 order
term ρ0 that gives account for the initial state of the atoms: ρ = ρ0 +ερ1 +· · · , andwe assume that all atoms are initially in
their fundamental state ‘a’, so that: ρ0 =


1 0
0 0


. Notice that the fact that the photon wavelength is very large with regard

to the atomic scale also allows the use of the electric dipolar approximation, which justifies the use of expressions (2.4) and
(2.5) for the total Hamiltonian H and the polarization density P⃗ .

2.2.2. The resolution of the perturbative expansion and the obtaining of a NLS equation.
Wenext give only themain line of the argument; for a detailed account of the derivation of themacroscopic NLS equation

from the quantum theory, by using a suitable multiscale expansion; see Ref. [103]. Thus the expansion (2.7) is imported into
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Eq. (2.3) to Eq. (2.6), and the coefficients of each power of ε are equated. We denote the components of ρ by

ρp
n =


ρp
na ρ

p
nt

ρp
nu ρ

p
nb


. (2.10)

Here the subscripts a and b stand for the ‘populations’, whereas the subscripts t and u stand for the ‘coherences’. Notice that
ρ is a Hermitian matrix; hence


ρ
p
nt
∗

= ρ
−p
nu . However, there is no simple relation between ρp

nt and ρ
p
nu. Then expression

(2.5) for P⃗ simply yields

Pps
n = N


ρp
nuµ

s
+ ρ

p
ntµ

∗s , (2.11)

for all n, p, and s = x, y, z.
At order 1 in the perturbation expansion in ε, the term of interest is that with p = 1. The Maxwell equation (2.3) at order

ε1 gives

E1s
1 = −

4π
β

P1s
1 for s = x, y, E1z

1 = −4πP1z
1 , (2.12)

with β = 1 −
k2c2

ω2 . The Schrödinger–von Neumann equation (2.6) shows that the corrections to the populations at this
order, ρ1

1a and ρ
1
1b, are zero and the coherences ρ1

1t and ρ
1
1u are coupled with the electric field through

h̄ωρ1
1t = −h̄ωρ1

1u +


s=x,y,z

µsE1s
1 . (2.13)

Making use of Eq. (2.12) in (2.13) and the similar equations for the coherences ρ1
1u, we are left with a linear system of

equations for the unknowns ρ1
1t and ρ

1
1u, of the form

L


ρ1
1t
ρ1
1u


=


0
0


, (2.14)

where L is a 2 × 2 matrix. Then by imposing the condition that the two coherences ρ1
1t and ρ1

1u are not both equal to
zero, i.e., considering the relevant case when the wave field excites the atomic dipoles we get the corresponding implicit
dispersion relation det(L) = 0, which is

h̄2 ω2
= (h̄Ω + NQ )2 − N2KK ∗, (2.15)

where

K = 4π

1
β


µ2

x + µ2
y


+ µ2

z


, (2.16)

Q = 4π

1
β


|µx|

2
+ |µy|

2
+ |µz |

2

. (2.17)

From the implicit dispersion relation (2.15) we can derive the explicit dispersion relation k = k(ω) by assuming that the
polarization operator µ⃗, in the two-level model, describes oscillations of the molecular dipole along some direction, making
an angle α with the propagation direction z, as

µ⃗ =

cosα
0

sinα


µ. (2.18)

Note that the two-level model is most relevant if the molecular dipole under consideration is aligned with the electric field
(α = 0); however the general case α ≠ 0 yields a simplified model of an anisotropic medium. It gives some insight into the
validity of the susceptibility approach to the analysis of propagation in anisotropic media.

Thus the explicit dispersion relation k = k(ω) is given by

k = k(ω) =
ω

c


ω2

− ω2
2

ω2 − ω2
1

1/2

, (2.19)

where

ω2
1 = Ω


Ω +

8πN|µ|
2

h̄
sin2 α


, (2.20)

ω2
2 = Ω


Ω +

8πN|µ|
2

h̄


. (2.21)
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In other words, the refractive index n is given by

n2
=
ω2

− ω2
2

ω2 − ω2
1
. (2.22)

It is seen from this dispersion relation that the wave cannot propagate if ω1 ≤ ω ≤ ω2.
Then the solution at order ε1 can be written as

ρ1
1 = f


0 −NK

h̄ (Ω + ω)+ NQ 0


, (2.23)

E⃗1
1 = e⃗ 1

1 f with e⃗ 1
1 = −N


θx/β
θy/β
θz


, (2.24)

where, for s = x, y, z,

θs = 4π

µs(h̄ (Ω + ω)+ NQ )− µ∗

sNK

. (2.25)

Next, following the procedure given in detail in Ref. [103], it is easily seen that at order 2 in the perturbation expansion in
ε, nonlinear terms appear at this order in the Schrödinger equation (2.6). The termwith p = 1 (the fundamental harmonic),
at order ε2, is treated as follows. The Maxwell equation (2.3) gives a relation between E⃗1

2 and P⃗1
2 analogous to (2.12) but

involving the previous order, i.e., ε1:

E1s
2 = −

4π
β

P1s
1 + ih̄NΛθs∂τ f for s = x, y, E1z

2 = −4πP1z
2 , (2.26)

where

Λ =
(−2c)
h̄ωβ2V


V
c
(β − 1)+

kc
ω


. (2.27)

Then, from the solvability condition of a corresponding linear system of equations for the coherences ρ1
2t and ρ

1
2u, we

get the value of the group velocity V . It is checked by direct computation that V =
dω
dk , where k = k(ω) is the dispersion

relation. By making the necessary computations we get the complete solution ρ1
2 and E⃗1

2 at order 2; see Ref. [103]. Finally, at
order 3 in the perturbation expansion in ε, from the Maxwell equations for the fundamental harmonic (p = 1), we get the
value of E⃗1

3 . In addition, from the Schrödinger equation (2.6), which involves only one nonlinear term in this order, we get a
linear system of equations for the two coherences ρ1

3t and ρ
1
3u. The solvability condition of this linear system can be written

as

iA∂ζ f + B∂2τ f + Cf |f |2 = 0, (2.28)

i.e., we get the NLS equation for the amplitude f of the wave electric field, which was defined as E⃗1
1 = e⃗ 1

1 f . Here the
coefficients A, B, and C are real constants. We recast the above NLS equation into the standard form, see e.g., Ref. [85]:

i∂ζE −
1
2
k2∂2τ E + γ E |E |

2
= 0, (2.29)

where E⃗1
1 = E u⃗, denoting by u⃗ a unitary polarization vector. The linear dispersion coefficient (− 1

2k2) and the nonlinear
coefficient γ are thus identified as

−
1
2
k2 =

B
A
, γ =

C

A
e⃗ 1

1

2 . (2.30)

In the following we will compare the values of the coefficients of the NLS equation k2 and γ obtained here to those given
in standard textbooks; see e.g., Ref. [104]. We will see that all linear properties, i.e., the dispersion relation, the values of the
group velocity and of the dispersion coefficient in the NLS equation obtained by using the multiscale expansion [103] are
in complete accordance with those given in the literature. However, we will see that the nonlinear coefficient γ in the NLS
equation does not agreewith the result given in standard textbooks even in the simple case of a linearly polarized transverse
wave, i.e., when the atomic dipoles are excited perpendicular to the propagation direction.

Notice first that the dispersion relation (2.15) exactly coincides with that found from the linear susceptibility
↔

χ
(1)
(ω)

computed, e.g., in Ref. [104], in the case of density matrix description of a two-level model, as was discussed here. For a

two-level Hamiltonian in our notations, we write down the expression of
↔

χ
(1)
(ω):

χ
(1)
ij (ω) =


µiµ

∗

j

Ω − ω
+

µ∗

i µj

Ω + ω


. (2.31)
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Seeking for a monochromatic plane wave solution of the Maxwell equation (2.3) with:

P⃗ =
↔

χ
(1)
(ω) · E⃗ (2.32)

a corresponding linear dispersion relation is obtained, that exactly coincides with (2.15). From this dispersion relation we
then calculate the derivative dω

dk , and we arrive at the conclusion that this quantity coincides with the expression of the
group velocity V obtained in a consistent way in the process of the multiscale expansion technique.

As concerning the nonlinear coefficient γ we restrict ourselves to a specific physical situation by assuming that the
polarization operator µ⃗, in the two-level model, describes oscillations of the molecular dipole along some direction, making
an angle α with the propagation direction z (Eq. (2.18)). After rather straightforward but tedious calculations the following
formula for the nonlinear coefficient was obtained in Ref. [103]:

γ (ω) =
(−8π)N|µ|

4ωΩ

ω2

−Ω2
2 cos4 α

h̄3 c

ω2 − ω2

1

3 
ω2 − ω2

2

 
ω2 − ω2

1

2
−

Ω2 − ω2

1

 
ω2

2 − ω2
1

 . (2.33)

We see that the nonlinear coefficient γ presents not only resonance terms for the linear resonance frequency ω1, but also
a weaker divergence for the frequency ω2 at which the wave vector k is zero. From Eq. (2.20) we see that the resonance
frequency ω1 depends on the propagation direction. In the particular physical situation when it is assumed that the atomic
dipoles are excited perpendicular to the propagation direction (i.e., for α = 0), then ω1 = Ω; therefore in this case ω1 is
exactly the frequency Ω corresponding to the difference between the atomic levels, and the nonlinear coefficient reduces
to

γ (ω) =
−8πN |µ|

4 ωΩ

nc h̄3 ω2 −Ω2
2 , (2.34)

in which the refractive index n = n(ω) is given by (2.22).
In order to compare the above expression of the nonlinear coefficient γ to previous calculations performed by means of

the technique of nonlinear susceptibilities, we see that according to Ref. [104] the nonlinear coefficient γ is related to the
nonlinear susceptibility χ (3)(ω) = χ (3)(ω;ω,ω,−ω) through the relationship:

γ (ω) =
2ωπ
nc

χ (3)(ω). (2.35)

The susceptibility χ (3) can be computed from a rather complicated formula; see Refs. [104,103] for more details.
We next consider a particular situationwhen the polarization operator µ⃗ = (µ, 0, 0) is parallel to the x-axis (i.e., we take

the angle α = 0). This means that the transition considered in the two-level model corresponds to oscillations of the charge
along the x-axis, and can be excited by light, which is linearly polarized along the x direction. For this specific situation the
only component of χ (3) to be considered is χ (3)xxxx. Computation yields

χ (3)xxxx(ω;ω,ω,−ω) =
4N|µ|

4

3 h̄3

Ω

ω2

+ 3Ω2


ω2 −Ω2
3 . (2.36)

(Note that Eqs. (78)–(79) in Ref. [103] are erroneous). Thenmaking use of (2.35),we find the value of the nonlinear coefficient
γ as computed with the help of the susceptibilities. It is seen that it appreciably differs from the value computed from the
multiple scale expansion theory, given by (2.34). Therefore as a final conclusion of this section we state that the multiple
scale expansion theory agrees only qualitatively with previous calculations performed by using the susceptibility series
expansion, even in the simpler case of a linearly polarized transverse wave.

3. One-dimensional approximate models for two-level media

3.1. Two-cycle optical solitons in the long-wave approximation: a modified Korteweg–de Vries equation

3.1.1. The multiple scales method and the derivation of the modified KdV equation from quantum equations
In this section we derive a modified Korteweg–de Vries equation for optical pulse propagation in a medium described by

a two-level Hamiltonian, without the use of the slowly varying envelope approximation. The presentation of the material in
this section, closely follows the previous work [73]. We assume that the resonance frequency of the two-level atoms is well
above the inverse of the characteristic duration of the pulse (long-wave regime). We will see that the two-soliton solution
of the mKdV equation is very close to the experimentally observed two-cycle pulses as reported, e.g., in Ref. [111].

Before describing the multiple scales method adapted to this specific problem, a few comments on the long-wave
hypothesis is in order. It may seem strange that we use a long-wave approximation to describe propagation of ultrashort
pulses in nonlinear media. Recall however that the word ‘long’ is here relative to some reference value of the wavelength.
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The latter is the characteristic wavelength λr = ctr = 2πc/Ω of the transition, which is assumed to belong to the ultraviolet
spectral range, i.e., which is much smaller than the characteristic wavelength λw of the ultrashort pulse belonging to the
visible spectral range, which can therefore be considered as being comparatively ‘long’ (λr ≪ λw). The main application of
the long-wave approximation is the hydrodynamic KdV soliton, which is a solitary wave in the sense that it contains only
a single oscillation. More generally, such a formalism is well suited to the investigation of the exact wave profile, when the
wave packet contains few oscillations and the use of wave envelope is not adequate. This is the specific case we study here
in what follows.

The nonlinearmedium is treated using the density-matrix formalism and the electromagnetic field is described using the
Maxwell equations. For simplicity we consider a homogeneous medium, in which the dynamics of each atom is described
by a two-level Hamiltonian H0; see Eq. (2.1).

The atomic dipolar electric momentum is assumed to be along the x-axis. It is thus described by the operator µ⃗ = µe⃗x,
where e⃗x is the unitary vector along the x-axis and µ is the 2 × 2 matrix

µ =


0 µ
µ∗ 0


. (3.1)

The polarization density P⃗ is related to the density matrix ρ through P⃗ = NTr(ρµ⃗), where N is the number of atoms per
volume unit; thus P⃗ reduces to Pe⃗x in our case.

The electric field E⃗ is governed by the Maxwell equations, which in the absence of magnetic effects, and assuming that
we consider a plane wave propagating along the z-axis (polarized along the x-axis, E⃗ = Ee⃗x), reduce to

∂2z E − c−2∂2t (E + 4πP) = 0, (3.2)
where c is the light velocity in vacuum, t and z are the time and space variables, respectively. The coupling between the atoms
and the electric field is taken into account by a coupling energy term in the total Hamiltonian H , that reads as H = H0 −µE.

The density matrix evolution equation (i.e., the Schrödinger–von Neumann equation) writes
ih̄∂tρ = [H, ρ] . (3.3)

Relaxation can be taken into account using some phenomenological term

R = ih̄

ρb/τb −ρt/τt

−ρ∗

t /τt −ρb/τb


, (3.4)

where τb and τt are the relaxation times for the populations and for the coherences, respectively, so that the Schrödinger
equation (3.3) becomes

ih̄∂tρ = [H, ρ] + R. (3.5)
However, the numerical values of the relaxation times τb and τt are in the picosecond range, or even in the nanosecond
domain; thus they are very large with regard to the pulse duration tw , which is in the femtosecond range. Hence relaxation
occurs very slowlywith regard to optical oscillations, and consequently relaxation is negligible [73]. Therefore, the relaxation
term R is omitted in what follows.

The set of Eqs. (3.2)–(3.3) is sometimes called the Maxwell–Bloch equations, although this name denotes more often a
reduction of these equations.

We denote the components of matrix ρ by

ρ =


ρa ρt
ρ∗

t ρb


, (3.6)

and we denote byΩ = ωb − ωa the resonance frequency of the atom.
In the following we derive themodified Korteweg–de Vries equation as the generic equation describing FCPs in the long-

wave approximation regime. We consider the situation where the pulse duration tw = 2π/ω is long with regard to the
period tr = 2π/Ω that corresponds to the resonance frequency of the two-level atoms. We assume that tw is about one
optical period, i.e., is of the order of a few femtoseconds. Thuswe assume that the resonance frequencyΩ is largewith regard
to optical frequency ω: ω ≪ Ω . In order to obtain soliton-type propagation, nonlinearity must balance dispersion, thus the
two effects must arise simultaneously in the propagation. This involves a small amplitude approximation. Further, one can
speak of soliton-type propagation only if the pulse shape is kept unchanged on a large propagation distance. Therefore
we next use the powerful reductive perturbation method as elaborated by Taniuti and Wei [95] in the early days of the
development of rigorous mathematical methods of solitons in various physical settings. We expand the electric field E,
the polarization density P and the density matrix ρ as power series of a small parameter ε as

E =


n>1

εnEn, P =


n>1

εnPn, ρ =


n>0

εnρn, (3.7)

and introduce the slow variables τ = ε

t −

z
V


and ζ = ε3z.

A few comments on the above series expansions and on the slow temporal and spatial variables are necessary at this
point. Here the retarded time variable τ describes the pulse shape, which propagates at speed V in a first approximation. Its
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order of magnitude ε gives an account for the long-wave approximation. In this propagation regime the pulse duration tw has
the same order of magnitude as tr/ε. The propagation distance D is assumed to be very long with regard to the pulse length
L = ctw ∼ ctr/ε; therefore it will have the same order ofmagnitude as ctr/εn, with n > 2. The value of n is determined by the
distance at which dispersion effects occur. According to the general theory of the derivation of KdV-type equations [95], it is
n = 3, i.e., the propagation distance D is proportional to 1/ε3. Therefore the ζ variable of order ε3 describes a long-distance
propagation. Thus we have the following length scales: A ∝ ε, L ∝ 1/ε, and D ∝ 1/ε3, where A is the small pulse amplitude,
L is the long pulse length, and D is the much longer propagation distance.

We next proceedwith themultiple scale expansion technique in order to derive the governing evolution equation. Notice
that the Schrödinger–von Neumann equation (3.3) at order ε0 is satisfied by the following value of ρ0, which represents
a steady state in which all atoms are in their fundamental state ‘a’: ρ0 =


1 0
0 0


. Then the Schrödinger–von Neumann

equation (3.3) at order ε1 yields ρ1t =
µE1
h̄Ω , so that P1 =

2N|µ|
2

h̄Ω E1. The Maxwell equation (3.2) at order ε3 gives the value of
the velocity V and correspondingly, the value of the refractive index n of the medium:

n =
c
V

=


1 +

8πN|µ|
2

h̄Ω

 1
2

, (3.8)

which coincides with the refractive index derived above (Eq. (2.22)), taking into account the fact that the polarization is here
perpendicular to the propagation direction (α = 0), and that we are considering a long-wave approximation (ω = 0).

Then the Schrödinger–von Neumann equation (3.3) at order ε2 yields ρ1a = ρ1b = 0 and ρ2t =
µE2
h̄Ω −

ih̄µ
(h̄Ω)2

∂τE1. Notice
that the second term in the previous equation is an imaginary number and has no contribution to the polarization P2, which
is given by P2 =

2N|µ|
2

h̄Ω E2. It is easily seen that the Maxwell equation (3.2) at order ε4 is automatically satisfied.
The Schrödinger–von Neumann equation (3.3) at order ε3 gives

ρ2b = −ρ2a =
|µ|

2

(h̄Ω)2
E2
1 , (3.9)

and

ρ3t =
µE3
h̄Ω

−
ih̄µ
(h̄Ω)2

∂τE2 −
h̄2 µ

(h̄Ω)3
∂2τ E1 −

2µ|µ|
2

(h̄Ω)3
E3
1 . (3.10)

Notice that the second term in the above expression of ρ3t is imaginary and therefore does not contribute to the polarization
P3, and as we said before the terms containing the relaxations were neglected. Next by calculating the polarization density
P3 we get an expression containing a nonlinear term:

P3 =
2N|µ|

2

h̄Ω
E3 −

2N h̄2
|µ|

2

(h̄Ω)3
∂2τ E1 −

4N|µ|
4

(h̄Ω)3
E3
1 . (3.11)

Finally, the Maxwell equation at order ε5 yields the following mKdV evolution equation for the main electric field
amplitude E1 (order 1 in the series expansion of the electric field E):

∂ζ E1 =
4πN h̄2

|µ|
2

cn(h̄Ω)3
∂3τ E1 +

8πN|µ|
4

cn(h̄Ω)3
∂τE3

1 . (3.12)

At this point a few comments about the coefficients of the mKdV equation (3.12) are necessary. From the standard
procedure of obtaining KdV-type evolution equations we expect that the coefficient of the dispersive term ∂3τ E1 in this
equation must be (1/6)d3k/dω3, which can be crosschecked in the present case by a direct computation of the dispersion
relation.Moreover, the value of the nonlinear coefficient of Eq. (3.12) can be related to the third order nonlinear susceptibility
χ (3), by using the NLS equation describing the evolution of a short pulse envelope in the same nonlinear medium:
i∂ζE −

1
2k2∂

2
τ E + γ E |E |

2
= 0, where E is the envelope amplitude of the wave electric field (E1 = E exp [i (kζ − ωτ)]+ cc ,

with k and ω large), k2 is the group velocity dispersion, and γ is related to χ (3) through relation (2.35); see Section 2.2.
The relevant component of the third order nonlinear susceptibility tensor χ (3)xxxx(ω;ω,ω,−ω) is given by expression (2.36),
i.e., in the long-wave limit ω → 0 (let us recall that we are working in the long-wave regime, i.e., for ω ≪ Ω),

χ (3)xxxx(ω;ω,ω,−ω)

ω=0 =

−4N |µ|
4

h̄3 ω3
. (3.13)

(Note that Eq. (27) in [73], for ω = 0, yields the same expression as in Eq. (3.13) but divided by 3, and consequently a
coefficient 6 instead of 2 in the nonlinear coefficient of Eq. (3.14) below). We check that the expression of the nonlinear
coefficient obtained from the associated NLS equation, is consistent with that obtained from the mKdV equation (3.12).
Thus we can rewrite the generic evolution equation (3.12) as

∂ζ E1 =
1
6

d3k
dω3


ω=0

∂3τ E1 −
2π
nc
χ (3)xxxx(ω;ω,ω,−ω)


ω=0

∂τE3
1 . (3.14)
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The dispersion coefficient can be written in terms of the refractive index n(ω) as

1
6

d3k
dω3


ω=0

=
n′′(0)
2c

, (3.15)

where the prime denotes derivative. Hence this coefficient involves the second derivative of the refractive index n and not
the third one. Thus the dispersion term in Eq. (3.12) or (3.14) should be considered as a second-order dispersion term rather
than as a third one, insofar such concepts make sense beyond SVEA.

If we consider a general Hamiltonian with an arbitrary number of atomic levels (non degenerated), and assume that
the inverse of the characteristic pulse duration is much smaller than any of the transition frequencies of the atoms, and
that the medium is centrosymmetric, we can derive, by means of the reductive perturbation method in the long-wave
approximation, the same mKdV equation (3.14) [112]. This shows that Eq. (3.14) holds in a very general frame, and that
the relations between its coefficients and the dispersion relation on one hand, the nonlinear susceptibility on the other, are
valid in a general frame.

3.1.2. The breather soliton of the modified KdV equation: a prototype of few-cycle solitons
The mKdV equation (3.14) is completely integrable by means of the inverse scattering transform; see e.g., [113]. The

general N-soliton solution has been given by Hirota [114]. The mKdV equation (3.14) can be written into its dimensionless
form as

∂Zu + 2∂Tu3
+ σ∂3T u = 0, (3.16)

where σ = ±1, u is a dimensionless electric field, and Z and T are dimensionless space and time variables defined relative
to the laboratory variables as

u =
E
E0
, Z =

z
L
, T =

t − z/V
tw

. (3.17)

The reference time is thus chosen to be the pulse length tw (in physical units). Recall that the atomic resonance frequencies
Ωnm have been chosen above as zero order quantities in the perturbative scheme, while tw is assumed to be formally large,
of order 1/ε, with respect to the zero order times 1/Ωnm. The characteristic electric field and propagation distance are

E0 =
1
tw


−2σn0n′′

0

χ (3)
, L =

2ct3w
(−σn′′

0)
, (3.18)

where we have set

n′′

0 =
d2n0

dω2


ω=0

, χ (3) = χ (3)xxxx(ω;ω,ω,−ω)

ω=0. (3.19)

In the present case of the Maxwell–Bloch equations, χ (3) < 0 (see Eq. (3.13)), and dispersion is normal (n′′

0 > 0),
consequently σ = +1, and the mKdV equation (3.12) is a focusing one. This occurs in general if χ (3) and n′′

0 have opposite
sign, which happens most frequently for χ (3) > 0 and anomalous dispersion. Else, typically for χ (3) > 0 and normal
dispersion, σ = −1, Eq. (3.12) is a defocusing one and describes nonlinear dispersion (see Ref. [78] and Section 3.1.3).

In the focusing case, the mKdV equation admits real single-soliton solutions, and N-soliton and breather solutions.
The single soliton solution uone of themKdV equation (3.16) is written as uone = p sech (η), with η = pT −p3Z −γ , where

p and γ are arbitrary parameters of the solution. The two-soliton solution utwo of the mKdV equation (3.16) is then given by

utwo =

eη1 + eη2 +


p1−p2
p1+p2

2 
eη1
4p21

+
eη2
4p22


eη1+η2

1 +
e2η1
4p21

+
2

(p1+p2)2
eη1+η2 +

e2η2
4p22

+


p1−p2
p1+p2

4
e2η1+2η2

16p21p
2
2

, (3.20)

with ηj = pjT − p3j Z − γj, for j = 1, 2. The parameters p1, p2, γ1, and γ2 are arbitrary. In the particular case when these
parameters are real numbers, the explicit analytic solution (3.20) describes the interaction of two localized bell-shaped
pulses, i.e., the interaction of twomKdV solitons, each ofwhichwould bedescribed individually byuone. The above expression
(3.20) also describes the breather soliton, which can be considered as a pair of linked together identical mKdV solitons. This
soliton is obtained when p2 = p∗

1 and has a typical oscillatory behavior. An example of the breather soliton is given in Fig. 4.
The values of soliton parameters are p1 = 1 + 4i, p2 = 1 − 4i, and γ1 = −γ2 = iπ/2. The corresponding spectrum of this
breather is also drawn in Fig. 4.

One notices that both pulse profile and spectrum are comparable to the corresponding results reported in experiments
on FCPs; see e.g., [111]. Thus it can be thought that the two-cycle pulses produced in a series of essential experimental
works on FCPs performedmore than one decades ago [1–4,111] could propagate as true solitons in certain nonlinear media,
according to the generic mKdVmodel. Concluding this section we stress that we have given a generic completely integrable
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Fig. 4. (a) Pulse profile and (b) spectrum of the breather soliton solution of the dimensionless mKdV equation (3.16). After Ref. [73].

mKdV model that allows us the description of ultrashort optical pulse propagation in a medium described by a two-level
Hamiltonian, when the slowly varying envelope approximation cannot be used. Thus when the resonance frequency is
well above the inverse of the typical pulse width of about few femtoseconds, a long-wave approximation leads to a mKdV
equation which adequately describes two-cycle optical solitons.

It is worthmentioning that we expect that this rigorous approach concerning the use of the reductive expansionmethod
beyond the SVEA in the long-wave regime for the case of two-level atoms, is relatively easily extended to the more general
case of multilevel atoms. Thus in the general physical setting involving multilevel atoms we get a similar mKdV evolution
equation, assuming that the quadratic nonlinearity of the nonlinear medium is absent [112].

3.1.3. FCP soliton propagation for defocusing Kerr nonlinearities
For the two-level model, as considered in Ref. [73], the group-velocity dispersion is normal (n′′ > 0) and the third-

order nonlinear susceptibility χ (3) is negative; hence the mKdV equation is of self-focusing type, and can be written in its
dimensionless form as

∂zu + u2∂tu + ∂3t u = 0, (3.21)

where u ∝ E, E being the electric field. This situation occurs also, and even more frequently, for anomalous dispersion and
positive third-order nonlinear susceptibility χ (3).

However a general situation of a defocusing optical nonlinearity may be considered [78], with either a normal dispersion
(n′′ > 0) and a positive cubic nonlinearity, or with an anomalous dispersion (n′′ < 0) and a negative cubic nonlinearity.
Therefore the obtained mKdV equation is of defocusing type and can be written in its normalized form as

∂zu − u2∂tu + ∂3t u = 0. (3.22)

It is well-known that Eq. (3.22) does not admit any soliton solution [86]. An incident wavepacket is spread out by the joint
action of dispersion and cubic (Kerr) nonlinearity, as shown by numerical computation using the so-called ‘‘exponential
time differencing method’’ [115] along with absorbing boundary conditions introduced to avoid numerical instability of the
background; see Fig. 5. The results displayed in this figure clearly demonstrate that the nonlinear effect is stronger than the
linear one and therefore no exact balance of the two concurring effects can occur.

3.2. Two-cycle optical solitons in the short-wave approximation: a sine–Gordon equation

3.2.1. The multiple scales method and the derivation of the sine–Gordon evolution equation from quantum equations
In this section we consider few-cycle optical solitons in the short-wave approximation regime [73], i.e., the situation in

which the resonance frequencyΩ of the atoms is well below the optical frequencies ω (Ω ≪ ω), in the infrared if the FCP
belongs to the visible range.

In this case the characteristic pulse duration tw is very small with regard to tr = 2π/Ω . In order to perform themultiscale
analysis we thus introduce a small perturbative parameter ε ∼ tw/tr , such that the pulse duration tw = t̂w/ε, where t̂w
has the same order of magnitude as the resonance period tr . We next introduce a fast variable τ , which is the retarded time
τ =

1
ε


t −

z
V


, and a propagation variable which, being slow with respect to τ , in fact coincides with the original variable

ζ = z. We insist on the fact that the reduced time variable τ is not a slow variable but a fast one; we present here the
computation using the same scaling as was applied to short-wave propagation in ferrites and in the study of surface wind
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Fig. 5. (Color online) Top: the intensity |u|2 of the input FCP [light blue (gray) curve] and its evolution at z = 0.2 according to the focusing mKdV equation
(3.21) [dark blue (black) curve]. Bottom: the linear dispersion (the nonlinear term was omitted) of the same input at the same propagation distance [light
blue (gray)], and its nonlinear dispersion according to the defocusingmKdV equation (3.22) [dark blue (black) curve]. The input is a breather of the focusing
mKdV equation, with angular frequency ω = 4 and inverse pulse duration 1/τ0 = 2. After Ref. [78].

waves; see Refs. [116,117]. The sGmodel was originally derived in [73] using an alternative scaling, which is fully equivalent
to the present one and in which the Hamiltonian H0 of the atom was replaced in the Schrödinger–von Neumann equation
(3.3) by εĤ0. It is easily shown that the dispersion effects arise at distances z of the order of ctw/ε, from which follows the
choice of the slow propagation variable ζ .

Note that the pulse duration tw is still assumed to be of the order of a few femtoseconds, corresponding to a pulse of
only a few optical cycles. As in the case of the long-wave approximation regime the relaxation times τb, τt are very long
with regard to tw and their contributions can be neglected in the process of performing the reductive perturbation analysis.
The electric field E, polarization P , and density matrix ρ are expanded as E =

1
ε
(E0 + εE1 + · · ·), P =

1
ε
(P0 + εP1 + · · ·),

and ρ = ρ0 + ερ1 + · · ·. We use here a high-amplitude assumption, in contrast with the low amplitude assumption used
in the long-wave approximation. In fact, the high amplitude assumption means here that the energy due to the interaction
between the field and an atom is large with respect to the energy of the atomic transition h̄Ω . It is hence fully consistent
with the assumption that the transition frequencyΩ is small with respect to the wave frequency.

It is easily seen that the Schrödinger–von Neumann equation (3.3) of order ε0 yields the following coupled system of
differential equations:

ih̄∂τρ0a = −E0

µρ∗

0t − µ∗ρ0t

, (3.23)

ih̄∂τρ0b = E0

µρ∗

0t − µ∗ρ0t

, (3.24)

ih̄∂τρ0t = −E0µ (ρ0b − ρ0a) . (3.25)
From Eqs. (3.23)–(3.24) we get the normalization condition of the density matrix ρ0b + ρ0a = 1. If we introduce the

population differencew = ρ0b − ρ0a we get the density matrix ρ0 at order 1/ε:

ρ0 =


1 − w

2
iµ
h̄

 τ

E0w

−
iµ∗

h̄

 τ

E0w
1 + w

2

 , (3.26)

where
 τ denotes an antiderivative operator with respect to the variable τ , the antiderivative being assumed to vanish as

τ tends to −∞.
Next we write down the integro-differential equation for the population differencew:

∂τw = −
4E0|µ|

2

h̄2

 τ

E0w. (3.27)

Then from the expression of the polarization P we get P0 = 0, and the Maxwell equation (3.2) at order 1/ε3 is satisfied if
the velocity V is chosen as V = c.

The Schrödinger–von Neumann equation (3.3) at order ε is then written as ih̄∂τρ1 = [H0, ρ0] − [µE0, ρ1] − [µE1, ρ0],
where we have left out the terms containing the relaxations. Defining w1 = ρ1b − ρ1a, the off-diagonal components of the
above equation for ρ1 give

ρ1t = iΩ
 τ

ρ0t + i
µ

h̄

 τ

(E0w1 + E1w), (3.28)
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so that the corresponding term P1 = µ∗ρ1t + µρ1u of the polarization is

P1 = −
2ΩN |µ|

2

h̄

 τ  τ

E0w.

The Maxwell equation (3.2) at order 1/ε2 then reduces to

∂ζ ∂τE0 =
4πΩN|µ|

2

ch̄
E0w. (3.29)

Next if we set p = −
i|µ|

2

h̄

 τ E0w, Eqs. (3.27) and (3.29) reduce to a nonlinear system of coupled differential equations

∂ζ E0 =
4iπΩN

c
p, (3.30)

∂τp = −
i|µ|

2

h̄
E0w, (3.31)

∂τw = −
4i
h̄
E0p. (3.32)

One notices that the above nonlinear system of coupled equations is similar to that describing the self-induced
transparency [118,119] although the present physical situation is quite different. In our case the characteristic frequency
(2π)−1ω = 1/tw of the pulse is far above the resonance frequencyΩ , while the self-induced transparency occurs when the
optical fieldwith frequencyω oscillates at the resonance frequencyΩ . The quantities E andw describe here the electric field
and population difference themselves, and not amplitudes modulating a carrier with frequency Ω . Moreover one notices
that E andw are here real quantities, and not complex ones as in the case of the self-induced transparency. Also, the quantity
p is not the polarization density, but is proportional to its τ -derivative. At this point a brief comment should be made
concerning the validity of the model equations (3.30)–(3.32). We should stress that the above described model assumes
a high amplitude, or equivalently, a very strong nonlinearity. In [73], this assumption is expressed as a very large value of
the atomic dipolarmomentumµ. Thus in amore realistic situation, it can be expected that only the transition corresponding
to the largest value of the dipolar momentum will have a significant contribution. If several transitions correspond to large
values of the dipolar momentumwith the same order of magnitude, one can expect that the short-wave approximation will
yield a much more complicated asymptotic system of coupled differential equations involving the populations of each level
concerned. However, the study of such a complicated model is outside the scope of this review paper.

In the following we write down the two-soliton solution of the sine–Gordon equation; from this solution we obtain for a
specific choice of its free parameters the breather solution of the sine–Gordon equation which adequately describes optical
solitons in the two-cycle regime. Next we use dimensionless variables defined byΘ = E0/Er , T = τ/T0, and Z = ζ/L (w is
already dimensionless). By setting η =

 Z W , the system (3.30)–(3.32) reduces to

∂Z∂TΘ = 2Θ∂Zη, (3.33)
∂Z∂Tη = −2Θ∂ZΘ. (3.34)

One notices that Eqs. (3.33)–(3.34) have been also found to describe short electromagnetic wave propagation in ferrites,
using the same kind of short-wave approximation [116].

By making the following change of variables

∂Zη = A cos u, (3.35)
∂ZΘ = A sin u, (3.36)

we transform Eqs. (3.33)–(3.34) into [116,86]

∂TA = 0, (3.37)
∂Z∂Tu = 2A sin u. (3.38)

Since, according to Eq. (3.37), A is a constant, Eq. (3.38) is the generic sine–Gordon equation. Now let us determine the
physical meaning of the constant A in the present physical framework. Using relations (3.35)–(3.36) and the definition of η,
we find that

A2
= lim

T→∞


w2

+ (∂ZΘ)
2 . (3.39)

SinceΘ is the dimensionless electric field, it vanishes at infinity. Thuswe can have a non-vanishing solution only if the initial
population difference wi is not zero. The constant involved in Eq. (3.38) is then A = wi. Using the new variable Ẑ = 2wiZ ,
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Fig. 6. (a) Population difference, (b) pulse profile, and (c) spectrum, of the breather solution of the sine–Gordon equation. After Ref. [73].

Eq. (3.38) reduces to the dimensionless sine–Gordon equation

∂Ẑ∂Tu = sin u. (3.40)

The dimensionless quantities involved by Eq. (3.40) are related to the physical quantities through Ẑ = z/L̂, T =

tw−1 (t − z/c), E =
Er
2

 Ẑ sin u, andw = wi cos u.
The electric field and propagation length scaling parameters are Er = h̄/(|µ|tw), L̂ = (h̄c)/(4πΩtwN|µ|

2wi), in which
the initial population differencewi and typical pulse duration tw are explicitly involved. The small perturbative parameter ε
can be identifiedwithΩtw/(2π), expressing the fact that tw is very smallwith regard to 1/Ω , i.e. we consider the short-wave
approximation regime.

3.2.2. The breather soliton of the sine–Gordon equation: a few-cycle soliton
It is a well known fact that the sine–Gordon equation (3.40) is completely integrable [86]. A general N-soliton solution

can be found using either the IST or the Hirota bilinear method. As in the case of long-wave approximation regime we will
give here the explicit form of the two-soliton solution only, which can be written as [86]

u = 2i ln

f ∗

f


, (3.41)

with

f = 1 + ieη1 + ieη2 −
(k1 − k2)2

(k1 + k2)2
eη1+η2 , (3.42)

where

ηj = kjT +
Z
kj

+ γj for j = 1, 2. (3.43)

Here k1, k2, γ1, and γ2 are free parameters describing the two-soliton solution. One notices that when these arbitrary
parameters take real values, Eqs. (3.41)–(3.43) describe the interaction of two sine–Gordon solitons. As in the case of the
long-wave approximation regime discussed in the preceding section, the two-soliton solution (3.41)–(3.43) is also able to
describe soliton-type propagation of an ultrashort optical pulse in the two-cycle regime; the obtained analytical solution
is very close in shape and spectrum to the ultrashort femtosecond-pulses of this type currently produced in experiments;
see e.g., Ref. [111]. The corresponding analytic solution is a breather soliton of the sine–Gordon equation, which can be
considered as twobounded sine–Gordon solitons. It is obtainedwhen the solitonparameters k1 and k2 are complex conjugate
numbers. A typical example is shown in Fig. 6; here the numerical values of the parameters are k1 = 1 + 4i, k2 = 1 − 4i,
and γ1 = γ2 = 0.
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One notices again that an initial population difference wi ≠ 0 is required. However, a properly speaking population
inversion (i.e., when wi > 0) is not necessary. Both nonlinear and dispersive effects vanish at the saturation of absorption,
which corresponds to wi = 0. Because the propagation reference length L̂ is inversely proportional to the population
difference parameter wi, a relatively small value of the population difference increases the propagation distance at which
nonlinear effects occur.

Concluding this section we stress that we have given a sine–Gordon model that allows us the description of ultrashort
optical pulses which propagate in a medium described by a two-level Hamiltonian, when the slowly varying envelope
approximation cannot be used. When the resonance frequency is well below the optical field frequency, a short-wave
approximation leads to amodel similar to that describing self-induced transparency, but in very different validity conditions.
The model obtained in the short-wave approximation regime can be thus reduced to the generic completely integrable
sine–Gordon equation.

3.3. Ultrashort pulses in quadratically nonlinear media: half-cycle optical solitons

In this section we show that few-cycle optical pulses launched in quadratically nonlinear optical media may result in
robust half-cycle optical solitons, which exhibit a single hump, with no oscillating tails; for a detailed study of this issue,
see Ref. [120]. We also mention here the important earlier works by Kazantseva et al. [121–123] on propagation and
interaction of extremely short electromagnetic pulses in quadratic nonlinearmedia. In Ref. [123] the problemof propagation
of extremely short unipolar electromagnetic pulses (the so-called ‘videopulses’) was considered in the framework of a
model in which the material medium is represented by anharmonic oscillators (approximating bound electrons) with both
quadratic and cubic nonlinearities. Two families of exact analytical solutions (with positive or negative polarity) were found
for themoving solitary pulses. Those videopulseswere very robust against perturbations.Moreover, itwas found inRef. [123]
that two such unipolar pulses collide nearly elastically, while collisions between pulses with opposite polarities and a small
relative velocity are inelastic, leading to the emission of radiation and generation of a small-amplitude additional pulse.

As in the case of cubic (Kerr-like) nonlinear media, the analysis to be given below is based on the reductive multiscale
expansion and an adequate choice of the small parameter ε involved in this series expansion. In Ref. [120] it was derived
a completely integrable Korteweg–de Vries equation from both a classical and a quantum mechanical simple model of
matter–radiation interaction. The classical model was the same as in Ref. [121], the quantum one very close to the model
considered above, but with additional quadratic nonlinearity. One notices the important result that the sign of the electric
field in the half-cycle KdV soliton is fully determined by the properties of the optical medium and as a direct consequence of
this feature, themean value of the optical electric field is different from zero. It is well-known that the quadratic nonlinearity
exists in media which break the central symmetry only. Due to this lack of symmetry the material has a preferential
polarization direction, which determines the sign of the optical soliton.

An important issue is the phase invariance of a FCP; in some sense the FCP loses the phase invariance, and the importance
of the so-called carrier-envelope phase has been emphasized in a series of works; see e.g., Ref. [7]. However, although
differentways of stabilizing the carrier-envelope phase have been proposed [76,124], it remains a very difficult task. Further,
even if a zero carrier-envelope phase is realized, the existing experimental setups cannot distinguish it from a phase equal
to π ; thus the polarity of the electric field of the FCP remains random, and its mean value is equal to zero. Notice that the
studies of FCP solitons were mainly restricted to the case of a cubic (Kerr) optical nonlinearity; however a comprehensive
study of FCPs in quadratic media was also reported [120]. In the following, for the sake of completeness, we will briefly
summarize the main studies performed in the past years in the area of quadratic solitons for long pulse durations. One
notices that for long pulse durations, when the slowly varying envelope approximation is valid, the study of optical solitons
in quadratic nonlinear media has shown several unique features with respect to the cubic (Kerr) case [125,126]. First, the
quadratic nonlinearity, in principle, allows one to observe nonlinear effects withmuch lower input powers than a cubic one.
However, such an effect and the formation of envelope solitons in quadratically nonlinear media, involve at least two field
components, a fundamental frequency and a second harmonic [127]. The interaction between the two optical components
of frequency ω and 2ω is efficient if some phase-matching condition is satisfied; it can be achieved in experiments, e.g., by
temperature adjustment [128]. Second, it has been shown that a result of the interaction between the two optical fields is
the suppression of the collapse which occurs in a two-dimensional (2D) Kerr medium, leading to the formation of stable 2D
quadratic solitons [129], and to the stabilization of other types of both spatial and spatiotemporal quadratic solitons [130].
Third, far from the phase-matching regime, the so-called cascading effect [131] leads to an effective cubic nonlinearity [132].
However, self-rectification and electro-optic effect remain, which are able to arrest the collapse [133], and can be also
efficiently used to control the optical pulse by means of adequately matched microwaves [134]. As a brief conclusion of
these comments on previous studies of quadratic solitons in the SVEA regime we stress that it is worth investigating the
possibility to build a simple theory for FCP soliton propagation in quadratic media beyond the SVEA. We will show in this
section that launching a FCP into amediumwith an electronic quadratic nonlinearity allows one to produce half-cycle pulses,
with no oscillating tail, a carrier-envelope phase equal to zero, a definite polarity of the electric field and a nonzero mean
value of the optical field. It is expected that breather soliton solutions of integrable mKdV, sG, and mKdV–sG equations
are good candidates for the description of FCPs [73,76]. However, these equations present cubic nonlinearities, while the
completely integrable KdV equation itself is quadratic, and we show in the following, that FCP soliton propagation in a
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quadratic medium can be adequately described by the latter [120]. One notices that the KdV equation does not present
breather soliton solutions, and it will be shown in what follows that the KdV soliton itself, which is a half cycle pulse, will
arise from the propagation of an arbitrary FCP input with mean value equal to zero. As mentioned above, all these unique
features originate in the noncentrosymmetry of the medium exhibiting a quadratic optical nonlinearity.

3.3.1. Derivation of a KdV equation
As in the case of cubic nonlinear media [73] we consider a set of two-level atoms with the Hamiltonian H0. The evolution

of the electric field E (for the sake of simplicity we restrict to only one field component) is described by the Maxwell wave
equations. The light propagation is coupled with the medium by means of a dipolar electric momentum µ directed along
the same direction x as the electric field, and the corresponding Hamiltonian is H = H0 − µE. The polarization density is
therefore P = NTr (ρµ), along the x direction, N being the volume density of atoms, and ρ the density matrix. The density
matrix obeys the Schrödinger–von Neumann evolution equation ih̄∂tρ = [H, ρ] + R, where as in the case of cubic optical
nonlinearity [73], the phenomenological relaxation term R can be neglected.

The quadratic nonlinearity can be phenomenologically accounted for in the Maxwell–Bloch equations as follows. First,
one notices that it corresponds to a deformation of the electronic cloud induced by the electric field E; hence it gives a
dependence of the energy of the excited level ‘b’ on the electric field E, i.e., a Stark effect. Second, by definition, the optical
nonlinearity is a quadratic one if this dependence is linear, i.e., h̄ωb → h̄ωb − αE. This dependence of the energy of the
excited level on the electric field can be included phenomenologically in the Maxwell–Bloch equations by replacing the free
Hamiltonian H0 with

H0 − αE

0 0
0 1


.

It is fully equivalent to assume that the excited state ‘b’ has some permanent dipolar momentum.
As in the case of cubic nonlinear media, one notices that transparency of the medium implies that the characteristic

frequencyωw of the considered radiation in the optical range of the spectrum strongly differs from the resonance frequency
Ω of the atoms; hence it can be either much higher or much lower. We consider here the latter case, i.e. we assume that
ωwis much smaller thanΩ , i.e., we consider the long-wave propagation regime. This assumption motivates the introduction
of the slow temporal and spatial variables τ = ε


t −

z
V


and ζ = ε3z, and the use of a reductive perturbation expansion

technique, where ε is the small parameter in the corresponding series expansions. The delayed time τ involves propagation
at some group velocity V to be determined. The pulse shape described by the variable τ is expected to evolve slowly in time,
the corresponding scale being that of the spatial propagation variable ζ . A weak amplitude assumption is needed in order
that the nonlinear effects arise at the same propagation distance scale as the dispersion does: E = ε2E2 + ε3E3 + ε4E4 +· · ·,
as in standard reductive perturbation series expansions; see Ref. [93] for a comprehensive overview of different kinds of
such expansions applied to several solitonic models of physical relevance. The polarization density is expanded in the same
way P = ε2P2+ε3P3+ε4P4+· · ·, whereas the densitymatrix expansion has also the zero order term in the small parameter
ε: ρ = ρ0 + ε2ρ2 + ε3ρ3 + ε4ρ4 + · · ·. We assume that all atoms are initially in the fundamental state, i.e. ρ0a = 1, ρ0b = 0,
and ρ0t = 0.

The Schrödinger–von Neumann equation at order ε2 gives ρ2t =
µ

h̄Ω E2, and we observe that ρ2a,b remain free. Then we

deduce P2 =
2N|µ|

2

h̄Ω E2. If we insert the value of P2 into the Maxwell equation at order ε4 we are left with the value of the
velocity V . We get the same expression of V and of the refractive index n = c/V as in the case of cubic nonlinearity (Eq. (3.8)
above) [73], since the linear parts of the two models are exactly the same. At order ε3 the Schrödinger–von Neumann
equation gives ρ2a = ρ2b = 0 and ρ3t =

µ

h̄Ω E3 −
ih̄µ
(h̄Ω)2

∂τE2, from which we deduce P3 =
2N|µ|

2

h̄Ω E3. Hence the Maxwell
equation at order ε5 does not give any further information.

The Schrödinger–von Neumann equation at order ε4 gives

ρ4t =
µ

h̄Ω
E4 −

ih̄µ
(h̄Ω)2

∂τE3 −
h̄2 µ

(h̄Ω)3
∂2τ E2 +

αµ

(h̄Ω)2
(E2)2 , (3.44)

from which we deduce the expression of P4, as

P4 =
2N|µ|

2

h̄Ω
E4 −

2N h̄2
|µ|

2

(h̄Ω)3
∂2τ E2 +

2Nα|µ|
2

(h̄Ω)2
(E2)2 . (3.45)

If we insert the expression (3.45) into the Maxwell equation at order ε6 we get a nonlinear evolution equation for the
field E2. After observing that all terms involving E4 cancel out each other, and after performing one integration with respect
to τ :

∂ζ E2 =
4πNV h̄2

|µ|
2

c2(h̄Ω)3
∂3τ E2 −

4πNVα|µ|
2

c2(h̄Ω)2
∂τ (E2)2 . (3.46)
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When performing the integration with respect to τ we have assumed that the electric field and its derivatives vanish at
τ → ±∞. Eq. (3.46) is exactly the KdV equation,

∂ζ E2 = A∂3τ E2 + B∂τ (E2)2 , (3.47)

with the linear dispersion coefficient A and nonlinear coefficient B given in physical units by the expressions

A =
4πN h̄2

|µ|
2

nc(h̄Ω)3
, (3.48)

B = −
4πNα|µ|

2

nc(h̄Ω)2
. (3.49)

Since the dispersion relation is the same as in the Kerr case, see Ref. [73] and the preceding section on FCPs in the cubic
(Kerr) case, the same expression of linear dispersion coefficient A still holds in the quadratic case discussed in the present
section.

The second order susceptibility χ (2)(2ω;ω,ω) can be directly computed as follows: we consider a monochromatic
electric field E = εE


eiωt + e−iωt


, and we calculate the corresponding polarization P by using the expressions of E

into the Maxwell–Schrödinger–Von Neumann equations. The nonlinear susceptibility χ (2) is defined by the relation P =

ε2χ (2)(2ω;ω,ω)E2e2iωt .
Consequently, from the expression of P we deduce

χ (2)(2ω;ω,ω) =
Nα |µ|

2

h̄2


1

(Ω + 2ω) (Ω + ω)
+

1
(Ω − 2ω) (Ω − ω)


. (3.50)

Finally, comparing this expression with the formula (3.49) obtained by using the reductive perturbation analysis, we obtain
the expression of nonlinear coefficient B of the above written KdV equation in terms of the second order susceptibility:

B = −
2π
nc
χ (2)(2ω;ω,ω)


ω=0. (3.51)

A brief comment is necessary at this point: here we have a pure quadratic nonlinearity for a single wave and no effective
third order nonlinearity due to cascaded second-order ones is involved. This makes a sharp contrast with the nonlinear
propagation of quadratic (parametric) solitons within the SVEA where phase matching is needed. One notices that in the
present case no phase matching is required.

A brief comment is necessary at this point: here we have a pure quadratic nonlinearity for a single wave, and no phase
matching is required,whichmakes a sharp contrastwith the nonlinear propagation of quadratic (parametric) solitonswithin
the SVEA where phase matching is needed. In addition, in contrast with the SVEA case for solitons in quadratic media far
from phase-matching, no effective third order nonlinearity due to cascaded second-order ones is involved.

3.3.2. Half-cycle optical solitons
The fundamental soliton of the KdV equation expresses in the present case as

E2 =
k3ncp2

(−2πχ (2))
sech2


pτ +

2
3
k3p3ζ


, (3.52)

where p is the soliton parameter, k3 =
d3k
dω3


ω=0

, and χ (2) = χ (2)(2ω;ω,ω)

ω=0. The single-soliton solution of the KdV

equation can be obtained (a) by direct integration [100], (b) by the Hirota method [135–138], or (c) by the inverse scattering
transform [139,85]. At this point let us remind the reader a couple of well known properties of such localized solutions
of completely integrable models. First, the stability and robustness of the fundamental soliton (3.52) is ensured from the
inverse scattering transform for any positive value of the soliton parameter p. Second, the corresponding soliton solutions are
proved to be the fundamental nonlinearmodes of theKdV equation, in the sense that any input field distribution decomposes
into a combination of a finite number of solitons and Fourier-type linear modes called ‘radiation’ which evolve separately,
conserving their features during propagation.

For the sake of convenience, below we write down the standard dimensionless form of the KdV equation (3.47):

∂Zu + 6u∂τu + ∂3τ u = 0, (3.53)

which is obtained by means of the change of variables Z = −Aζ , u = (B/6A) E2. Direct numerical simulations of this
equation illustrates and confirms the rigorous mathematical result mentioned above: for a KdV equation, a FCP-type input
decays into solitons, with a definite sign; see Fig. 7. For a short enough FCP, the number of emitted solitons is only one or
two, see Fig. 7. One notices also that the number of emitted solitons depends on the carrier-envelope phase of the initial
FCP at the entrance of the quadratic medium; see Fig. 7. When the value of the carrier-envelope phase is equal to zero, only
one soliton is emitted from a short enough FCP input. By increasing the value of the carrier-envelope phase to, e.g., π/2 the
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Fig. 7. (Color online) The input (dotted blue line) and output (solid red line) wave profiles for input carrier-envelope phase equal to 0 (a), π/2 (b), and π
(c). It is seen that the number of emitted solitons (either one or two solitons) depends on the carrier-envelope phase of the input few-cycle pulse. After
Ref. [120].

Fig. 8. (Color online) An input few-cycle pulse evolves into two half-cycle solitons and radiation for the input carrier-envelope phase is equal to 0.8π . The
two half-cycle solitons have different velocities, higher than that of the radiation and they interact keeping their features. After Ref. [120].

number of emitted solitons is now equal to two. By further increasing the value of carrier-envelope phase the number of
emitted solitons remains equal to two; see Fig. 7. The two emitted solitons have different velocities, and these velocities are
conserved when the solitons interact with each other (elastic collision); see Fig. 8.

As a final comment of this section devoted to ultrashort solitons in quadratic media, we should stress that as a
consequence of the non-existence of regular breathers to the KdV equation, in amediumwith quadratic optical nonlinearity
the fundamental soliton always occurs, i.e., half-cycle single-oscillation solitons will be produced from FCP inputs, and they
have always the same field polarity. The obtained result is closely related to the non-centrosymmetry of media displaying
quadratic optical nonlinearities.
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4. A general model for few-cycle optical soliton propagation: themodified Korteweg–de Vries–sine–Gordon equation

4.1. Two-cycle optical pulses propagating in two-component nonlinear media: derivation of a governing nonlinear evolution
equation

In this section by using Maxwell–Bloch equations, we analyze the response of a two-component medium of two-level
atoms driven by a two-cycle optical pulse beyond the traditional approach of slowly varying amplitudes and phases; see
Ref. [76] for a detailed study of this problem.We show that in the integrable case, a two-cycle analytical solution is available
and enables us to generalize the notion of envelope and carrier to a FCP, without resorting to the SVEA, which is by nomeans
valid in this case. Both group and phase velocities can be determined, andwe show that the usual relation vg = dω/dk is not
valid for a FCP. On the other hand, the envelope of the FCP soliton has the known sech shape of the envelope soliton of theNLS
equation. In the integrable case there exist a family of two-cycle solitons with a stable carrier-envelope phase. The FCP soliton
depends strongly on the dopant’s matrix elements as well as on the relative population difference of the two components.
In the general non-integrable case, the existence of two-cycle solitons and the stabilization of the carrier-envelope phase
have been demonstrated by adequate numerical techniques; see Ref. [76]. The two-component approximation therefore
provides a valuable starting point for the assessment of few-cycle optical pulses and the estimation of the carrier-envelope
phase, which is a key issue in the area of ultrashort solitons.

In a seminal paper by Sazonov [68] it was derived a partial differential equation of the mKdV–sG type, governing the
evolution of an optical FCP in a two-component medium. In some particular cases it reduces to either the mKdV equation
or to the sG equation. Thus we consider the time-dependent propagation of a femtosecond pulse through a two-component
medium. The response of the medium upon interaction with the femtosecond electromagnetic field E(x, z, t) is described
by the total macroscopic polarization P:

P = −2 Im


2

j=1

NjdjRj


, (4.1)

where dj is the dipole transition matrix element and Nj is the atomic density of the jth component. The time dependence of
the off-diagonal density-matrix elements ρ(j)21 ≡ Rj is given by the following coupled Maxwell–Bloch equations:

∂2z −
1
c2
∂2t


E =

4π
c2
∂2t P, (4.2)

∂tRj = −iωjRj −
2dj
h̄

E Wj, (4.3)

∂tWj =
2dj
h̄

E Re

Rj

. (4.4)

HereWj is the difference of transition populations of the jth component (−1/2 ≤ W ≤ 1/2) and ωj is the atomic transition
frequency of the jth component. We assume that the FCP duration τp is such that ϵ ∼ ω1τp ≪ 1 for the first component,
and correspondingly ϵ−1

∼ ω2τp ≫ 1, for the second component. In terms of the underlying physical situation, these two
requirements can be met when a two-cycle pulse of a Ti: sapphire laser at 780 nm traverses, e.g., a Yb-doped KGd(WO4)2
crystal where the former condition is satisfied for the dopant and the latter condition is valid for the wolframate matrix.
Notice that the two-component medium under the above two assumptions can be considered as a simplified model of a
general transparent dielectric; see the discussion in Ref. [76].

Next it is convenient to rewrite the Bloch equations in terms of Uj = Im

Rj

, then Eq. (4.3) involves

Re

Rj


=
1
ωj
∂tUj. (4.5)

For the first componentW1(t) the condition ϵ ∼ ω1τp ≪ 1 ensures a short-wave approximation, which yields the following
solution of the Bloch equations:

W1(t) = W1(−∞) cos θ, R1 = −W1(−∞) sin θ, θ =
2d1
h̄

 t

−∞

Edt ′, (4.6)

whereW1(−∞) is the initial population difference, e.g., in the case of a medium in the ground stateW1(−∞) = −1/2. For
the second component the condition ϵ−1

∼ ω2τp ≫ 1 implies that the FCP interactionwith this component can be described
within a long-wave approximation so that the level population renders almost intact; we then get the expressions for the
quantities U2(t) and W2(t), as

U2(t) = −
2d2E
h̄ω2

W2(t)+
2d2W2(−∞)

h̄ω3
2

∂2t E, (4.7)
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W2(t) = W2(−∞)


1 − 2


d2E
h̄ω2

2

. (4.8)

Now eliminating the population differencesWj enables one to rewrite the Maxwell wave equation in terms of the pulse
area θ . To this aim we then introduce a local time τ = t − zn0/c and a ‘slow’ propagation variable ζ = εz. Then in the
second order of the small parameter ε, and returning back to the physical propagation variable z, we arrive at the nonlinear
propagation equation:

∂z∂τ θ + c1 sin θ + c2∂τ

(∂τ θ)

3
+ c3∂4τ θ = 0, (4.9)

where c1 = −8πd21ω1N1W1(−∞)/(n0h̄c), c2 = d22c3/(2d
2
1),

c3 = 8πd22N2W2(−∞)/(n0h̄cω3
2),

and n0 =

1 − 16πd22N2W2(−∞)/ (h̄ω2)

1/2. Here n0 is the value of the linear refractive indexwhen dispersion is neglected.
The refractive index is here

n2
= 1 − 16π

2
j=1

d2j NjWj(−∞)ωj

h̄(ω2
j − ω2)

. (4.10)

Under the assumption that ω1 ≪ ω ≪ ω2, the dispersion relation k = nω/c can be rewritten as

k =
n0ω

c
−

c1
ω

− c3ω3, (4.11)

which is exactly the dispersion relation of the mKdV–sG equation (4.9), if we recall that the leading term n0ω/c is included
in the definition of the variable τ . It should be noticed that the same holds for the mKdV and sG models independently as
derived above. Indeed, a Taylor expansion of the wavevector, taking into account the parity (k(ω) is even since the model is
conservative), yields

k(ω) =
nω
c

+
1
6
d3k
dω3


ω=0

ω3
+ · · · (4.12)

in which n is the linear index at ω = 0 given by (3.8). Here again the leading term is absorbed by using the retarded time τ ,
and the following term exactly yields the dispersion relation of the mKdV equation (3.12). The dispersion relation of the sG
model, system (3.30)–(3.32), is obtained by seeking a plane wave E0 = Aei(ωτ−kζ ), p = qei(ωτ−kζ ),w = wi, which yields

k =
4πΩN|µ|

2wi

h̄cω
. (4.13)

The dispersion relation of the starting model in Section 3.2 is given by the refractive index of Eq. (2.22), if we assume α = 0,
in the case where all atoms are initially in the fundamental state (Wi = −1). Expanding k = nω/c in a power series of
ω/ω2 ≪ 1 shows that the latter dispersion relation exactly coincides with (4.13) in this limit.

The nonlinear susceptibility χ (3) = χ (3)(ω;ω,ω,−ω) corresponding to the model (4.2)–(4.3)–(4.4) can be derived as
follows. We set E = Aeiωt + A∗ei(−ω+δω)t . The frequency shift δω ≪ ω is introduced to regularize a singularity in the
computation. Eq. (4.3), or rather its counterpart in terms of Uj, is solved in a first approximation to yield Uj = vjeiωt + cc
with

vj =
−2djωjWj(−∞)

h̄

ω2

j − ω2
 . (4.14)

Then a solution of Eq. (4.4) is found in the form Wj = Wj(−∞) + W (2)
j e2iωt + W (0)

j eiδωt + W (−2)
j e2i(−ω+δω)t . After we

take the limit δω −→ 0, a more accurate expression of Uj is found using the latter into Eq. (4.3), in the form Uj =
vj + v

(1)
j


eiωt + v

(3)
j e3iωt + cc. The nonlinear polarization due to the transition j is PNLj(ω) = 2djNjv

(1)
j = 3χ (3)j A|A|

2eiωt

and consequently

χ
(3)
j (ω;ω,ω,−ω) =

8ωjd4j NjWj(−∞)

h̄3 ω2
j − ω2

2 . (4.15)

Obviously the total susceptibility is χ (3) =
2

j=1 χ
(3)
j . Taking into account the relation between θ and E (Eq. (4.6)), it is seen

that the coefficient of the mKdV-type nonlinear term in the mKdV–sG equation (4.9) is B = −4d21c2/ h̄
2. Substituting the

expression of c2, and then that of c3, and comparing with Eq. (4.15), it is found that B = −2π/(n0c)χ
(3)
2 (ω;ω,ω,−ω)


ω=0

,
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i.e. that the general formula (3.51) is valid, the ‘non-resonant’ transition only being taken into account. For the ‘resonant’
transition, no such simple expression of the coefficients can be proposed.

If we set c1 = 0 in Eq. (4.9), i.e., if we neglect the ‘resonant’ term which represents both ‘resonant’ nonlinearity and
dispersion, this equation reduces to the mKdV one. In turn, setting c2 = c3 = 0 transforms Eq. (4.9) into a sG equation by
cutting off both ‘non-resonant’ nonlinearity and dispersion. Both nonlinear evolution equations are completely integrable
by the ISTmethod and have been extensively studied as a lowest-order approximation to the complete set ofMaxwell–Bloch
equations beyond the SVEA; see, e.g., Refs. [70,71,73–75].

Thus we arrived at the important result that the spatiotemporal evolution of the FCP having a pulse width such that
ω1 ≪ 1/τp ≪ ω2, will obey the evolution equation (4.9), which is in fact a superposition of the integrable mKdV and sG
equations. This equation has already appeared in the dynamics of anharmonic crystals with dislocations. If c2 = c3/2, then
Eq. (4.9) becomes completely integrable by the IST method; see Refs. [87,88]. This strict requirement reads in our case as
d1 = d2. However we will show in what follows that by relaxing this severe condition we get robust two-cycle solitons in the
nonintegrable case, too.

If we set Z = c3z then the evolution equation (4.9) reduces to

∂2Zτ θ − a sin θ + 3b (∂τ θ)2 ∂2τ θ + ∂4τ θ = 0, (4.16)

where a = −c1/c3 and b = c2/c3. The integrability condition then expresses as b = 1/2.

4.2. The integrable modified Korteweg–de Vries–sine–Gordon equation: envelope, phase, and group velocities for the two-cycle
pulses

We consider in this section the integrable mKdV–sG equation, in the normalized form

∂2Zτ θ − a sin θ +
3
2
(∂τ θ)

2 ∂2τ θ + ∂4τ θ = 0. (4.17)

The discussion below is valid for mKdV and sG themselves with obvious adaptation. Following Ref. [88] we can write down
the two-soliton solution of Eq. (4.16) as

θ = −4 tan−1 Q e−s1 , e−s2

,

where sj = 2Aj0Z + 2ηjτ , Aj0 = −4η3j + a/(4ηj), (j = 1, 2), and

Q (X, Y ) =


c10
2η1

X +
c20
2η2

Y


1 − c10c20
(η1 − η2)

2

4η1η2(η1 + η2)2
XY
−1

. (4.18)

In the framework of the IST method, iη1 and iη2 are discrete eigenvalues, and the quantities η1,2 must be real and positive;
the real coefficients c10 and c20 are the corresponding initial scattering data. However, notice that the above exact two-
soliton solution Q remains valid for any complex values of the quantities η1,2, c10, and c20. However, since the pulse area θ
is a real quantity, we must have η2 = η∗

1 and c20 = c∗

10. If we next set η1 = (p + iω)/2 and c10/(2η1) = Ceiφ , then s2 = s∗1 ,
with s1 = Ψ + i(Φ+φ), where the quantities p, ω, C , φ,Φ , andΨ are real. We will next see that the real quantities p and ω
are actually the wave pulsation and the inverse of pulse duration, respectively. With these notations we thus get from the
two-soliton solution, the breather solution of the mKdV–sG equation (4.16); see Ref. [68].

An important fact is that the above breather solution can be decomposed into a carrier wave and an envelope, not only
in an approximate way in the SVEA limit, but also exactly, for a FCP solution, hence generalizing the notions of carrier and
envelope beyond the SVEA regime. To this aim we notice that the quantity Q is a rational expression and can be written as
Q

e−s1 , e−s2


= P


e−Ψ , cosΦ


, where P is another rational expression,

P(X, Y ) = 2CXY/

1 + C2p2X2/ω2 . (4.19)

In this way it appear explicitly a carrier wave cosΦ and an envelope:

θe = −4 tan−1 P

e−Ψ , 1


= −4 tan−1 2Ce−Ψ /


1 + C2p2e−2Ψ /ω2 . (4.20)

In Fig. 9(a), we show the fact that the wave envelope obtained above coincides with the extrema of the pulse shape. In
Fig. 9(b) and (c) we present the scaled electric field 2d1

h̄ E and the scaled ‘resonant’ population difference W2(τ )/W2(−∞).
The wave spectrum slightly differs from the spectrum of the field envelope; see Fig. 9(d). The parameters are the following:
C = 1, p = 2, the carrier frequency ω = 8, and φ = 0. The expressions of Ψ and Φ are Ψ = p


τ − Z/Vg


,

Φ = ω

τ − Z/Vφ


− φ, with

V−1
g = p2 − 3ω2

− a/(p2 + ω2), V−1
φ = 3p2 − ω2

+ a/(p2 + ω2). (4.21)

where ω =
1
2 Im(η1) and p =

1
2Re(η1) are the wave pulsation and inverse of pulse duration, respectively. We notice

that these group and phase velocities allow us to define a group velocity vg and a phase velocity vφ for the FCP itself,
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Fig. 9. (Color online) (a) The analytical two-cycle solution to Eq. (4.16) in the integrable case, and its envelope. (b) The electric field and its envelope.
(c) The ‘resonant’ population difference and its envelope. (d) The optical spectrum (dashed line) compared to the spectrum of the field envelope, shifted to
the carrier frequency (solid line). After Ref. [76].

v−1
g,φ =

n0
c + c3V−1

g,φ , which so far have been meaningful only within the SVEA regime. Notice that if we define the wave
vector in the usual way as k = ω/vφ , and if we then compute the derivative of ω with respect to the wave vector k we find
that dω/dk is not equal to the group velocity vg , except in the limit p → 0, which is the SVEA limit. This important remark
could be expected, since the relationship vg = dω/dk is valid only within the framework of SVEA.

Note that the relations (4.21) were first derived by using the following procedure [68]. First, the linear dispersion relation
is obtained by linearizing the governing equation (4.16):

∂2Zτ θ − aθ + ∂4τ θ = 0.

In order to get the linear dispersion equation we substitute θ ∼ exp[i(ωτ − kZ)] in the above equation and we arrive at the
linear dispersion relation k(ω) = F(ω) =

a
ω

− ω3. Then we use the method of analytically continuing the linear dispersion
relation in the complex plane; see Refs. [141,68]. Thus replacingω → ω+ip, with p = 1/τp, and k → k+iκ , we get a complex
linear dispersion relation k + iκ = F(ω + ip); the existence of the breather solution ensures the validity of this dispersion
relation on thewhole complex half plane. The total phase is then given by (k+ iκ)Z −(ω+ ip)τ = k(Z −Vφτ)+ iκ(Z −Vgτ),
with Vφ = ω/k and Vg = p/κ . Thus V−1

g = [F(ω + ip) − F(ω − ip)]/(2ip), V−1
φ = [F(ω + ip) + F(ω − ip)]/(2ω), and if

we use the above expression of F(ω) we recover the relations (4.21) by using the above method of analytically continuing
the dispersion relation in the complex plane; see Ref. [68]. The integrability by means of the IST ensures the validity of
the procedure. Indeed, the evolution of the spectral data in the frame of the IST is given by the linear dispersion relation,
which ensures that the latter is valid on the imaginary axis. The existence of the breather solution ensures the validity of
the analytically continued dispersion relation on the remaining of the complex plane.

Next we get the envelope of the electric field. It can be easily obtained from the expression of the electric field of the FCP
by using the corresponding expression of the two-soliton solution (see Ref. [87]) by settingΦ to a constant; hereΦ = π/2:

Eenv =
2h̄
d1

p sech

Ψ − ln

p
Cω


. (4.22)

Within the SVEA, the mKdV–sG equation (4.16) can be reduced to the NLS equation:

i∂ZA + µ∂2T A + ηA|A|
2

= 0, (4.23)

with µ = −3ω + a/ω3, η = 3bµd21/ h̄
2, and T = τ + Z(3ω2

+ a/ω2). Here E ≈ A exp[iω(τ − Z/vφ)] + cc , where A is the
solution of the NLS equation (4.23). It is well known that the single soliton solution of the NLS equation (4.23) is given by

A = 2q sech

2q


η

2µ
(T − T0)+ 2ληZ


× exp


−i

2λ

η

2µ
T + 2η


λ2 − q2


Z


(4.24)
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Fig. 10. (Color online) Robust, dispersion-free propagation of a two-cycle optical pulse for a large resonant term. The parameters are a = −500, b = 2,
and p1 = 1 + 4i. After Ref. [76].

where λ and q are arbitrary real parameters. Since λ is a shift between the central frequency of the pulse and that of the
envelope, it must be set here to λ = 0. Next we identify the value of the parameter q as q = ph̄/d1 and we have Eenv = |A|;
in other words, the above equation reduces to A = Eenv exp[ip2(a/ω3

− 3ω)Z], i.e., the envelope of the FCP coincides with
that of the soliton of the NLS equation, not only in the SVEA limit p → 0, as was already noticed in Ref. [68], but also in
the two-cycle regime where the SVEA is not valid and the envelope soliton is merely meaningless; see Ref. [76]. We notice
that it is possible to obtain a FCP with a constant relative carrier-envelope phase. The relative phase of the envelope and of
the carrier is of much importance for a FCP and it is constant if the group and phase velocities Vg,φ are equal. This particular
situation holds when (p2 + ω2)2 + a = 0, i.e., the parameter a should be a negative number. This conditions implies that
W1(−∞)W2(−∞) < 0, i.e., an initial population inversionmust be reached for one of the two transitions only; see Ref. [76].

4.3. The non-integrable mKdV–sG equation: robust two-cycle optical solitons

In Ref. [76] it was proved by numerical techniques the existence and robustness of two-cycle dispersion-free pulses in
the two-cycle regime, in the general, nonintegrable case, i.e., when the coefficients a ≠ 0 and b ≠ 1/2 in the evolution
equation (4.16). In order to perform this analysis the exact breather solution Utwo of the mKdV equation was used as the
input field; see Eq. (3.20). Note that for a = 0 and b ≠ 1/2 the solution θ can be written as:

∂τ θ =
2d1
h̄

E =
2

√
2b

Utwo, (4.25)

where ηj = pjτ − p3j z − γj, for j = 1, 2, p2 = p∗

1 , and γ2 = −γ1.
For the numerical calculations a fixed value b ≠ 1/2 was considered, and a negative value of the strength a of the

resonance term was chosen. The exponential time differencing method (see Ref. [115]) along with absorbing boundary
conditions in order to avoid numerical instability of the background was used in the computations. In Fig. 10 we show
a typical robust propagation in the non-integrable case of the two-cycle pulse (4.25) in a medium with a relatively high
concentration of the resonant atoms (a = −500). In this case the group-velocity Vg departs considerably from that of the
mKdV breather, i.e., from Vg0 = [(Rep1)2 − 3(Imp1)2]−1. For the particular set of the parameter chosen in Fig. 10, it was
numerically determined V−1

g = −32.25 instead of V−1
g0 = 47 for the mKdV equation. Notice that for positive values of

the parameter a, that is, when both of the initial population differences W1,2(−∞) are of the same sign, the situation is
somehow different, in the sense that a robust FCP still exists in this case, but appreciably differs from the mKdV breather;
see Ref. [76] for more details. In Fig. 11 we show the stabilization of the carrier-envelope phase in the nonintegrable case
for a value of the parameter a = −292.55 which is very close to a = −(p2 + ω2)2 = −289, which was predicted in the
integrable case; see Ref. [76].

4.4. Few-optical-cycle solitons: the modified Korteweg–de Vries–sine–Gordon equation versus other non SVEA models

In this section we prove by both analytical and numerical methods that the general dynamical model based on the
generic modified Korteweg–de Vries–sine–Gordon equation retrieves the main results reported so far in the literature, and
so demonstrating its remarkable mathematical capabilities in describing the physics of few-cycle-pulse optical solitons; for
a detailed study see Ref. [78].
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Fig. 11. (Color online) Stabilization of the carrier-envelope phase of the two-cycle pulse. The parameters are a = −292.55, b = 2, and p1 = 1 + 4i. After
Ref. [76].

As it was said in the Introduction the propagation of FCPs in nonlinear optical media can be described beyond the
SVEA by using three main dynamical models: (a) the modified Korteweg–de Vries equation [70–72], (b) the sine–Gordon
equation [73–75], and (c) the modified Korteweg–de Vries–sine–Gordon equation [76–79]. However, other non-SVEA
models [141–143], especially the so-called short-pulse equation (SPE) [144], have been proposed in the literature. We next
discuss the main features of the generic mKdV–sG model and the physical hypotheses it involves are described. We then
show that both the SPE, and another model put forward in Refs. [141–143,81] can be considered as approximate versions
of a generic mKdV–sG equation. However the FCP solitons obtained in [81] differ from the breather solutions of mKdV–sG
equation considered in Ref. [76]. Indeed, in Ref. [76] it was assumed a self-focusing-typemKdV equation, whereas in Ref. [81]
a self-defocusing one. The self-defocusing-type mKdV equation cannot support any breather solitons, but we show by
approximate analytical methods and by numerical computation that the mKdV–sG equation containing a self-defocusing
mKdV term is, within some approximation, equivalent to a pure sG equation, and therefore supports breather-type solitons
very close to the sG ones. Then we obtain within the SVEA the linear dispersion relation k = k(ω), the group-velocity
dispersion (GVD) and a rough approximation of the pulse shape for which self-focusing occurs. Numerical computations
confirm the qualitative conclusions, and also that the FCP propagation strongly differs from that one predicted by the SVEA.
We arrive at the conclusion that both the FCP solitons given in Ref. [81] as well as other soliton solutions can be adequately
described by a generic mKdV–sG equation.

4.4.1. A comparison of mKdV, sG, and mKdV–sG models for describing few-cycle solitons
A temporal soliton, ormore properly a temporal solitarywave, is a pulsewhich propagates in a highly dispersivemedium

in such a way that a certain nonlinear effect exactly compensates dispersion (in the sense of the natural tendency of
spreading of the pulse), and the pulse shape remains unchanged during propagation. This unique phenomenon implies two
essential conditions: (i) the medium is lossless, and (ii) the order of magnitude of propagation distance, wave amplitude,
wavelength, dispersion and nonlinear characteristics of themediumare such that neither the dispersion nor the nonlinearity
is negligible, and that both have effects comparable inmagnitude. The two assumptions are unavoidable as soon as any kind
of soliton is considered (except obviously the so-called ‘dissipative solitons’, but the latter require themutual compensation
of gain and loss effects).

Hence soliton propagation implies that damping can be neglected. In dielectric media, this occurs far from any
resonance frequency. Let us first consider a two-level model with characteristic frequencyΩ , and denote by ω a frequency
characteristic for the FCP soliton under consideration. The transparency condition implies that eitherω ≪ Ω orΩ ≪ ω. The
former case (ω ≪ Ω) corresponds to the long-wave approximation. Assuming further that the wave amplitude is such that
the nonlinear and dispersive effects are comparable, the reductive perturbation method [93] allows us to derive a mKdV
evolution equation [70,73]: if, on the contrary, the characteristic frequency of the pulse is well above the resonance line
(ω ≫ Ω), the short-wave approximation allows us to derive a sG evolution equation, written in its dimensionless form as
∂z∂tv = sin v [73].

In the case of a two-component medium, in which each component is described by a two-level model, there are two
resonance frequencies, sayΩ1 < Ω2. An appreciable changewith respect to the previous situation arises if the transparency
domain lies betweenΩ1 andΩ2. In this case assuming thatΩ1 ≪ ω ≪ Ω2, the propagation of FCPs can be described by a
mKdV–sG equation, of the dimensionless form [76]

∂zu + c1 sin
 t

u


+ c2∂t

u3

+ c3∂3t u = 0. (4.26)
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It must be noticed that the coefficient c1 of the sG-type term in Eq. (4.26) is proportional to the population difference.
Especially, c1 is usually positive, but becomes negativewhen a population inversion is realized, and vanishes if the two levels
are equally populated.

The approximation used in deriving the above mKdV–sG equation is quite realistic in the general setting. Indeed, in
order to get a soliton, the entire pulse spectrum must belong to the transparency domain. Hence, all optical transitions of
the medium can be separated into two distinct groups, some transitions well below ω, and the other ones well above ω.
If each of these two sets of resonance frequencies is approximated by a single transition, we exactly get the assumptions
underwhich themKdV–sGmodel has been derived. In the general case, it is reasonable to consider that the various lineswill
cumulate together to reconstruct the same terms in the mKdV–sG equation, however with more complicated coefficients.
One notices that the quite general model equation (4.26) was first derived and studied in Refs. [68,145].

A few comments are needed at this point: it is well-known that both mKdV and sG equations are integrable by means
of the inverse scattering transform method [113,86] and that both equations admit breather solitons, that are known
to adequately describe FCPs; see Ref. [73]. These breather solutions have both spectrum and field profile analogous to
the ones that can be obtained either experimentally or using other theoretical models. Moreover, from the established
mathematical properties of these two completely integrable equations, any Gaussian-like input is expected to evolve into
a FCP soliton [146]; hence breathers can be considered as the fundamental solutions of the two integrable equations
mentioned above, as soon as the input is symmetrical with respect to a change in the sign of the field. The more general
mKdV–sG equation (4.26) is also integrable if its coefficients obey the relationship c3 = 2c2; see Ref. [87]. However, for
other values of its coefficients, it has been shown by numerical simulations that FCP solitons (or breathers) still exist, and
their robustness has been investigated too; see Ref. [76].

4.4.2. The short-pulse equation: a special case of the mKdV–sG equation
Let us consider the so-called short-pulse equation (SPE), whichwas first introduced in [144], to describe FCP propagation

in silica fibers:

∂z∂tU = U +
1
6
∂2t

U3 . (4.27)

Note that the derivation of this equation performed in Ref. [144] was based on a parabolic approximation of the linear
dispersion relation χ = χ (1)(λ), which is valid in silica glass for 1.55µm ≤ λ ≤ 3µm, and on a purely cubic instantaneous
nonlinear polarization. Also, the reduction of the bi-directional Maxwell equations to a uni-directional one was performed
by means of a short wave approximation. The mathematical validity of the SPE as an asymptotics to Maxwell equations has
been rigorously justified in Ref. [147]. The SPE is integrable by means of the IST method [148], and soliton solutions have
been given in Ref. [149]; see also Refs. [150–157] for other aspects of the SPE. Vectorial versions of the SPE have been also
proposed and their soliton solutions have been investigated too [158,82,159].

A third model, which is in fact the SPE with an additional dispersion term, has been first derived in Ref. [141] long before
the introduction in the literature of the so-called SPE model:

∂z∂tU + U − µ∂4t U + ∂2t

U3

= 0. (4.28)

Note that a multi dimensional version of Eq. (4.28) was given in [142] and the self-focusing and pulse compression has
been demonstrated in Ref. [143]. However, it has been recently considered in a vectorial version, which has shown pulse
self-compression and FCP soliton propagation; see Ref. [81].

We then show that the mKdV–sG equation can be reduced to the SPE. Obviously, the mKdV–sG model (4.26) reduces to
the mKdV one if c1 = 0, and to the sG equation if c2 = c3 = 0. In the same way, Eq. (4.28) reduces to the SPE (4.27) if
µ = 0. It is easy to derive the SPE equation (4.27) from the mKdV–sG one (4.26): a small amplitude approximation yields
sin(

 t u) ≃
 t u, the mKdV-type dispersion term is neglected (c3 = 0), then setting c1 = −1, c2 = −1/6, Eq. (4.26)

becomes, after derivation with respect to t , identical to Eq. (4.27). The same transform but with c1 = c2 = 1 and c3 = −µ
gives the alternative model equation (4.28).

The mKdV–sG model is able to predict pulse compression, as shown in Fig. 12, which is similar to the result presented
in Ref. [81]. However, the concrete situation considered in Ref. [81] involves µ > 0, i.e., c3 < 0. If we disregard the term
u coming from the sG equation or the ‘resonant’ part of the equation, this corresponds to a defocusing mKdV equation. It is
worthy to mention that the mKdV–sG equation supports FCP solitons, but only the case of focusing mKdV equation was
considered in Ref. [76]. However, the defocusing mKdV equation does not support FCP solitons, as we will see below. On the
other hand, the pure sG equation admits breather solutions which allow us to describe the FCP solitons [73]. It is worthy to
notice that the soliton put forward in Ref. [81] is nothing else than a soliton of themKdV–sG equation by using the dispersion
termof the sG equation and the nonlinearity termof themKdVequation,whose relative signs correspond to the self-focusing
case.

In Ref. [76] we considered the mKdV–sG equation (4.26) and we set
 t u = v, in order to get the equation

∂z∂tv + c1 sin v + c2∂t (∂tv)3 + c3∂4t v = 0. (4.29)
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Fig. 12. (Color online) Compression of a long input pulse containing several optical cycles to a FCP soliton, as described by the mKdV–sG equation with
parameters c1 = 50, c2 = 0.5, and c3 = 1. After Ref. [78].

Fig. 13. (Color online) Pulse compression described by themKdV–sG equation (4.29)with defocusingmKdVpart. Input is a pulsewith the hyperbolic secant
envelope solution to the SVEA limit of mKdV–sG, with pulse length τ0 = 25 and angular frequency ω = 0.5. Parameters are c1 = c2 = 1, c3 = −0.5. After
Ref. [78].

Note that for low amplitudes, the sG term in the above equation can be expanded in a power series of v to yield

∂z∂tv + c1


v −

v3

6


+ c2∂t (∂tv)3 + c3∂4t v = 0. (4.30)

Due to the peculiar form of the third term in Eq. (4.30) containing the partial derivative

v3t

t , the two nonlinear terms

in Eq. (4.30) differ and cannot be straightforwardly compared; see Ref. [76]. Moreover, we have shown in Ref. [76] that the
mKdV–sG model (4.26) with a true defocusing mKdV part, that is, when c3 < 0 also possesses FCP soliton solutions and
accounts for pulse self-compression. Thus in order to treat all equations at the same time, it was considered in Ref. [76] a
more general equation

∂z∂tv + c1v −
c ′

1

6
v3 + c2∂t (∂tv)3 + c3∂4t v = 0, (4.31)

which becomes a mKdV–sG equation (4.30) if c ′

1 = c1, and reduces to Eq. (4.28) if c ′

1 = 0. Note that the general Eq. (4.31)
becomes (a) a sG equation (in the low-amplitude limit involved by the SVEA) if c2 = c3 = 0 and c ′

1 = c1, (b) amKdV equation
if c ′

1 = c1 = 0, (c) a SPE if c ′

1 = c3 = 0, and has the normalized form (4.27) if, additionally, c1 = −1 and c2 = −1/6, (d) a
normalized version of Eq. (4.28) if we put c ′

1 = 0, c1 = c2 = 1 and c3 = −µ, and (e) a mKdV–sG equation if c ′

1 = c1.
In Fig. 13 we show pulse compression described by the mKdV–sG equation (4.29) with defocusing mKdV part. In this

typical example, the pulse length τ0 = 25 is quite large and the angular frequency is ω = 0.5. The velocity Vp of the
pulse is computed from the numerical results, as Vp ≃ 0.222. It is close to, but still differs from the value of group velocity
dω/dk ≃ 0.229 predicted by the SVEA by using the corresponding linear dispersion relation k = −(c1/ω)− c3ω3.

Note that for shorter pulses the numerical solution to the mKdV–sG equation goes further away from the SVEA–NLS
approximation, but the FCP soliton propagation still occurs; see Ref. [76]. As a typical situation, if we decrease the pulse
length significantly to τ0 = 8 preserving the angular frequency ω = 0.5, two FCP solitons, one taking the major part of the
energy, and the other much smaller, are formed, while a non-negligible part of energy is radiated as dispersing waves; see
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Ref. [76]. For this case the pulse velocity computed from the numerical data is Vp ≃ 0.134, while dω/dk ≃ 0.229 as above
because we preserved the values of the linear coefficients c1 and c3. However, now the discrepancy is large, thus confirming
the fact already evidenced in Ref. [73] that the usual expression of the group velocity is not valid any more for short FCP
solitons.

Concluding this section we stress that it was proved in Ref. [76] that the dynamical model based on the modified
Korteweg–de Vries–sine–Gordon partial differential equation was able to retrieve the results reported so far in the
literature, and so demonstrating its remarkable mathematical capabilities in describing the physics of few-cycle-pulse
optical solitons. Thus the generic modified Korteweg–de Vries–sine–Gordon equation contains all non-slowly varying
envelope approximation model equations which have been earlier proposed for the description of (1 + 1)-dimensional
few-cycle-pulse soliton propagation models.

5. Few-optical-cycle solitons: their interactions

In this section we consider the problem of few-optical-cycle soliton interactions. Following Ref. [77], by using the exact
four-soliton solutions of themodified Korteweg–de Vries–sine–Gordon equation describing the propagation of few-optical-
cycle pulses in transparent media with instantaneous cubic nonlinearity, we study the interaction of two such initially well-
separated pulses. One notices that in Ref. [77] the shapes of soliton envelopes, the shifts in the location of envelopesmaxima,
and the corresponding phase shifts were explicitly calculated.

The more general mKdV–sG equation proved to describe fairly well the propagation of ultrashort optical pulses in a
Kerr nonlinear medium and so demonstrating its remarkable mathematical capabilities in describing the physics of few-
optical-cycle solitons; see the comprehensive studies reported in Refs. [76,78]. Though the mKdV and sG equations are
completely integrable by means of the inverse scattering transform method [85], the mKdV–sG equation is completely
integrable only if some condition between its coefficients is satisfied [87]. The general n-soliton solution of the mKdV–sG
equation was obtained in a closed form in Ref. [140]; therefore we may easily get from it the general four-soliton solution
and correspondingly, the two-breather solution (for specific sets of its parameters), fromwhich can be drawn all features of
the interaction between two FCPs. Note that the two-breather solution describes the interaction in a Kerr medium of two
few-optical-cycle solitons initiallywell separated, in any physical settingwhere one of the three abovementioned integrable
models (KdV, sG, mKdV–sG) is a realistic one. Moreover, thanks to the existence of analytic expression for the two-breather
solution, the location and phase shifts resulting from the interaction were computed explicitly; see Ref. [77].

5.1. Exact four-soliton and two-breather solutions of the integrable mKdV–sG equation

Here we consider the propagation of optical FCPs in a one dimensional self-focusing Kerr medium, such as a highly
nonlinear optical fiber. In any physical application, FCPs will be periodically launched in the medium, in such a way that
they propagate as robust solitons. Due to the fluctuations of the intensity of the laser source, the consecutive FCPs may have
different power and energies, and consequently different velocities. Therefore they are expected to interact and to cross
each other. Here we briefly discuss what happens during the interaction of such ultrashort pulses; see Ref. [77].

The evolution of the electric field is governed by the mKdV–sG equation, which is in general a nonintegrable nonlinear
evolution equation. However in the completely integrable case, for a special choice of its coefficients, it reads as

∂τ∂zu + c1 sin u + 3c2 (∂τu)2 ∂2τ u + 2c2∂4τ u = 0, (5.1)

where the dimensionless variables u, z and τ are respectively proportional to the electric field, the propagation distance,
and the retarded time, in a frame moving at the linear group velocity of the medium. Notice that u is not an amplitude, but
is proportional to the electric field itself. Both constants c1 and c2 are related to the dispersion and nonlinear properties of
the medium, see [76]. The integrable mKdV–sG equation (5.1) reduces to the integrable mKdV equation for c1 = 0 and to
the integrable sG equation for c2 = 0.

The n-soliton solution of the above mKdV–sG equation is given by [140]:

u = 2i ln

f ∗

f


, (5.2)

where f =


µj=0, 1 Eµ, with µ = (µ1, . . . , µn),

Eµ = exp


n

j=1

µj


ξj +

iπ
2


+

n
l=1

n
j=1

µjµlAj,l


, (5.3)

and Aj,l = ln[(kj − kl)2/(kj + kl)2], ξj = kjτ + Ωjz + ξ0j, Ωj = −c1/kj − 2c2k3j , here j, l = 1, . . . , n and the parameters
kj are arbitrary. These solutions are properly speaking solitons only for real values of the parameters kj, but the solution
holds for any complex values of kj. For the particular case n = 4, and assuming that k3 = k∗

1, k4 = k∗

2 , we are left with the
two-breather solution of the integrable mKdV–sG equation. Next we set k1 = p1 + iω1 and k2 = p2 + iω2, so that ω1 and
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Fig. 14. (Color online) Interaction of two FCPs described by the two-breather solution of the mKdV–sG equation. The two envelopes are also shown. Here
the parameters of the exact two-breather solution are p1 = 2, p2 = 2.5, and ω1 = ω2 = 8. After Ref. [77].

ω2 are the characteristic frequencies of the two FCPs, and 1/p1, 1/p2 are their characteristic durations. The two-breather
solution of the pure mKdV and the pure sG equations are recovered by setting either c1 = 0 or c2 = 0 in Eqs. (5.2)–(5.3),
respectively.

5.2. Interaction of two few-cycle solitons

Fig. 14 shows the general envelope. Fig. 15(a) shows the two FCPs and their input and output envelopes, at z = −15. Here
the output envelopes are defined as the envelope of the breather, at this propagation stage, which will coincide with the
output of the interaction as z → +∞, after having propagated alone. Fig. 15(b) presents the same two-breather soliton and
input and output envelopes, at z = +15. The coincidence between the FCPs and envelopes, at least in location, is checked
for the numerical values. The shift in the location of the breathers appears clearly in Fig. 15. Input and output envelopes
and the location of the maxima of the envelopes were obtained analytically in Ref. [77]. In Ref. [77], it was seen that the
envelopes uj+e, corresponding to the largest values of τ , did not have the correct amplitudes. The definition of the envelope
implies indeed that the oscillation carrier is replaced by some constant ϕj adequately chosen, and in [77], this constant was
taken as zero, which was the adequate value for the leftmost profiles (uj−e), not for the rightmost ones (uj+e). This feature
brought forward the existence of the arising of a phase shift during the interaction. Seeking for the value of ϕj for which the
maximum of the ‘envelope’ function becomes zero allowed to analytically compute the phase shift. The obtained value has
been used in Fig. 15. Note that both the location and phase shifts vanish in the SVEA limit.

Numerical computations of Eq. (4.26) starting from an input yielded by a linear superposition of two breather solutions
utwo of the mKdV equation is shown in Figs. 16 and 17. We see that the behavior of the interaction is qualitatively the same
in the non-integrable case as in the integrable one. However, computation of the shifts in phase and location in the non-
integrable case is possible for special values of parameters only, and involve lengthy numerical computations for each set
of parameters.

Concluding this section we stress that the shapes of both input and output soliton envelopes as well as the phase and
location shifts have been computed in Ref. [77] by using the exact expression for the four-soliton (two-breather) solution
of the mKdV–sG equation. It was pointed out in that work the remarkable fact that, in contrast to the case of SVEA case
(i.e., the case of envelope solitons), neither phase matching nor group-velocity matching are required for two few-cycle
pulses to interact efficiently.

6. Circularly polarized few-optical-cycle solitons

6.1. Polarization effects in Kerr media: long wave approximation

In this section we consider the propagation of circularly polarized few-cycle pulses in Kerr media beyond the slowly
varying envelope approximation. Assuming that the frequency of the transition is far above the characteristic wave
frequency (long-wave-approximation regime), we show that propagation of FCPs, taking into account thewave polarization,
is described by the non-integrable complexmodified Korteweg–de Vries (cmKdV) equation. By direct numerical simulations
we get robust localized solutions to the cmKdV equation, which describe circularly polarized few-cycle optical solitons, and
strongly differ from the breather soliton of the modified Korteweg–de Vries equation, which represents linearly polarized
FCP solitons. We found that the circularly polarized FCP soliton becomes unstable when the angular frequency is less than
1.5 times the inverse of the pulse length, which is about 0.42 cycles per pulse. The unstable subcycle pulse decays into a
linearly polarized half-cycle pulse, whose polarization direction slowly rotates around the propagation axis.



Author's personal copy

H. Leblond, D. Mihalache / Physics Reports 523 (2013) 61–126 93

Fig. 15. (Color online) The FCPs and their initial and final envelopes before (15(a)) and after (15(b)) the interaction. The parameters are c1 = −1, c2 = 1/2,
p1 = 2, p2 = 2.5, and ω1 = ω2 = 4. After Ref. [77].

Fig. 16. (Color online). Interaction of two FCPs in the non-integrable case. The parameters are c1 = −1, c2 = 0.5, and c3 = 1. The input is a linear
superposition of two breather solutions utwo (given by Eq. (3.20)) of the mKdV equation obtained by setting c1 = 0, with p1 = 1 + 2i and p2 = 2 + 2i.
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Fig. 17. (Color online) Interaction of two FCPs in the non-integrable case. The upper frame shows the input, normalized to its maximum value, and the
bottom frame shows the output for several values of the coefficient c2: c2 = 0.05 (blue dashed line), 0.5 (red dotted line), 5 (green solid line). The other
parameters are c1 = −1 and c3 = 1. The input is defined in the same way as in Fig. 16. Its total magnitude is proportional to c(−1/2)

2 .

6.1.1. Basic equations for an amorphous optical medium
As a simple model for a glass systemwe consider a set of two-level atoms with Hamiltonian H0;Ω = ωb −ωa > 0 is the

frequency of the transition. The atomsmay present some induced dipolar electricmomentum µ⃗, which is oriented randomly
in space. Assuming a propagation along the z-axis, we can omit the component of µ⃗ along the propagation direction z, and
thus µ⃗ = µ


cos θ e⃗x + sin θ e⃗y


, e⃗x and e⃗y being the unitary vectors along the x- and y-axis, respectively, and the 2×2matrix

µ is given by Eq. (3.1).
The evolution of the electric field E⃗ is governed by the Maxwell equations which, in the absence of magnetic effects, and

assuming a plane wave propagating along the z axis, reduce to ∂2z E⃗ = c−2∂2t (E⃗ + 4π P⃗), where P⃗ is the polarization density.
It is given by P⃗ = N ⟨Tr (ρµ⃗)⟩, where N is the number of atoms per unit volume, ρ is the density matrix, and ⟨·⟩ denotes the
averaging over all directions in the x–y plane.

The evolution of the density-matrix is governed by the Schrödinger–von Neumann equation ih̄∂tρ = [H, ρ], where
H = H0 − µ⃗ · E⃗ includes the coupling between the atoms and the electric field. The relaxation effects can be neglected here
as in the scalar approximation; see [73]. The physical values of the relaxation times are indeed in the picosecond range, or
even slower, thus very large with regard to the pulse duration, which allows us to neglect them.

The typical frequencyωw of the wavemust be far away from the resonance frequencyΩ because the transparency of the
medium is required for soliton propagation.We therefore considerωw ≪ Ω (long-wave approximation regime). The typical
length of thewave, say tw = 1/ωw , is very largewith respect to the characteristic time tr = 1/Ω associated to the transition.
Thus we are working in the long wave approximation regime, as defined in the framework of the reductive perturbation
method [95,93]. Next we introduce a small parameter ε = 1/ (Ωtw), and the slow variables τ = ε (t − z/V ) , ζ = ε3z. The
retarded time variable τ describes the pulse shape, propagating at speed V in a first approximation. Its order of magnitude
ε gives an account of the long-wave approximation, so that the corresponding values of retarded time have the same order
of magnitude as tr/ε = tw ≫ tr if τ is of the order of unity. The propagation distance is assumed to be very long with
regard to the pulse length ctw; therefore it will have the same order of magnitude as ctr/εn, where n > 2. The value of n is
determined by the distance at which dispersion effects occur. According to the general theory of the derivation of KdV-type
equations [93], it is n = 3. The ζ variable of order ε3 describes thus long-distance propagation, according to the general
theory of the derivation of KdV-type equations [93].

The electric field E⃗, the polarization density P⃗ , and the density matrix ρ are expanded in power series of ε as E⃗ =
n>1 ε

n (un, vn, 0), P⃗ =


n>1 ε
n (Pn,Qn, 0), ρ =


n>0 ε

nρn, in which the triplets of coordinates are given in the (x, y, z)
frame, and the profiles u1, v1, etc., are functions of the slow variables τ and ζ . The components of ρ are denoted by

ρ =


ρa ρt
ρ∗

t ρb


. (6.1)

We assume that, in the absence of wave, all atoms are in the fundamental state (a), and hence all elements of ρ0 are zero
except ρ0a = 1.

At lowest order ε1, the Schrödinger–von Neumann equation yields

ρ1t = µ/ (h̄Ω) (u1 cos θ + v1 sin θ) .
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The polarization density is P⃗ = (P,Q )with

P = N

ρtµ

∗ cos θ + cc

, Q = N


ρtµ

∗ sin θ + cc


where cc denotes the complex conjugate. We get

(P1,Q1) =

N |µ|

2 / (h̄Ω)

(u1, v1) . (6.2)

The Maxwell equation at leading order ε3 gives the value of the velocity, V = c/n, with the refractive index n =
1 + 4πN |µ|

2 / (h̄Ω). The expression of n coincides with that obtained in the scalar model (cf. Ref. [73] and Eq. (3.8)
above) if we take into account the fact that, for a linear polarization in the present framework, only one half of the dipoles
would be active, being roughly alignedwith the electric field. At the order ε2, the Schrödinger–vonNeumann equation yields
ρ1a = ρ1b = 0 and ρ2t = µ/ (h̄Ω) (u2 cos θ + v2 sin θ)− iµ/


h̄Ω2


∂τ (u1 cos θ + v1 sin θ) . Consequently, we get similar

expressions for P2 and Q2 as those for P1 and Q1, with the only difference that u1 and v1 are replaced by u2 and u2. The
Maxwell equation at order ε4 is automatically satisfied.

At order ε3, the Schrödinger–von Neumann equation gives rise to

ρ2b − ρ2a = 2 |µ|
2 /

h̄2Ω2 (u1 cos θ + v1 sin θ)2 ,

and a corresponding much longer expression for ρ3t . By using
cos4 θ


= 3/8,


cos2 θ sin2 θ


= 1/8,

the expression for the polarization density components P3 is

P3 =
N |µ|

2

h̄Ω
u3 −

N |µ|
2

h̄Ω3
∂2τ u1 −

3N |µ|
4

2 h̄3Ω3


u2
1 + v21


u1, (6.3)

and we get an analogue expression for Q3. Next, the Maxwell equation at order ε5 yields the following pair of coupled
equations:

∂ζu1 = A∂3τ u1 + B∂τ

u2
1 + v21


u1

, (6.4)

∂ζv1 = A∂3τ v1 + B∂τ

u2
1 + v21


v1

, (6.5)

in which we have set A = 2πN |µ|
2 /

nch̄Ω3


, B = 3πN |µ|

4 /

nc h̄3Ω3


. As in the scalar model [73], the dispersion

coefficients A has the same expression as derivedwithin the scalar model (Eq. (3.12)), if we consider that only one half of the
dipoles are contributing. Regarding the nonlinear coefficient B, the ratio between the corresponding nonlinear coefficients
is a bit smaller, 3/8, which is due to the averaging over θ .

Eqs. (6.4)–(6.5) can be written in the normalized form as

UZ = UTTT +

U2

+ V 2UT , (6.6)

VZ = VTTT +

U2

+ V 2 V T , (6.7)

where the subscripts Z and T denote the derivatives, and the functions and variables are defined as U = u1/E , V = v1/E ,
Z = z/L, T = (t − z/V ) /tw , with L = 2ct3w/n

′′, and E = (1/2tw)

nn′′/(−3πχ (3)).

Eqs. (6.6)–(6.7) are a set of coupledmKdV equations describing the propagation of optical FCPs in an amorphousmedium
presenting cubic nonlinearity and dispersion. They can be also seen as describing the interaction of two linearly polarized
FCPs, U and V .

6.1.2. Basic equations for a crystal-like optical medium
A system of two coupledmKdV equations is derived above from amodel of a glass, or an amorphousmedium. This model

involved some induced dipolar electric momentum µ⃗, oriented randomly in the transverse plane (x, y), the polarization
density P⃗ being averaged over all directions in this plane.Wewill show below that the same governing equations (6.6)–(6.7)
can be derived from another model, which would rather correspond to a crystalline structure [161].

This alternative approach involves a two-levelmedium, inwhich the excited level is twice degenerated, with the induced
dipole oriented either in the x or in the y direction. Precisely, the Hamiltonian is

H0 = h̄


ωa 0 0
0 ωb 0
0 0 ωb


, (6.8)

still withΩ = ωb − ωa > 0. The dipolar momentum becomes

µ⃗ = µxe⃗x + µye⃗y, (6.9)
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where e⃗x and e⃗y are the unitary vectors along the x axis and y axis, respectively, and

µx =

 0 µ 0
µ∗ 0 0
0 0 0


, (6.10)

µy =

 0 0 µ
0 0 0
µ∗ 0 0


. (6.11)

The evolution of the electric field E⃗ is governed by the Maxwell equations which, in the absence of magnetic effects,
and assuming a plane wave propagating along the z axis, reduce to ∂2z E⃗ =

1
c2
∂2t


E⃗ + 4π P⃗


, where P⃗ = NTr (ρµ⃗) is the

polarization density, N is the number of atoms per unit volume, and ρ is the density matrix. There is no averaging over the
transverse orientation of the dipolar momentum any more.

The evolution of the density-matrix is governed by the equation ih̄∂tρ = [H, ρ], where H = H0 − µ⃗ · E⃗ describes
the coupling between the atoms and the electric field. The relaxation effects can be neglected here as in the scalar
approximation; see Ref. [73]. Notice that the physical values of the relaxation times are indeed in the picosecond range,
or even slower (nanoseconds), thus very large with regard to the pulse duration, which allows us to neglect them.

As above, we assume that the typical frequencyωw of thewave ismuch lower than the resonance frequencyΩ ,ωw ≪ Ω .
Recall that, ifωw is in the visible range, it means that the transition frequency is in the ultraviolet, and that the typical length
of the wave, say tw = 1/ωw , is very large with respect to the characteristic time tr = 1/Ω associated to the transition. It is
thus a long wave approximation, as defined in the framework of the reductive perturbation method [93,95]. Still as above,
we introduce a small parameter ε, which can be here ε = 1/ (Ωtw) ≪ 1, and the slow variables τ = ε


t −

z
V


, ζ = ε3z.

The retarded time variable τ describes the pulse shape, propagating at speed V in a first approximation, and the ζ variable
describes long-distance propagation.

The electric field E⃗, the polarization density P⃗ , and the density matrix ρ are expanded in power series of ε as

E⃗ =


n>1

εnE⃗n =


n>1

εn (un, vn, 0) , (6.12)

P⃗ =


n>1

εn (Pn,Qn, 0) , (6.13)

ρ =


n>0

εnρn, (6.14)

in which the triplets of coordinates are given in the (x, y, z) frame, and the profiles u1, v1, etc., are functions of the slow
variables τ and ζ . The components of ρn are denoted by ρn

ij .
At lowest order ε1, the Schrödinger–von Neumann equation yields

ρ1
12 =

µ

h̄Ω
u1, ρ1

13 =
µ

h̄Ω
v1, (6.15)

and consequently

P1 =
2N |µ|

2

h̄Ω
u1, (6.16)

Q1 =
2N |µ|

2

h̄Ω
v1, (6.17)

which are the same expressions as in the glass model (Eq. (6.2) and [160]), except that N is replaced with 2N .
At order ε3 in the Maxwell equation, we get an expression of the refractive index with the same slight change:

n =


1 +

8πN |µ|
2

h̄Ω

 1
2

, (6.18)

which exactly coincides with (3.8).
At order ε2 in the Schrödinger–von Neumann equation, we first notice that ∂τρ1

23 = 0 and consequently ρ1
23 = 0. In the

same way, ρ1
11 = ρ1

22 = ρ1
33 = 0. Then we get

ρ2
12 =

µ

h̄Ω
u2 −

iµ
h̄Ω2

∂τu1, (6.19)

ρ2
13 =

µ

h̄Ω
v2 −

iµ
h̄Ω2

∂τv1, (6.20)
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which are the same expressions as in the case of the glass model [160], with the orientation angle of the dipolar momentum
θ = 0 for ρ2

12 and θ = π/2 for ρ2
13. Consequently, we get

P2 =
2N |µ|

2

h̄Ω
u2, (6.21)

Q2 =
2N |µ|

2

h̄Ω
v2, (6.22)

and the Maxwell equation at order ε4 is automatically satisfied.
At order ε3 in the Schrödinger–von Neumann equation, the populations are computed as

ρ2
11 =

− |µ|
2

h̄2Ω2


u2
1 + v21


, (6.23)

ρ2
22 =

|µ|
2

h̄2Ω2
u2
1, (6.24)

ρ2
33 =

|µ|
2

h̄2Ω2
v21 . (6.25)

Notice that a nonzero coherence term between the two excited states appears, it is

ρ2
23 =

|µ|
2

h̄2Ω2
u1v1. (6.26)

Consequently, the coherence between the fundamental state and the state excited in the x direction at next order is

ρ3
12 =

µ

h̄Ω
u3 −

iµ
h̄Ω2

∂τu2 −
µ

h̄Ω3
∂2τ u1 −

2µ |µ|
2

h̄3Ω3


u2
1 + v21


u1. (6.27)

The analogous expression, permuting u1 and v1, is obtained for the component ρ3
13.

The expressions for the polarization density components P3 and Q3 are obtained, as

P3 =
2N |µ|

2

h̄Ω
u3 −

2N |µ|
2

h̄Ω3
∂2τ u1 −

4N |µ|
4

h̄3Ω3


u2
1 + v21


u1, (6.28)

and analogously for Q3. Apart from the change from N to 2N already noticed, the only discrepancy with respect to the
corresponding equations in the glass model (Eq. (6.3) and [160]) is a coefficient value 4 instead of 3 in the nonlinear term in
Eq. (6.28).

The Maxwell equation at order ε5 yields the following pair of coupled equations:

∂ζu1 = A∂3τ u1 + B∂τ

u2
1 + v21


u1

, (6.29)

∂ζv1 = A∂3τ v1 + B∂τ

u2
1 + v21


v1

, (6.30)

in which we have set

A =
4πN |µ|

2

nch̄Ω3
, (6.31)

B =
8πN |µ|

4

nc h̄3Ω3
. (6.32)

Notice that the structure of the set of Eqs. (6.29)–(6.30) is the same as in the glass model (Eqs. (6.4)–(6.5) and [160]),
with very slightly modified coefficients. The expressions of the two dispersion coefficients coincide (the ratio between the
corresponding dispersion coefficients is therefore 1) if we consider that in the case of the glass model, only one half of the
dipoles are contributing, while all of them are involved in the crystal model. The same feature is observed in the case of the
refractive index. Regarding the value (6.32) of the coefficient B, the ratio between the corresponding nonlinear coefficients
is a bit smaller, 3/8, which is nothing else but the average value


cos4 θ


of cos4 θ , which is involved in the averaging of the

nonlinear polarization density over all orientations θ of µ⃗ in the glass model (Eq. (3.12) and [160]). In fact, the coefficients
A and B have here exactly the same expressions as in the scalar model [73].

One notices that Eqs. (6.29)–(6.30) in their normalized form coincide to Eqs. (6.6)–(6.7) where now the functions and
variables are defined as

U =
u1

E
, V =

v1

E
, Z =

z
L
, T =

t − z/V
tw

, (6.33)



Author's personal copy

98 H. Leblond, D. Mihalache / Physics Reports 523 (2013) 61–126

with

L =
nh̄cΩ3t3w
2πN |µ|

2 , (6.34)

E =


2
3

h̄
|µ| tw

. (6.35)

6.1.3. The complex mKdV equation
Assuming that U and V vanish at infinity, the mKdV system of coupled partial differential equation (6.6)–(6.7) has four

conserved quantities [163]:

I1 =


+∞

−∞

UdT , I2 =


+∞

−∞

VdT , (6.36)

the momentum of the system

I3 =


+∞

−∞


U2

+ V 2 dT , (6.37)

and its Hamiltonian

I4 =
1
2


+∞

−∞


U2

+ V 22
− 2


(∂TU)2 + (∂TV )2


dT , (6.38)

which remain constant with Z .
Setting

f = U + iV , (6.39)

Eqs. (6.6) and (6.7) reduce to

∂Z f = ∂3T f + ∂T

|f |2 f


, (6.40)

which is known as the complex modified Korteweg–de Vries (cmKdV) equation. Confusion must be avoided between Eq.
(6.40) and the other cmKdV equation

∂Z f = ∂3T f + |f |2 ∂T f . (6.41)

Indeed, Eq. (6.41) is completely integrable [165] while Eq. (6.40) is not. Eqs. (6.40) and (6.41) are sometimes referred
to as cmKdV I and cmKdV II equations, respectively. The integrable equation (6.41) has been extensively studied (see e.g.
[164–168]), while less studies have been devoted to the non-integrable equation (6.40) [169,170]. In Ref. [169], using the
Painlevé analysis, it is proved that Eq. (6.40) is not integrable, and an exhaustive list of analytical solutions is given. In the
frame of the optics of FCPs, the field f must vanish at infinity. With this condition, there is no exact analytical solution to
Eq. (6.40) but the solutions of the real mKdV equation. Indeed, setting f = ueiϕ , with u = u(Z, T ) and ϕ a constant, reduces
the complexmKdV equation (6.40) to the real one. All linearly polarized FCP solitons are retrieved in this way. Their stability
to a random perturbation of the polarization can be tested numerically. If we add to the constant ϕ a random noise (we used
an amplitude of 0.1 × 2π ), it is obtained that the pulse is not destroyed, and that its polarization remains linear. However,
the direction of the linear polarization slowly rotates around the propagation direction.

More interesting would be a circularly polarized soliton, of the form

f = u(T − wZ)ei(ωT−kZ). (6.42)

However no exact, even numerical, steady state solution of this type do exist. To be ensured of this, just plug f given by the
expression (6.42) in Eq. (6.40); separating real and imaginary parts and integrating once yields

3ω2
− w


u = ∂2T u + u3,

ω2
−

k
ω


u = 3∂2T u + u3, (6.43)

which are not compatible. However, solutions having approximately the form (6.42) exist and are very robust. They are
studied in detail in the next subsection.

6.1.4. Robust circularly polarized few-optical-cycle solitons
We will next compute an approximate analytic solution to the cmKdV equation (6.40), valid for long pulses, i.e. in the

SVEA. Next we introduce again a small parameter ε and the slow variables

ξ = ε2Z, η = ε(T − wZ), (6.44)
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(a) Nonlinear. (b) Linear.

Fig. 18. Propagation of a circularly polarized FCP. The left panel shows the nonlinear propagation of the x-polarized component U . Initial data is given by
Eq. (6.48) with b = 1 and ω = 2. The right panel shows the propagation of the linearly dispersive FCP having the same initial profile but with very small
amplitude. After Ref. [161].

Fig. 19. (Color online) Initial (Z = 100) and final (Z = 10000) profiles of the FCP plotted on Fig. 18 for the input given by Eq. (6.48). Blue (dotted): initial
|f |, light blue (thick gray): initial U , red (thin solid): final |f |, pink (dash-dotted): final U . After Ref. [161].

and expand f as

f = ε(f0(η, ξ)+ εf1(η, ξ)+ · · ·)ei(ωT−kZ), (6.45)

and run the perturbative reduction procedure [93].
At leading order ε, we get k = ω3; at second order, we find the inverse velocity w = 3ω2, and at order ε3 we get a

nonlinear Schrödinger equation for f0:

i∂ξ f0 + 3ω∂2η f0 + ωf0 |f0|2 = 0. (6.46)

Let us consider the fundamental soliton solution of the above written NLS equation:

f0 = p
√
6 sech (pη) ei3p

2ωξ . (6.47)

Coming back to the initial variables, we obtain

f = b
√
6 sech


b

T − 3ω2Z


eiω


T−(ω2

−3b2)Z

. (6.48)

Eq. (6.48) gives an approximate solution to the mKdV equation (6.40), which is valid for long pulses (b ≪ ω).
The numerical resolution of the cmKdV equation is performed using the exponential time differencing second order

Runge–Kutta (ETD–RK2) method [115]. The numerical scheme does not conserve exactly the L2-norm (or energy W ) of
the solution; however the error remains small (typically ∆W/W ∼ 10−4 for Z = 10000). Due to the scale invariance of
the cmKdV equation, only the ratio b/ω may modify the stability properties of the solution. Thus there is only one free
parameter, which is the number of cycles in the pulse (the ratio ω/b being proportional to the number of optical cycles
contained in the ultrashort pulse). For numerical calculations we fix b = 1 and decrease the frequency ω.

Figs. 18 and 19 shows the evolution of a FCP of this form,with b = 1 andω = 2. The propagation of the linearly dispersive
FCP is also shown for the sake of comparison.

The FCP propagates without change in width and maximum amplitude after propagation over at least z = 10000 units,
however, its shape is somehow distorted after propagation. The propagation speed is also quite different from the result
of the above analytical approximate solution. In fact, since no steady state with linear phase exists, the pulse is not a true
steady state, and consequently its velocity varies in a quite erratic way; nevertheless, it is a very robust FCP.
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(a) Initial (at Z = 100). (b) Final (at Z = 1300).

Fig. 20. Normalized profiles of an unstable circularly polarized FCP. Initial data is defined by the breather soliton with p1 = 1+ i, i.e. both pulse width and
angular frequency equal to 1, for the polarization component U , and the same with a π/2 dephasing for V . Light blue (dotted): |f | and −|f |, pink (solid):
U = Re(f ), green (dashed): V = Im(f ). After Ref. [161].

We will next show by numerical simulations that we get robust circularly polarized FCP solitons. Notice that the
approximate solution (6.48) has not a zero mean value, except at the SVEA limit b ≪ ω. However the mean value of the
field is conserved. It is likely that the circularly polarized FCP soliton would have a zero mean value, and hence this would
explain the discrepancy between the approximate analytical solution (6.48) and the direct numerical computation shown
in Fig. 18.

In order to check this interpretation, let us consider an input having zero mean value. Such an alternative expression is
found from the breather (or two-soliton) solution of the real mKdV equation [114]. Recall that the two-soliton solution utwo
of the mKdV equation has the expression (3.20) with ηj = pjτ − p3j ζ − γj, for j = 1, 2, and becomes a breather soliton if
p2 = p∗

1 . Here Re(p1) is the inverse of the pulse length, and Im(p1) is the angular frequency, as are b and ω respectively in
Eq. (6.48). The real part of the constant γ1 = γ ∗

2 determines the position of the center of the pulse, while its imaginary part is
a phase. Taking for one polarization component, say U , the breather solution with γ1U = 0, and for the second polarization
component V the same expression, but with a π/2 dephasing, i.e. with γ1V = iπ/2, we get some expression which can be
used as an input data for solving numerically the cmKdV equation. This pulse is very close to the approximate analytical
solution (6.48), but has a zero mean value. Numerical resolution shows that the pulse, apart from small apparently chaotic
oscillations, keeps its shape and characteristics during the propagation.

Inwhat followswewill study the decay of the unstable circularly polarized FCP and the corresponding transition to a half-
cycle soliton. The value ω/b ≃ 1.5 appears to be the lower limit for the stability of the circularly polarized FCP soliton. Note
that the ratioω/b is proportional to the number of cycles contained in the pulse.More precisely, the number of optical cycles
Nc is the ratio of the pulse duration (FWHM = 2 ln


1 +

√
(2)

/b) divided by the optical period 2π/ω, i.e. Nc ≃ 0.28ω/b.

The stability limit of the circularly polarized FCP soliton is thus about Nc = 0.42. Hence circularly polarized FCP are stable
down to the sub-cycle range. For smaller values of the ratio ω/b, the FCP becomes unstable, and decays into a linearly
polarized single-humped (half-cycle) pulse, in the form of a fundamental soliton of the real mKdV.

The transition occurs, for ω/b = 1.4, between Z = 19100 and 19200, for ω/b = 1.3, between Z = 9300 and 9400, but
forω/b = 1, between Z = 400 and 500. Further, it occurs very abruptly, and involves a strongmodification of the spectrum;
see Ref. [160,161].

The transition to a half-cycle soliton is shown in Figs. 20 and 21. It is a single pulse, whose profile accurately coincides
with that of the fundamental soliton solution to the real mKdV equation

U =
√
2b sech


bT − b3Z


, (6.49)

but which slowly rotates around the propagation axis.
As a final remark we notice that half-cycle optical solitons were also put forward in quadratic nonlinear media; thus a

few-cycle pulse launched in a quadratic medium may result in a half-cycle soliton in the form of a single hump, with no
oscillating tails [120].

Concluding this section, we point out that the multiscale perturbation analysis was used in Refs. [160,161] to derive
approximate evolution equations governing the propagation of circularly polarized femtosecond optical solitons in cubic
(Kerr-like) media beyond the slowly varying envelope approximation. Thus we took into account the vectorial character
of the electric field and therefore we properly considered the wave polarization effects. In the long-wave-approximation
regime we have found that the two interacting waveforms corresponding to such vector few-optical-cycle solitons are
adequately described by a coupled pair of complexmodified Korteweg–de Vries equations at the third-order approximation
of the perturbation approach.
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Fig. 21. Evolution of the polarization of the unstable circularly polarized FCPwith both angular frequency and pulse length 1. Blue (dotted): initial circularly
polarized pulse (at Z = 100), red (solid): final linearly polarized pulse (at Z = 1300). After Ref. [161].

6.2. Circularly polarized few-optical-cycle solitons: short wave approximation

In this section we consider the propagation of few-cycle pulses beyond the slowly varying envelope approximation, in
media in which the dynamics of constituent atoms is described by a two-level Hamiltonian, by taking into account the
wave polarization and in the short-wave approximation regime. Therefore we assume that the resonance frequency of the
two-level atoms is well below the inverse of the characteristic duration of the optical pulse, it should thus belong to the
infrared range if the latter is in the visible range. By using the reductive perturbation method (multiscale analysis) we
then derive from the Maxwell–Bloch–Schrödinger equations the governing evolution equations for the two polarization
components of the electric field in the first order of the perturbation approach. We show that propagation of circularly
polarized few-optical-cycle solitons is described by a rather complicated system of coupled nonlinear equations [162],
which reduces in the scalar case to the standard sine–Gordon equation describing the dynamics of linearly polarized FCPs
in the short-wave-approximation regime. By direct numerical simulations we then calculate the lifetime of circularly-
polarized FCPs and we study the transition to two orthogonally polarized single-humped pulses as a generic route of
their instability; for a comprehensive study of this issue see Ref. [162]. It is worth mentioning that other vectorial non-
SVEA models have been also proposed [158,142], however they were only built from a direct analogy with common SVEA
models. It is alsoworthmentioning that circularly polarized short pulse propagation in a systemof two-level atoms has been
studied more than two decades ago in the framework of the self-induced transparency [172] and the existence of localized
solutions ofMaxwell–Bloch type systems beyond the SVEA has been considered too [173,174]. However, not all the coupling
mechanisms between the polarization components were taken into account in these earlier studies. However, the authors
of Ref. [174] took an essential coupling term into account through the out-of-phase polarization, which allowed them to
show that the pulse solution valid within the SVEA could not be generalized beyond it by means of some corrections terms.

6.2.1. Basic equations and the short-wave approximation
We consider a two level model, in which the excited state is degenerated twice, corresponding to oscillations along the

x and y axes. The free Hamiltonian is thus given by Eq. (6.8). The resonance angular frequency is Ω = ωb − ωa > 0. The
electric field E⃗ is coupled with the atoms by the Hamiltonian H = H0 − µ⃗E⃗, in which the dipolar momentum operator is
µ⃗ = µxe⃗x + µye⃗y; µx and µx are given by Eqs. (6.10) and (6.11).

Then the evolution of the atoms is governed by the Schrödinger–von Neumann equation ih̄∂tρ = [H, ρ], in which ρ is
the density matrix, and the evolution of the electric field E⃗ is governed by the Maxwell equation ∂2z E⃗ = c−2∂2t


E⃗ + 4π P⃗


,

where c is the speed of light in vacuum and the polarization density P⃗ is given by P⃗ = NTr (ρµ⃗).
The short-wave approximation is performed according to the general theory developed in Refs. [73,175,176]. We denote

by (u, v, 0) the components of the electric field E⃗ in the (xyz) frame, by (P,Q , 0) the ones of P⃗ , and by ρij, i, j = 1, 2, 3,
the elements of the Hermitian matrix ρ. All these quantities are expanded in power series of a small parameter ε as
E⃗ = E⃗0

+ εE⃗1
+ ε2E⃗2

+ · · ·, and so on. We introduce fast and slow variables τ =

t −

z
V


and ζ = εz, so that ∂t = ∂τ

and ∂z = −V−1∂τ + ε∂ζ . The above series expansions and fast and slow variables are reported into the Maxwell and
Schrödinger–von Neumann equations and the perturbative scheme is solved order by order.

The Schrödinger–von Neumann equation at order ε0 yields ih̄∂τρ0
= −


µ⃗ · E⃗0, ρ0


, that is,

ih̄∂τρ0
11 = −


µρ0∗

12 − ρ0
12µ

∗

u0 −


µρ0∗

13 − ρ0
13µ

∗

v0, (6.50)
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ih̄∂τρ0
22 = −


µ∗ρ0

12 − ρ0∗
12µ


u0, (6.51)

ih̄∂τρ0
33 = −


µ∗ρ0

13 − ρ0∗
13µ


v0, (6.52)

ih̄∂τρ0
12 = −µ


ρ0
22 − ρ0

11


u0 − µρ0∗

23v0, (6.53)

ih̄∂τρ0
13 = −µρ0

23u0 − µ

ρ0
33 − ρ0

11


v0, (6.54)

ih̄∂τρ0
23 = −µ∗ρ0

13u0 + ρ0∗
12µv0. (6.55)

It is easy to check that Eqs. (6.50)–(6.52) satisfy the normalization condition for the density matrix, i.e. ∂τTrρ0
= 0.

Assuming that the electric field components u and v vanish as τ tends to −∞, integrating (6.53) and (6.54), and
incorporating them into (6.50) we get

∂τρ
0
11 =

2 |µ|
2

h̄2


u0

 τ

−∞

{w1u0 + σv0} + v0

 τ

−∞

{σu0 + w2v0}


, (6.56)

where we have defined the population differences asw1 = ρ0
22 − ρ0

11,w2 = ρ0
33 − ρ0

11, and we set σ = Reρ0
23.

Then by incorporating (6.53) into (6.51), we get

∂τρ
0
22 = −

2 |µ|
2

h̄2 u0

 τ

−∞

(w1u0 + σv0) . (6.57)

Integrating Eq. (6.54) and incorporating it into (6.52) yield

∂τρ
0
33 = −

2 |µ|
2

h̄2 v0

 τ

−∞

(σu0 + w2v0) . (6.58)

The x and y components P0 and Q0 of the zero order polarization density P⃗0 are given by P0 = N

ρ0
12µ

∗
+ ρ0∗

12µ

,

Q0 = N

ρ0
13µ

∗
+ ρ0∗

13µ

. By integrating (6.53) and (6.54), incorporating them into the expressions of P0, and Q0 and setting

κ = Im

ρ0
23


we get

P0 =
2 |µ|

2 N
h̄

 τ

−∞

κv0, (6.59)

Q0 = −
2 |µ|

2 N
h̄

 τ

−∞

κu0. (6.60)

By integrating Eqs. (6.53) and (6.54), incorporating them into (6.55), and separating real and imaginary parts, we obtain
evolution equations for σ = Reρ0

23 and κ = Imρ0
23, as

∂τσ = −u0Py − v0Px, (6.61)
where we have set

Px =
|µ|

2

h̄2

 τ

−∞

(w1u0 + σv0) , (6.62)

Py =
|µ|

2

h̄2

 τ

−∞

(w2v0 + σu0) , (6.63)

and

∂τκ = −
|µ|

2

h̄2


u0

 τ

−∞

κu0 + v0

 τ

−∞

κv0


. (6.64)

Then a simple analysis shows that κ = 0 and consequently, ρ0
23 is a real quantity. Thus we find out that P⃗0 = 0⃗ and

incorporating this value into the Maxwell wave equation at order ε0, we get that the wave velocity is V = c at the zero
order of the series expansion in the small parameter ε.

We next get the polarization density at order ε1 from the Schrödinger–von Neumann equation at order ε1. The
polarization density components P1 and Q1 involve the density matrix elements ρ1

12 and ρ1
13, respectively and are given

by P1 = N

ρ1
12µ

∗
+ ρ1∗

12µ

and Q1 = N


ρ1
13µ

∗
+ ρ1∗

13µ

. If we set κ̂ = Im


ρ1
23


we get the following expressions for P1

and Q1:

P1 = −
2 |µ|

2ΩN
h̄

 τ

−∞

 τ

−∞

(w1u0 + σv0)+
2 |µ|

2 N
h̄

 τ

−∞

κ̂v0, (6.65)

Q1 = −
2 |µ|

2ΩN
h̄

 τ

−∞

 τ

−∞

(σu0 + w2v0)−
2 |µ|

2 N
h̄

 τ

−∞

κ̂u0. (6.66)
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From the wave equation at order ε1 we get the evolution equations for the fields u0 and v0 as ∂ζu0 = (−2π/c)∂τP1 and
∂ζv0 = (−2π/c)∂τQ1. The equations forw1,w2 are deduced straightforwardly from the equations for the diagonal elements
of ρ0, as ∂τw1 = −4u0Px − 2v0Py and ∂τw2 = −2u0Px − 4v0Py. Then we get the equation for κ̂:

∂τ κ̂ = −Ω


u0

 τ

−∞

Py − v0

 τ

−∞

Px


. (6.67)

Summarizing the analysis of Maxwell–Schrödinger–von Neumann equations, we are left with a coupled system of ten
nonlinear integro-differential equations:

∂ζu0 =
−2π
c
∂τP1, (6.68)

∂ζv0 =
−2π
c
∂τQ1, (6.69)

∂τP1 = −2Nh̄ΩPx +
2N|µ|

2

h̄
v0κ̂, (6.70)

∂τQ1 = −2Nh̄ΩPy −
2N|µ|

2

h̄
u0κ̂, (6.71)

∂τPx =
|µ|

2

h̄2 (w1u0 + σv0) , (6.72)

∂τPy =
|µ|

2

h̄2 (w2v0 + σu0) , (6.73)

∂τ κ̂ =
1

2Nh̄
(u0Q1 − v0P1) , (6.74)

∂τw1 = −4u0Px − 2v0Py, (6.75)

∂τw2 = −2u0Px − 4v0Py, (6.76)

∂τσ = −

u0Py + v0Px


. (6.77)

We then write down this nonlinear system in its normalized (dimensionless) form by introducing the following
dimensionless functions and variables: (u, v) = (u0, v0) /E0, T = τ/T0, Z = ζ/D, where the reference electric field E0,
the reference propagation distance D and the reference time T0 are related through T0 = h̄/(|µ|E0), D = E0c/(4πNΩ|µ|),
(m, n) = (h̄/µ)


Px, Py


and (p, q) = [E0/(2Nh̄Ω)] (P1,Q1). One notices that the short-wave assumption mainly expresses

in the fact that the reference propagation distance D is large.
If we setw = (w1 + w2)/2, r = (w2 − w1)/2, the system (6.68)–(6.77) reduces to the dimensionless form:
∂Zu = −∂Tp, (6.78)
∂Zv = −∂Tq, (6.79)
∂Tp = −m + vK , (6.80)
∂Tq = −n − uK , (6.81)
∂Tm = (w − r)u + Sv, (6.82)
∂Tn = (w + r)v + Su, (6.83)
∂TK = uq − vp, (6.84)
∂Tw = −3(um + vn), (6.85)
∂T r = um − vn, (6.86)
∂T S = −un − vm. (6.87)

By defining four new complex quantities P = p + iq, M = m + in, U = u + iv and s = r − iS, the nonlinear system
(6.78)–(6.87) of ten coupled equations reduces to a more compact system of only six coupled nonlinear equations:

∂ZU = −PT (6.88)
∂TP = −M − iUK (6.89)

∂TM = wU − sU∗ (6.90)

∂TK = Im

U∗P


(6.91)

∂T s = UM (6.92)

∂Tw = −3Re

U∗M


. (6.93)
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The above nonlinear system of coupled partial differential equations in its normalized form describing vectorial ultrashort
solitons in the short-wave propagation regime is the central result of this section and it can be considered as the natural
generalization of the sine–Gordon equation. We will indeed show below that it reduces to the usual sine–Gordon equation
in the scalar case when the second component v = v0/E0 of the electric field is equal to zero.

Nowwe write down two conservation laws for the above physical system. First, denoting by I = u2
+ v2 the normalized

intensity we straightforwardly get ∂Z I = −(2/3)∂Tw, that is, when the homogeneous population differencew has its value
corresponding to the thermal equilibrium both before and after the pulse ∂Tw = 0, the power


+∞

−∞
Idt is conserved during

propagation. This equation for the evolution of intensity I also shows that the energy transfer inside the pulse is entirely
governed by the homogeneous population differencew. Second, we show that there is an additional conservation lawwhich
can be obtained by mimicking the obtaining of a second conservation law in the scalar case, when a sine–Gordon equation
is obtained from the above complicated system of ten coupled nonlinear equations. To this aim let us consider the scalar
case v = 0. It is seen that K , S, n, q are equal to 0 andw = −3r . Then the system (6.78)–(6.87) reduces to

∂Zu = −∂Tp, (6.94)
∂Tp = −m, (6.95)
∂Tm = −4ru, (6.96)
∂T r = um. (6.97)

The nonlinear system of coupled equations (6.94)–(6.97) reduces to the sine–Gordon equation as follows [116]. If we
set m = A sin θ and r = (−A/2) cos θ , then a direct computation shows that ∂TA = 0, hence A is a constant. From
Eqs. (6.94)–(6.96) it is seen that ∂Zu = A sin θ . On the other hand, ∂Z∂Tu can be computed, either by taking the T -derivative
of ∂Zu, which yields ∂Z∂Tu = −2r∂T θ , or by combining (6.94) and (6.96) which yields ∂Z∂Tu = −4ru. Comparison between
both expressions shows that u = ∂T θ/2 and we get the sine–Gordon equation

∂Z∂T θ = 2A sin θ. (6.98)

From this derivation, it is seen that the reduction of system (6.94)–(6.97) to a sine–Gordon equation is based on the
conservation law ∂TA2

= ∂T

m2

+ 4r2


= 0. This conservation law can be straightforwardly generalized to the vectorial
case as follows:A = m2

+n2
+

1
3w

2
+r2+S2 in terms of the normalized real variables, or equivalently,A = |M|

2
+

1
3w

2
+|s|2

in terms of the normalized complex ones.
It is easily shown that the general vectorial model introduced above allows us to retrieve the linear polarizationmodel as

a particular case of it.We now look for an approximate expression of circularly polarized pulses. One notices that a circularly
polarized FCP is described by means of the complex system of nonlinear equations (6.88)–(6.93). An expression of the form
U = F


T − Z/vg


ei(kZ−ωT ) might be a solution of this system. However, a direct substitution of this expression into the

system (6.88)–(6.93) shows, that no exact solution of this form exist. It is worthy to notice that the non-existence of exact
non-SVEA circularly polarized pulse solutions to the Maxwell–Bloch equations was already pointed out in [173], although
in the framework of slightly different model.

However, in the followingwe seek for an approximate solution of circularly polarized pulses in the limit of largeω, i.e., in
the SVEA limit, bymeans of amultiscale expansion very similar to the standard one for deriving a NLS equationmodel in the
SVEA limit [93]. To this aim we consider some small parameter ε, so that 1/ε is of the order of magnitude of the number of
optical cycles in the pulse, which is assumed to be large in the SVEA limit. We expandU in power seriesU =


r,n ε

neirϕUr,n,
with ϕ = kZ − ωT , and introduce slow variables τ = ε


t − z/vg


, and ζ = ε2Z . At leading order (ε1), we assume that

U1,1 = F is the only nonzero term in this expansion. After a standard procedure, we are left with a NLS equation for the
variable F , from which we finally get the approximate expression for the circularly polarized soliton, as

U = be
i


k− b2k
ω2


Z−ωT


sech


b

T +

k
ω
Z

, (6.99)

in which the soliton parameter b is assumed to be small. As concerning the stability of the circularly polarized soliton (6.99)
within the SVEA, it can be addressed analytically; see Ref. [162]. A direct consequence of the properties of NLS solitons
implies that the circularly polarized pulses are stable within the SVEA.

6.2.2. Lifetime of circularly polarized few-cycle pulses and transition to single-humped ones
One notices that the existence and stability of the circularly polarized FCP does not ensure either its stability or even its

existence beyond SVEA [173]. In the following we study numerically the stability of circularly polarized few-cycle pulses
beyond the SVEA. The Z evolution of u and v is computed by means of a standard fourth-order Runge–Kutta algorithm, at
each step and substep of the scheme, the eight other components are computed using the same algorithm but relative to the
T variable.We assume that all atoms are initially in the fundamental state, that is,w = −1 at T = 0.We use the approximate
circularly polarized pulse (6.99) as an input, with ω = 5, and vary the pulse duration b. We found that the input FCP decays
into two linearly polarized single-humped pulses. In general, two orthogonally polarized pulses with different amplitudes
are obtained (see Figs. 22–24). For the shortest sub-cycle pulses, the instability occurs very fast, the amplitudes of the two
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Fig. 22. (Color online) The circularly polarized FCP and its decay into orthogonally polarized single-humped pulses. Parameters: ω = 5 and b = 2. Here
Zdisp = 37. After Ref. [162].

Fig. 23. (Color online) The circularly polarized FCP and its decay into two orthogonally polarized single-humped pulses. The shape of the FCP at Z = 280
(left) and Z = 360 (right). Light blue (gray): the amplitude |U| =

√
u2 + v2 (and −|U|), red (black): u = Re(U). After Ref. [162].

Fig. 24. (Color online) The circularly polarized FCP and its decay into two orthogonally polarized single-humped pulses. The trajectories of the tip of the
normalized electric field vector (u, v) in the transverse plane, for two values of Z , showing the polarization. Light blue (gray): at Z = 280, red (black): at
Z = 360. After Ref. [162].

single humped pulses strongly differ, and the angle between their polarization directions is not close to π/2. It is worthy to
notice at this point that the single-humped pulses are in fact fundamental solitons of the sG equation (6.98) to which the
system reduces in the case of linear polarizations (scalar case). However, no stability threshold for the circularly polarized
FCPs can be evidenced by these numerical calculations. The lifetime of circularly-polarized FCPs becomes very large when
the number Nc of optical cycles in the pulse is greater than one; see Ref. [162].

Concluding this section devoted to circularly polarized few-cycle solitons in the short-wave regimewe stress thatwe took
into account the vectorial nature of the electric field, and therefore we properly considered the wave polarization effects.
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We have found that the two interacting waveforms corresponding to such vector few-optical-cycle solitons are adequately
described by a coupled system of nonlinear equations at the first-order approximation of the perturbation approach. By
direct numerical simulations we calculated the lifetime of circularly polarized few-optical-cycle solitons and we studied
their decay into two orthogonally polarized single-humped pulses as a generic route of their instability.

A challenging extension suggested by these studies is to consider the case of two transitions, one below and one above
the range of propagated wavelengths. Another interesting issue is the generalization of the present work to one or even to
two spatial transverse dimensions, in addition to time and spatial longitudinal coordinates, that is, the study of formation
and robustness of vector few-optical-cycle spatiotemporal solitons, alias ultrashort vector light bullets, beyond the slowly
varying envelope approximation, both in the long- and short-wave regimes (for an overview of theoretical and experimental
studies of spatiotemporal solitons in several relevant physical settings, see Ref. [171]).

7. Few-optical-cycle dissipative solitons

In this section by using the powerful reductive perturbation technique, a generalized modified Korteweg–de Vries
(gmKdV) partial differential equation is derived,which describes the physics of few-optical-cycle dissipative solitons beyond
the slowly-varying envelope approximation; see Ref. [38] for a detailed study of this problem. We also briefly discuss the
output of numerical simulations showing the formation of stable dissipative solitons from arbitrary breather-like few-cycle
pulses. Though there are a lot of papers devoted to FCPs in conservative physical settings, there are only a fewworks devoted
to the study of few-optical-cycle dissipative solitons. It is worthy to mention the works of Rosanov et al. [49,50], where
both the formation of few-optical-cycle dissipative solitons in active nonlinear optical fibers and the collisions between
them were investigated. The theory of mode-locked lasers essentially relies on mean field models derived within the
SVEA. One of the most important of such models is Haus’ master equation [177], which is in fact the stationary version
of the complex Ginzburg–Landau (CGL) equation [178–181]; see, e.g., the comprehensive reviews [182,183] on the CGL
equation and its various applications. The short pulses are fairly well described by soliton solutions to the CGL equation,
which are unstable for the cubic CGL equation and stable for the cubic-quintic CGL model. Both the cubic and the cubic-
quintic CGL models have been derived from a detailed description of the laser cavity, in the case of fiber lasers that are
mode-locked by means of nonlinear polarization rotation, or figure-eight ones [184–186]. One notices that, for such lasers,
descriptions of the cavity by means of full numerical resolution of propagation equations along it have also been used; see
e.g. [187]. The Lorentz–Haken equations, commonly considered as a generalmodel of a laser setup, have been reduced to the
Swift–Hohenberg equation [188], which can be considered as a perturbed CGL equation [182]. It is commonly admitted that
mode-locking requires some saturable absorber [189] or some setup having an equivalent effect; nonlinear polarization
rotation and nonlinear loop mirror have been mentioned above. An alternative technique is the Kerr lens mode-locking
(KLM) [190–192], which combines self-focusing due to the Kerr effect and the use of an aperture to select the highest
intensities. KLM is not a mere effective amplitude-dependent gain/loss effect, but a complex phenomenon which involves
the spatiotemporal intra-cavity pulse dynamics. The existing theory of KLM is based on nonlinear geometrical optics for
Gaussian beams, hence within the SVEA, and the initial approach of Refs. [190–192] was not fundamentally modified in
more recent studies (see e.g. Refs. [193,194]). The technique is very efficient even in the case of strong self-focusing and
two-cycle pulses (see e.g. Ref. [111]), in which the validity of the approximations used in the theoretical developments is
not ensured.

In this section we derive a generic partial differential equation describing the dynamics of dissipative FCP solitons in a
laser cavity filled with two-level atoms, beyond SVEAmodel equations [38]. Starting from theMaxwell–Bloch equations, by
using a multiscale perturbation approach [93] we derive a non-SVEA version of the Lorenz–Haken equations [195,196].
We are left with a generic equation describing dissipative few-optical-cycle solitons in the form of a gmKdV equation
containing additional terms accounting for gain and losses. Thus in addition to the standard term accounting for linear losses
(proportional to the optical field) we get a term proportional to the second-order derivative of the optical field with respect
to the time variable, which accounts for gain and a second, regularizing term, proportional to the fourth-order derivative
with respect to the time variable of the optical field, which accounts for losses; see Ref. [38].

7.1. Maxwell–Bloch equations and their multiscale analysis

In an important work published more than three decades ago, Haken [196] used a single-mode unidirectional ring laser
model (with a homogeneously broadened line) described by the Maxwell–Bloch equations, and after some approximations
showed its mathematical equivalence with an appropriate model of the Lorenz oscillator [195]. In the following we derive a
non-SVEA version of the Lorenz–Haken equations. We start from the Maxwell–Bloch equations for the simple case of linear
polarizations: ∂2z E = c−2∂2t


E + 4π P̂


with P̂ = NTr


ρ̂µ̂

, where N is the atomic density, µ̂ is the dipolar momentum

operator, and ρ̂ is the density matrix, which obeys the Schrödinger–von Neumann equation

ih̄∂t ρ̂ =


Ĥ0 − µ̂Ê, ρ̂


+ iΛ̂− iR̂, (7.1)

Λ̂ accounts for gain, and R̂ for relaxation of the components of the density matrix ρ̂.
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In Eq. (7.1) Ĥ0 is the free Hamiltonian of the atomic system under consideration. However, losses must be also taken
into account. A phenomenological loss term has to be introduced, in such a way that it can be compensated by gain. It is
necessary that the time evolution of losses (or their spectral profile) be able to adjust to the gain. Hence not only losses due
to reflection at the cavity boundaries, which will be evaluated below, but also the ones of the medium must be taken into
account. Thereforewe need to introduce a second transition, independent of the former (pumped) one, which only produces
absorption. The corresponding free Hamiltonian is thus

Ĥ0 =


H0 0
0 H ′

0


= h̄

ωa 0 0 0
0 ωb 0 0
0 0 ω′

a 0
0 0 0 ω′

b

 . (7.2)

Here, as we said before, we consider a set of four-level atoms with the Hamiltonian Ĥ0, corresponding to two distinct two-
level transitions with frequencies Ω = ωb − ωa and Ω ′

= ω′

b − ω′
a, respectively. The dipolar momentum is thus given

by

µ̂ =


µ 0
0 µ′


=

 0 µ 0 0
µ∗ 0 0 0
0 0 0 µ′

0 0 µ′∗ 0

 . (7.3)

The gain is

Λ̂ =


Λ 0
0 0


= h̄

λa 0 0 0
0 λb 0 0
0 0 0 0
0 0 0 0

 , (7.4)

and the relaxation term is

R̂ =


R 0
0 R′


= h̄

γa(ρa − 1) γtρt 0 0
γtρ

∗

t γaρb 0 0
0 0 γ ′

a(ρ
′

a − 1) γtρ
′

t
0 0 γ ′

t ρ
′∗

t γ ′

aρ
′

b

 , (7.5)

and the density matrix is

ρ̂ =

 ρa ρt ρ13 ρ14
ρ∗

t ρb ρ23 ρ24
ρ31 ρ32 ρ ′

a ρ ′

t
ρ41 ρ42 ρ ′∗

t ρ ′

b

 . (7.6)

Next it can be easily shown that the density matrix ρ̂ is block diagonal (the components of the two off-diagonal 2×2 blocks
in ρ̂ are zero):

ρ̂ =


ρ 0
0 ρ ′


.

Thus the Schrödinger–von Neumann equation (7.1) splits into two equations of the same form for the two diagonal blocks
of the matrix ρ̂; note that each of these equations describes a two-level transition.

Now we briefly show how to evaluate the mirror losses. In order to derive an additional term in the Maxwell wave
equation which can account for the losses due to the mirrors, we consider a simplified cavity model, in which only the
mirrors are taken into account. Consider thus a cavity with length L, and mirrors with amplitude reflection coefficients r . It
can be seen as a periodic medium with period L and periodically localized losses with a loss factor (1 − r2). We intend to
describe this in a continuous way as distributed losses. Let z be the variable along the cavity axis, c and v the light velocity in
vacuum and in the cavity, respectively. A simple analysis shows that the initial Maxwell equation should be replaced with
a modified one, which take into account the mirror loss through the parameter β = −v ln r/L; see Ref. [38]. Consequently,
we consider here the modified Maxwell equation

∂2z E =
1
c2
(β + ∂t)

2 E + 4π

P + P ′


. (7.7)

Here P and P ′ are the two polarization terms corresponding to the two distinct transitions.
We have shown in the preceding sections that the reductive perturbation method is a very powerful way of deriving

simplified, generic models describing nonlinear wave propagation and interaction in various physics settings [93]. We will
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apply this mathematical method to the study of dissipative few-cycle optical solitons. To this aim we first introduce scaled
variables corresponding to a long-wave approximation of mKdV type, as

τ = ε


t − z


1
V

+ εW

, ζ = ε3z. (7.8)

One notices that with respect to the standard mKdV-type scaled variables, the above expression (7.8) involves an additional
correctionW of order ε to the inverse velocity V−1. We will next see that this correctionW of order ε to the inverse velocity
is proportional to the correction w1 of order ε to the population difference. We expand the optical field E in a power series
of a small parameter ε as E = εE1(ζ , τ ) + ε2E2(ζ , τ ) + · · ·. The corresponding power series expansions of ρ and ρ ′ start
with the order ε0 quantity ρ0. The gainΛ and R are also expanded in this way.Wewill consider here a laser setup, hence the
characteristic frequencyω0 of the wave must be close to the resonance line, sayΩ = ωb −ωa, and especially fall within the
gain curve. Since we use a long-wave approximation, we have ω0 ≃ 0. Hence the spectral line, which expresses typically as
[(ω −Ω)2 + γ 2

t ]
−1, must extend down toω = ω0 ≃ 0, which happens only if its width γt has the same order of magnitude

as the central lineΩ . The second transition, with central lineΩ ′, has been introduced to account for cavity losses. Further,
lossesmust be compensated by gain. Therefore it is necessary that the bandwidth of both gain and losses have the sameorder
of magnitude. Thus γ ′

t must have the same order of magnitude as γt . One notices that the long-wave approximation used
here means that the characteristic frequency ω0 of the wave is small with respect to γt , or conversely, that γt is large with
respect to ω0. Thus the long-wave approximation can be seen as an approximation of broad bandwidth. This is consistent
with the fact that a very wide bandwidth is required to produce ultrashort pulses in commercially available laser systems.
On the other hand, the mirror loss parameter β is expanded as β = εβ1 + ε2β2 + · · ·. Hence we assume that β is small,
i.e., the good cavity condition. However, the order of magnitude of β which allows dissipative soliton propagation is not
specified a priori; it will arise as a result of the computation, see below the details of it.

In the following we will perform the order by order resolution of the governing Maxwell–Bloch equations. At order ε0
the Schrödinger–von Neumann equation for the first transition (let us call it equation (S)) is [H0, ρ0]+ iΛ0 − iR0 = 0. Using

[H0, ρ0] =


0 −h̄Ωρt

h̄Ωρ∗

t 0


,

we get ρ0t = 0, ρ0a = 1 + λ0a/γa, and ρ0b = λ0b/γa. Due to the condition Trρ = 1, we see that λ0b = −λ0a. We define the
population difference aswj = ρjb − ρja for all j, thenw0 = (2λ0b/γa)− 1. We will assume thatw0 > 0, hence λ0b > αγa/2,
and λ0b > 0.

For the Schrödinger equation for the second transition, which we call equation (S ′), we get the same results, but without
pumping, and with the corresponding ‘prime’ quantities, i.e., ρ ′

0a = 1, ρ ′

0b = 0, ρ ′

0t = 0 andw′

0 = ρ ′

0b − ρ ′

0a = −1.
At order ε1 equation (S) is ih̄∂τρ0 = [H0, ρ1]−E1 [µ, ρ0]+ iΛ1− iR1, then by calculating the corresponding commutators

and taking into account that ρ0t = 0, we get w1 = −2ρ1a = 2ρ1b = 2λ1b/γa and ρ1t = (−µw0E1)/ [h̄ (Ω + iγt)]. The
polarization term P1 at order 1 is given by

P1 =
−2NΩ |µ|

2w0E1
h̄

Ω2 + γ 2

t
 .

For equation (S ′), we get analogous formulas, with λ1b replaced by 0 andw′

0 = −1.
From the Maxwell wave equation at leading order ε3 we get β1 = 0 and the expression of velocity V = c/n with the

refractive index

n =


1 +

8πNΩ ′
µ′
2

h̄(Ω ′2 + γ ′
t
2
)

−
8πNΩ |µ|

2w0

h̄

Ω2 + γ 2

t
 1/2

. (7.9)

The refractive index n has a similar expression as in the conservative two level-model (see Eq. (3.8) above and Ref. [73]),
except that (i) there are two terms in the above equation, one term for each of the two transitions, (ii) the line widths γt ,
γ ′
t are not neglected here as was done in Ref. [73], and (iii)w0 > 0, which accounts for gain which should be present in the

present physical setting.
Next at order 2we get equation (S) in the form: ih̄∂τρ1 = [H0, ρ2]−E2 [µ, ρ0]−E1 [µ, ρ1]+ iΛ2− iR2. From this equation

we get the corresponding values ofw2 and the polarization P2 at order ε2:

w2 = 2ρ2b = −2ρ2a =
2λ2b
γa

−
4γt |µ|

2w0E2
1

h̄2 γa

Ω2 + γ 2

t
 , (7.10)

P2 =
−2NΩ |µ|

2

h̄

Ω2 + γ 2

t
 (E2w0 + E1w1)+

4NΩγt |µ|
2w0

h̄

Ω2 + γ 2

t
2 ∂τE1. (7.11)

One notices that from equation (S ′), we get similar results, except that there is no pumping, that is, λ2b is replaced by zero,
w′

0 = −1, andw′

1 = 0.
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The wave equation at perturbation order ε4 reduces to

2W
V
∂2τ E1 =

1
c2
∂2τ


−8πNΩ |µ|

2

h̄

Ω2 + γ 2

t
 E1w1 +

16πNΩγt |µ|
2w0

h̄

Ω2 + γ 2

t
2 ∂τE1 −

16πNΩ ′γ ′
t

µ′
2

h̄(Ω ′2 + γ ′
t
2
)2
∂τE1


+

2β2

V 2
∂τE1. (7.12)

First, a simple analysis of the above equation involving the following three derivatives with respect to τ of the field E1,
that is, ∂τE1, ∂2τ E1 and ∂

3
τ E1, shows that the second order correction to the mirror loss parameter β is equal to zero (β2 = 0),

which implies that mirror losses are even smaller as previously estimated. Second, we obtain a relationship betweenW and
w1

W =
−4πNΩ |µ|

2

nh̄c

Ω2 + γ 2

t
w1 (7.13)

(the refractive index n being given by (7.9)), i.e. a correctionw1 of order ε to the population difference induced a correction
of the same order to the velocity. Third, we are left with the relationship

Ωγt |µ|
2w0

Ω2 + γ 2
t
2 =

Ω ′γ ′
t

µ′
2

Ω ′2 + γ ′
t
2
2 , (7.14)

i.e., the gain induced by the pumped transition compensates the losses induced by the unpumped one, at this perturbation
order. Eq. (7.14) determines the laser threshold. An essential feature of laser pulse propagation is the excess of gain above
the threshold. It is due to the correction termw1 to the population difference, and fixes themagnitude of the gain term in the
evolution equation governing the dynamics of few-optical-cycle dissipative solitons, as in SVEAmodels of Ginzburg–Landau
type [186]. We anticipate that we are left with a generalized modified KdV partial differential equation which describes the
evolution of few-cycle dissipative solitons.

At order 3 we write down the equation (S) as
ih̄∂τρ2 = [H0, ρ3] − E3 [µ, ρ0] − E2 [µ, ρ1] − E1 [µ, ρ2] + iΛ3 − iR3. (7.15)

From the above equationwe are leftwith a rather complicated expression for the polarization P3 at order ε3 and an analogous
expression for the polarization P ′

3 where w′

0 = −1, w′

1 = 0, and λ2b is replaced with 0. From the wave equation at
perturbation order ε5 we get a rather complicated evolution equation for E1. One notices that β1 = β2 = 0 and the terms
involving the field E3 cancel out each other due to the condition expressing the value of velocity V . The terms involving the
field E2 cancel out due to the condition (7.13) giving the correctionW to the velocity V and due to the condition (7.14) that
gain compensates losses.

As a result of this reductive perturbation analysis we are finally left with the following equation for the field E1 at the
first perturbation order ε1:

∂ζ E1 = −A∂τE3
1 − B∂3τ E1 − C∂2τ E1 + D∂τE1 − Γ E1, (7.16)

with

A =
16πN
nc h̄3

 Ωγt |µ|
4w0

γa

Ω2 + γ 2

t
2 −

Ω ′γ ′
t

µ′
4

γ ′
a


Ω ′2 + γ ′

t
2
2
 , (7.17)

B =
4πN
nch̄

Ω 
Ω2

− 3γ 2
t


|µ|

2w0
Ω2 + γ 2

t
3 −

Ω ′


Ω ′2

− 3γ ′
t
2
 µ′

2
Ω ′2 + γ ′

t
2
3

 , (7.18)

C =
8πN
nch̄

Ωγt |µ|
2w1

Ω2 + γ 2
t
2 , (7.19)

D =
8πN
nch̄

λ2bΩ |µ|
2

γa

Ω2 + γ 2

t
 +

VW 2

2
, (7.20)

and Γ = β3/V . For C = D = Γ = 0, Eq. (7.16) reduces to the mKdV equation. An inspection of this equation gives
us the physical significance of different terms involved in it. Thus the term containing the second-order derivative with
respect to the time variable τ looks like a diffusion term in a partial differential equation of Burgers’ type (see, for example,
Refs. [85,86]). However, if we assume λ1b = γaw1/2 > 0, i.e., for a pumping slightly above the threshold characterized by
Eq. (7.14), then C > 0 and this term becomes a gain one. The term proportional to first-order derivative with respect to
the time variable τ corresponds to a pumping term of lower order, but its concrete contribution here is a mere change in
velocity. Thus the parameter D can be changed to any value at our convenience by means of adequate Galilean transform.
Finally, the term (−Γ E1) corresponds to the losses due to the mirrors, with β3 > 0 and Γ > 0.
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Fig. 25. Evolution of a dissipative FCP soliton. Thick (blue) line: z = 26, thin (red) line: z = 50. After Ref. [38].

However, a serious problemwith the abovewritten generalizedmodifiedKdVequation is that Eq. (7.16) is highly unstable
when C is positive. Indeed, the gain increases as the frequency tends to infinity, which is an unphysical consequence of the
perturbation formalism. Therefore an additional regularizing term is necessary to be incorporated in Eq. (7.16); see Ref. [38]
for more details of this issue. As a result, Eq. (7.16) should be replaced with a regularized one

∂ζ E1 = −A∂τE3
1 − B∂3τ E1 − C∂2τ E1 + D∂τE1 − G∂4τ E1 − Γ E1, (7.21)

where

G =
16πεN
nh̄c

Ωγt γ 2
t −Ω2


|µ|

2w0
Ω2 + γ 2

t
4 −

Ω ′γ ′
t


γ ′
t
2
−Ω ′2

 µ′
2

Ω ′2 + γ ′
t
2
4

 . (7.22)

At this point we note the misprint in Eqs. (72)–(74) of Ref. [38]. The partial differential evolution equation (7.21), which
is a non-SVEA version of Lorenz–Haken laser equation, adequately describes the physics of few-optical-cycle dissipative
solitons beyond the SVEA. This nonlinear evolution equation is a generalizedmodified Korteweg–de Vries partial differential
equation. Note that the nonlinear term −A∂τE3

1 accounts for the Kerr effect, while the term −B∂3τ E1 accounts for dispersion.
These terms and the corresponding coefficients A and B have the same expressions as in the conservative counterpart of
Eq. (7.21), which is themKdV equation derived in [73] by using a reductive perturbation approach. The termD∂τE1 describes
a change in the pulse (phase and group) velocity. Expression (7.20) of D shows that this velocity change is due to a gain
effect. The three other terms account for a frequency-dependent gain–loss: the main term is −C∂2τ E1, which accounts for a
broadband gain. However, thewidth of the gain spectrummust be finite, which is ensured by the term−G∂4τ E1. On the other
hand linear losses must be introduced to avoid excessive amplification, they are accounted for by the term −Γ E1. It is thus
seen that Eq. (7.21) contains all terms involved by a one-dimensional description of a laser setup, as nonlinearity, dispersion,
and frequency-dependent gain and losses, except one term: the nonlinear gain, or effective saturable absorber. However,
from numerical simulations we will see that this term is not necessary for stabilization of the dissipative few-cycle pulses;
see Ref. [38].

7.2. Robust ultrashort dissipative optical solitons

The generalizedmodified KdV dynamical equation (7.21) was solved numerically in Ref. [38] bymeans of an exponential
timedifferencing scheme, of secondorder Runge–Kutta type [115]. Absorbing boundary conditionswere implemented in the
numerical simulations (see Ref. [38]) and numerical values of the parameterswere fixed as follows: the nonlinear coefficient
A = 1 (a self-focusing opticalmediumwas considered), the third-order dispersion coefficient B = 1, C = 0.1 (corresponding
to gain), G = 0.002 (corresponding to losses), D = −48.836 (a velocity adjusted in such a way that the soliton remained
in the computation box), and Γ = 1 (corresponding to losses). For this specific set of parameters stable few-optical-
cycle dissipative soliton propagation was obtained; see Fig. 25. The initial field distribution was a breather solution of the
underlying modified KdV equation, which displays only a few oscillation cycles. The above FCP propagates thus in a stable
way, that is, a robust few-optical-cycle dissipative soliton was put forward. Note that its stabilization does not require any
effective saturable absorber, or nonlinear gain term in Eq. (7.21).

The numerical simulation described above uses an initial pulse close to the final one; hence this result shows the stability
of the FCP rather in a medium used as an optical amplifier than really in a laser cavity. In order to study the latter issue, it
was used a random input and it was investigated whether a self-starting behavior can be observed [38]. Using periodic
boundary conditions, it was found in Ref. [38] that FCPs form spontaneously, however their number in the numerical box
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Fig. 26. Evolution of the electric field from noise. (a) The input (z = 0). (b) Three dissipative FCP solitons are formed (z = 31.9). (c) The interaction of
many FCP solitons appears as chaotic (z = 75). After Ref. [38].

Fig. 27. The FCP soliton formed from noise in the presence of velocity filtering yielded by absorbing boundary conditions (thick blue line). The thin red line
shows the transverse variations of the linear absorption coefficient α producing the absorbing boundary conditions (more exactly α/15). After Ref. [38].

increases during propagation; see Fig. 26. The result of the interaction and superposition of a many FCPs appear as irregular
oscillations, with an apparently chaotic behavior; see Fig. 26(c). It is incoherent light, and in this sense incoherent light can
be seen as a superposition of FCPs. Thus, in order to produce a FCP laser, the question is not, how a FCP can be produced, but
how it can be isolated. It was shown in Ref. [38] that the absorbing boundary conditions achieve it. However, the obtained
FCP soliton is locked to the edge of the pumped zone; see Fig. 27. Hence the mechanism of stabilization is closely related to
the temporal localization of pumping realized this way. It strongly differs from the situation of Fig. 25, in which was set an
initial pulse distribution close to the final FCP.

In a recent paper [39], Farnum and Kutz proposed a ‘master mode-locking equation’ for few-cycle pulses. Their equation
reads as

∂x∂tu − u −
1
6
∂2x u

3
= ∂x


g(t)F −1 P(k)û− γ u + βu3 (7.23)

in which x is the variable which accounts for the pulse shape, proportional to our variable τ , t is the propagation variable,
proportional to our variable ζ , u is the normalized laser electric field. F is the Fourier transform with k the variable
conjugated to x and F (u) = û. Here

g(t) =
2g0

1 + ∥u∥2/I0
,

with ∥u∥ the L2-norm of u, is the saturated gain, and P(k) = 1 − a (|k| − b)2 is the spectral gain profile.
In addition to Eq. (7.21), this phenomenological equation takes into account the dispersion term due to the infrared

resonances, it is the term −u on the left-hand side of Eq. (7.23). It also takes into account gain saturation, through the
expression of g(t), and the effect of some instantaneous saturable absorber, through the term ∂x


βu3


. However, the

spectral profile of the gain is essential for dissipative FCP soliton formation. In [39], the gain–loss spectrum is given by
Pg(k) = gP(k) − γ . In Eq. (7.21), it is Q (ω) = Cω2

− Gω4
− Γ . Let us consider the same numerical values of C , G, Γ as

above, and a = 0.75, b = 1.6 as used in [39]. The proportionality coefficient between k and ω is fixed so that the maxima of
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Fig. 28. The spectral profile of the gain involved by Eq. (7.21) (dashed blue line), compared to the one used in the ‘master mode-locking equation’ for FCPs
of Ref. [39] (solid red line).

Pg(k) and Q (ω) coincide, then g and γ are fixed so that both the maximum amplitude and the width of the two functions
coincide. They are plotted versus k in Fig. 28. Comparison between the two curves show that both approaches are in fact
very close together.

We conclude this section with a few comments on these studies of dissipative FCPs. First, we recall that in Ref. [38] it was
introduced a model based on the Maxwell–Bloch equations for an ensemble of 2 × 2-level atoms, which takes into account
both the losses due to the optical field reflection at the laser cavity mirrors and the ones occurring in the optical medium
itself. The multiscale perturbative approach up to the third-order in a certain small perturbation parameter was used. As a
result of this powerful reductive perturbation method, a generalized modified Korteweg–de Vries equation containing gain
and loss terms has been derived and has been solved by adequate numerical methods. The simulations have clearly proved
its suitability for describing the physics of few-optical-cycle dissipative solitons. Second, a remarkable feature of the model
introduced in Ref. [38] is that no nonlinear gain/loss term accounting for some effective saturable absorber is required in
order to get robust ultrashort dissipative solitons; it was found that absorbing boundary conditions are the only way to
stabilize the FCP. Note that a precise identification of the physical mechanism that such specific boundary conditions are
modeling requires a separate study. Third, it was shown in Ref. [38] that a single dissipative FCP soliton can be formed only
if some velocity filtering or temporal localization of pumping is introduced in the model equation. We believe that these
results can also be generalized to (2 + 1)-dimensional few-cycle-pulse propagation models for dissipative optical solitons.

8. Spatiotemporal few-optical-cycle solitons

In this section we will systematically use the reductive perturbation technique to obtain generic nonlinear equations
which describe the evolution of (2 + 1)-dimensional spatiotemporal few-optical-cycle solitons in both quadratic and cubic
nonlinear optical media, beyond the SVEA. First, we will consider ultrashort spatiotemporal optical solitons in quadratic
nonlinear media and the generation of both line and lump solitons from few-cycle input pulses [31]. Second, in the case of
nonlinear Kerr media, we will describe the collapse of ultrashort spatiotemporal pulses described by the cubic generalized
Kadomtsev–Petviashvili (KP) equation [32]. Third, we consider the problem of ultrashort light bullets described by the
two-dimensional sine–Gordon equation in the short-wave approximation regime [33]. By using a reductive perturbation
technique applied to a two-level model, it was obtained in Ref. [33] a generic two-dimensional sine–Gordon evolution
equation governing the propagation of femtosecond spatiotemporal optical solitons in Kerr media beyond the SVEA. One
notices that in contrast to the long-wave approximation, no collapse occurs, and that robust (2+ 1)-dimensional ultrashort
light bullets may form from adequately chosen few-cycle input spatiotemporal waveforms. Also, in contrast to the case of
quadratic nonlinearity, the light bullets oscillate in both space and time, and are therefore not steady-state lumps [33]. (See
Fig. 36.)

8.1. Ultrashort light bullets in quadratic nonlinear media: the long-wave approximation regime

A FCP launched in a quadratically nonlinear medium may result in the formation of a (1 + 1)-dimensional half-cycle
soliton (with a single hump) and without any oscillating tails [120]. It was proved in Ref. [120] that the FCP soliton
propagation in quadratic nonlinear media can be adequately described by a KdV equation and not by a mKdV equation
as in the case of cubic (Kerr) nonlinear media. Note that in Ref. [120] it was considered a quadratic nonlinearity for a single
wave (frequency), and that no effective third order nonlinearity was involved (due to cascaded second order nonlinearities).
This is in sharp contrast with the nonlinear propagation of standard quadratic solitons (alias two-color solitons) within the
SVEA where two different frequencies are involved, namely a fundamental frequency and a second harmonic [197–208].

It is to bementioned that there are only a fewworks devoted to the study of multidimensional few-optical-cycle solitons
(spatiotemporal few-cycle solitons), where additional spatial transverse dimensions are incorporated into the model; see
e.g., the earlier works [72,74,75], where the propagation of few-cycle optical pulses in a collection of two-level atoms was
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Fig. 29. (Color online) The different length scales of the KP soliton. After Ref. [31].

investigated beyond the traditional SVEA in a (2+ 1)-dimensional model. The extensive numerical simulations have shown
that in certain conditions, a femtosecond pulse can evolve into a stable few-optical-cycle spatiotemporal soliton [72,74,75].

In the following we derive the generic KP equation governing the propagation of femtosecond spatiotemporal solitons
in quadratic nonlinear media beyond the SVEA. The powerful reductive perturbation technique up to sixth order in a small
parameter ε will be used [31]. When the resonance frequency is well above the inverse of the typical pulse width, which is
of the order of a few femtoseconds, the long-wave approximation leads to generic KP I and KP II evolution equations. We
then briefly discuss the known analytical solutions of these KP equations, such as line and lump solitons. Direct numerical
simulations of the nonlinear evolution equations show the generation of stable line solitons (for the KP II equation) and of
stable lumps (for the KP I equation). As concerning the problem of instability of such solitons, a typical example of the decay
of the perturbed unstable line soliton of the KP I equation into stable lumps is also given in what follows.

The derivation of the KP equation closely follows the corresponding derivation of the KdV equation describing the (1+1)-
dimensional model of the propagation of ultrashort solitons in quadratic nonlinear media; see Section 3.3 and Ref. [120]. As
we explained in the latter case, transparency implies that the characteristic frequencyωw of the considered radiation (in the
optical range) strongly differs from the resonance frequency Ω of the atoms, hence it can be much higher or much lower.
We consider here the latter case, i.e., we assume that ωw is much smaller than Ω . This motivates the introduction of the
temporal and spatial slow variables

τ = ε

t −

z
V


, ζ = ε3z, η = ε2y, (8.1)

ε being a small parameter. The delayed time τ involves propagation at some speed V to be determined. It is assumed to vary
slowly in time, according to the assumption ωw ≪ Ω . The pulse shape described by the variable τ is expected to evolve
slowly in time, the corresponding scale being that of variable ζ . The different length scales for the soliton of the KP-type
nonlinear evolution equations are shown in Fig. 29. The smallest scale determines the direction of the wave surface, and
the propagation direction, which is normal to it. Consequently, the transverse spatial variable ymust have an intermediate
scale: ε2 and not ε3 as for the longitudinal spatial coordinate z; these three different scalings of the variables t , y, and z are
usual in KP-type expansions; see Ref. [93].

Aweak amplitude assumption is needed in order that the nonlinear effects arise at the same propagation distance scale as
the dispersion does. According to the reductive perturbationmethod as developed in Ref. [93], the electric field E is expanded
in a power series of a small parameter ε: E = ε2E2 + ε3E3 + ε4E4 + · · ·, as in the standard KdV-type expansions [93,120].
Also, the polarization density P is expanded in a similar way.

If we proceed with the order by order resolution of the corresponding Schrödinger–von Neumann density matrix
evolution equation and the Maxwell wave equation we find that the computation is exactly the same as in Ref. [120] up
to order ε4 in the Schrödinger–von Neumann equation and up to order ε5 in the wave equation. Then the Maxwell wave
equation at order ε6 yields the evolution equation for the electric field amplitude E2, as

∂ζ ∂τE2 = A∂4τ E2 + B∂2τ (E2)
2
+

V
2
∂2ηE2, (8.2)

which is a generic KP equation. One notices that the dispersion coefficient A and the nonlinear coefficient B can be written
in a general form as A = [1/(2c)] d2n

dω2


ω=0

, and B = −[2π/(nc)]χ (2)(2ω;ω,ω)

ω=0, where n is the refractive index of the

medium and ω is the wave pulsation. V = c/n is the velocity.
The KP equation (8.2) is reduced to

∂Z∂Tu = ∂4T u + ∂2T u
2
+ σ∂2Yu, (8.3)
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Fig. 30. (Color online) The typical lump solution of the KP I equation. The parameters are A = −1, B = −1, V = 1, pr = −1, and pi = 2. After Ref. [31].

where σ = sgn(A), by the change of variables

ζ = Z, τ = A1/3T , η = |A|
1/6


V
2
Y , E2 =

A1/3

B
u. (8.4)

Typically, in the case of the two-level model, the dispersion coefficient A is a positive number, i.e., we are in the normal
dispersion case. Hence σ = +1 and Eq. (8.3) is the so-called KP II equation. If Eq. (8.2) is generalized to other physical
situations, we can assume an anomalous dispersion, i.e. n′′ < 0 and A < 0. Then σ = −1, and Eq. (8.3) becomes the
so-called KP I equation.

Both KP I and KP II are completely integrable by means of the inverse scattering transform method [86], however the
mathematical properties of the solutions differ. The KP II equation admits stable nonlocalized line solitons, but not stable
localized soliton solutions. The line soliton solution has the known analytical expression

E2 =
6p2A
B

sech 2

p

τ + aη +


a2V
2

+ 4p2A

ζ


, (8.5)

where a and p are arbitrary constants and A, B are the coefficients given above. For the KP I equation, the above line soliton
is not stable, but KP I admits stable lumps [209,210], which are two-dimensionally localized solutions, as

E2 =
12A
B


−

t ′ + pry′

2
+ p2i y

′2
+ 3/p2i



(t ′ + pry′)2 + p2i y′2 + 3/p2i

2 , (8.6)

with t ′ = τ +

p2r + p2i


Aζ and y′

= η(−2A/V )1/2 − 2prAζ , where pr and pi are arbitrary real constants. In Fig. 30 we plot
the analytical lump solution, which was written above.

In what follows we give typical examples of numerical simulations of both KP I and KP II equations. The KP equation
(8.3) is solved by means of the fourth order Runge–Kutta exponential time differencing (RK4ETD) scheme [115]. Let us first
consider a normal dispersion (n′′ > 0), for which Eq. (8.2) is a KP II equation.We start from an input in the form of a Gaussian
plane wave packet

u = u0 exp

−
(T − T1)2

w2
t


cos


2π
λ
(T − T1)


(8.7)

where T1 = (−λ/2) exp

−Y 2/w2

y


accounts for a transverse initial perturbation. As a result of these numerical simulations

we show in Fig. 31 that (a) the FCP input transforms into a half-cycle pulse (a line soliton solution of KP II equation), whose
temporal profile is a sech-square shaped KdV soliton, plus the accompanying dispersing–diffracting waves, and that (b) the
initial transverse perturbation vanishes and the line soliton becomes straight again during propagation.

If we now assume a quadratic nonlinear medium with anomalous dispersion (n′′ < 0), the KP equation (8.2) reduces to
Eq. (8.3) with σ = −1, i.e., a KP I equation. Now we consider initial data of the form

u = u0 exp


−

T 2

w2
t

−
Y 2

w2
y


cos


2π
λ

T

, (8.8)

with arbitrary values of the initial amplitude u0, widthwy, and durationwt of the pulse. The evolution of the input FCP into
a lump is shown in Fig. 32; we clearly see the accompanying dispersive waves, which remain captured in the computation
box due to the periodic boundary conditions used in the T -direction. In the Y -direction, absorbing boundary conditions have
been used, and consequently, the dispersive waves propagating transversely or obliquely vanish from the computation box
as they move away from the lump.

Fig. 33 shows the decay of a perturbed unstable line soliton of KP I equation into lump solitons. The input is given by
Eq. (8.7), with the transverse perturbation T1 = (−λ/2) cos (2πY/L), where thewavelength L of the transverse perturbation
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Fig. 31. (Color online) Shape and profile of the line soliton. (a) input, (b) after propagation (Z = 14.95). The parameters are λ = 3, u0 = 10.7, wt = 1.4,
andwy = 3.87. After Ref. [31].

Fig. 32. (Color online) Shape and profile of the lump. (a) input, (b) after propagation (Z = 14.95). Parameters are λ = 3, u0 = 6.12, wt = 1.2, and
wy = 6.36. After Ref. [31].

Fig. 33. (Color online) Generation of lumps from a perturbed unstable line soliton. (a) input, (b) after propagation Z = 1.45. Parameters are λ = 3,
u0 = 10.7,wt = 1.4, and L = 14.14. After Ref. [31].

is chosen so that 2L = 28.3 is the width of the numerical box, in accordance with the periodic boundary conditions used
in the numerical computations; see Ref. [31] for more details. Note also that this transversely perturbed line soliton, in
contrast with the case of KP II equation for normal dispersion shown in Fig. 31, does not recover its initial straight line shape
and transverse coherence, but breaks up into localized lumps. We conclude this study by noting that ultrashort (2 + 1)-
dimensional spatiotemporal quadratic solitons may form from an adequately chosen FCP input, their transverse focusing
results from any transverse perturbation of the incident Gaussian plane-wave packet. Though we restricted this study to
(2 + 1) dimensions, however, due to the known properties of the Kadomtsev–Petviashvili equation in (3 + 1) dimensions
[211,212], analogous behavior is expected in three dimensions, i.e., stability of the spatial coherence of a plane wave few-
cycle quadratic soliton for normal dispersion, and spontaneous formation of spatiotemporal few-cycle ‘light bullets’ in the
case of anomalous dispersion.

8.2. Collapse of ultrashort spatiotemporal optical pulses

In this subsection, following Ref. [32] a cubic generalized Kadomtsev–Petviashvili (CGKP) equation for describing
ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media, without the use of the slowly varying
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envelope approximation, is derived by using a reductive perturbation method. The collapse threshold for the propagation
of few-cycle spatiotemporal pulses is calculated by a direct numerical method, and compared to the analytic results based
on a rigorous virial theorem. Note also that the evolution of the optical spectrum (integrated over the transverse spatial
coordinate) evidenced a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse.

As in the preceding subsection we consider a set of two-level atoms and, since transparency of the medium implies
that the characteristic frequency ωw of the considered radiation (in the optical range) strongly differs from the resonance
frequencyΩ of the atoms,we assume thatωw ismuch smaller thanΩ , i.e., wework in the long-wave-approximation regime.
We introduce the same kind of temporal and spatial slow variables as in the preceding subsection; see Eq. (8.1).

A weak amplitude assumption is needed in order that the nonlinear effects arise at the same propagation distance scale
as the dispersion does, however, in the present case of cubic (Kerr) media the expansion of the electric field E as power
series of a small parameter ε is different: E = εE1 + ε2E2 + ε3E3 + · · ·. Indeed, as it is well known within the SVEA, the
quadratic nonlinear effects requiremuch less intensity than cubic ones. That is why the amplitude required for the quadratic
nonlinearity is of order ε2, which is small with respect to the amplitude of order ε required in the present case of the cubic
nonlinearity.

The above expansion is a standard one in mKdV-type series expansions [93]. Also, the polarization density P is expanded
in the same way: P = εP1 + ε2P2 + ε3P3 + · · ·. The resolution of the perturbative scheme is very close to the (1 + 1)-
dimensional case (see Ref. [73] and Section 3.1 above) in what concerns nonlinearity and dispersion, while the treatment of
dispersion and the dependency with respect to the transverse (spatial) variable η is fully analogous to the case of quadratic
nonlinear media; see Ref. [31] and the previous subsection. After a straightforward algebra, we are left with

∂ζ ∂τE1 = A∂4τ E1 + B∂2τ (E1)
3
+

V
2
∂2ηE1, (8.9)

which is a CGKP equation. Here the dispersion and nonlinear coefficients A and B in the above (2+1)-dimensional evolution
equation are given by the same expressions as in the (1 + 1)-dimensional case, see Section 3.1 (Eq. (3.12)). The coefficient
V = c/n in Eq. (8.9) is the velocity, where the refractive index n has the same expression as in the (1+ 1)-dimensional case
(Eq. (3.8)).

Rescaling the CGKP equation (8.9) we get its normalized form
uZ + σ1u2uT + σ2uTTT


T = uYY , (8.10)

where σ1 = sgn(−B) and σ2 = sgn(−A).
Generally speaking, there are four different CGKPequations [Eq. (8.10)], depending on the signsσ1 andσ2. If the dispersion

is anomalous (n′′ < 0, A < 0 and σ2 = +1), then depending on the sign of nonlinearity, (i.e. of B and σ1), it is either focusing
for both space and time, or defocusing for both space and time. The corresponding situation for quadratic nonlinearity is KP
I, while, within the SVEA, it would be the elliptic NLS equation in two dimensions. For normal dispersion (n′′ > 0, A > 0 and
σ2 = −1), the CGKP equation is focusing in space and defocusing in time or conversely; it corresponds to KP II for quadratic
nonlinearity, and to a hyperbolic NLS equation in two dimensions within the SVEA.

In the framework of the Maxwell–Bloch equations, the dispersion is normal (A > 0) and B > 0 (σ1 = σ2 = −1), hence
the nonlinearity and dispersion yield temporal self-compression, but nonlinearity and diffraction tend to defocus the FCP.
In this case we observe the typical nonlinear diffraction; see Fig. 34. The CGKP equation (8.10) was solved by means of the
fourth order Runge–Kutta exponential time differencing (RK4ETD) scheme [115] and the input field distribution was taken
in the form:

u(T , Y , Z = 0) = A exp(−T 2/p2 − Y 2/q2) sin(ωT ). (8.11)

The nonlinear effect strongly increases the diffraction: compare the panels (c) and (d) in Fig. 34. The conjugated effect of
temporal self-compression and diffraction may lead to an intermediary stage, in which the pulse is very well localized
temporally, and strongly widens spatially; see the characteristic crescent shape in panel (b) of Fig. 34. In this situation, the
CGKP is a KP II with cubic nonlinearity, and consequently the existence of stable line solitonmight be expected. Line solitons
have been derived analytically [213], however their stability has not yet been studied. In fact, preliminary computations
indicate that they might be unstable.

For normal dispersion, but the opposite sign for nonlinearity (σ1 = +1, σ2 = −1), focusing occurs spatially, but the pulse
should be spread out in the time domain due to dispersion. This situation may be relevant for some experiments: although
no stable state can be reached from an initial pulse localized in time and space, the dispersion is able to prevent the collapse
(even in (3 + 1) D), and it may result in a relative stabilization of the beam profile in space. However, we did not study this
situation in detail. Note that the line solitons are not regular in this case [213].

In the case of anomalous dispersion and defocusing nonlinearity (σ1 = −1, σ2 = +1), both nonlinear diffraction and
nonlinear dispersion occur. Any pulse will be spread out in all directions, which is of little interest, and we will not discuss
this situation further.

More interesting is the situation where the medium presents anomalous dispersion and focusing nonlinearity (A, B < 0
and σ1 = σ2 = +1). In this case, spatiotemporal self-focusing occurs. Numerical simulations of the CGKP equation have
been performed in Ref. [32] for the following set of parameters ω = −2.1909, p = 1.8257, q = 1.414, and for several
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Fig. 34. (Color online) Nonlinear diffraction of a spatiotemporal FCP. (a) Initial (Z = 0), (b) an intermediary stage, with a typical crescent shape
(Z = 0.9594), (c) nonlinear diffraction at Z = 3.984, (d) linear diffraction at the same propagation distance for the sake of comparison. The input field
distribution is given by the expression (8.11) with p = 4.0825, q = 2.8868, ω = 1, A = 4.8990 (a), (b), and (c), and A = 10−7 (d). After Ref. [32].

Fig. 35. (Color online) Evolution of themaximal value of the electric field for a fewvalues of the initial amplitude. The collapse occurs above some amplitude
threshold. Input data is expression (8.11) with ω = −2.1909, p = 1.8257, q = 1.414, and several values of the amplitude A, namely A = 3.80 (a), 3.65 (b),
3.57 (c) 3.50 (d). After Ref. [32].

values of the initial field amplitude A; clear numerical evidence for collapse was found; see Fig. 35. Collapse occurs for the
two highest values of the input spatiotemporal field amplitude A (curves a and b in Fig. 35), and not for the two lowest ones
(curves c and d in Fig. 35). Hence the occurrence of some input amplitude threshold Ath is evidenced, and for the considered
pulse shape, frequency, length and width, we get the numerical estimation 3.57 < Ath < 3.65. This numerical value for the
collapse threshold was compared in Ref. [32] with the corresponding value given by using a virial theorem. Thus a rigorous
mathematical analysis of the CGKP equation (8.9) based on a virial theorem has proved that wave collapse do occurs (for a
comprehensive review of wave collapse in optics and plasma waves, see Ref. [214]); also, for more details concerning CGKP
equation, see Refs. [215–218].

It was possible to derive from the virial theorem some threshold value Ãth of the amplitude [32]. For the specific values
of parameters used in that work, this value is Ãth = 7.567. However, the threshold Ath ≃ 3.6 found by numerical methods is
about half of the value Ãth, found using the assumptions of the virial theorem. On the other hand, it was found in Ref. [32] that
for initial amplitude below threshold Ath, the self-focusing stops after awhile and the collapse is inhibited. This feature is due
to the dispersion (both linear and nonlinear), which tends to increase the temporal length of the pulse at the same time as it
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Fig. 36. (Color online) Evolution of the spectrum integrated over Y during collapse. The input data correspond to the case (b) in Fig. 35. After Ref. [32].

self-focuses. Note that below the threshold, the dispersion dominates and collapse is prevented, while above the threshold,
self-focusing dominates and collapse occurs; it is worthmentioning that the arrest of collapse due to dispersionwas actually
found in a previouswork; see Ref. [72]. The discrepancy between the analytic and numerical thresholds for collapse found in
Ref. [32] may be justified qualitatively as follows: between the two values for threshold (Ath ≃ 3.6 . A . 7.6 ≃ Ãth), at the
beginning of the process, the amplitude is not properly speaking sufficient to initiate collapse but, due to the shape of the
pulse, a nonlinear lens effect induces a transverse self-focusing of the pulse, which increases the maximal pulse amplitude.
At the same time, both linear and nonlinear dispersion occur, which tend to decrease the amplitude. If dispersion domi-
nates, the growth of the amplitude stops and collapse does not occur. If, on the contrary, self-focusing dominates, the peak
amplitude reaches a value which is sufficient to induce the collapse as such. It is worth noting that in Fig. 35, the collapsing
curves show two distinct parts, the first part, which is oscillating corresponds rather to self-focusing and the second part
corresponds rather to collapse stricto sensu. The numerical value of the amplitude at the boundary between the two distinct
domains is rather close to the threshold value for collapse (Ãth ≃ 7.6) found from a rigorous mathematical condition; see
Ref. [32] for more details of this issue.

Concluding this subsectionwe stress that we have introduced amodel beyond the SVEA of the commonly used nonlinear
Schrödinger-type evolution equations, for describing the propagation of (2 + 1)-dimensional spatiotemporal ultrashort
optical solitons in Kerr (cubic) nonlinear media. Our approach was based on the Maxwell–Bloch equations for an ensemble
of two level atoms and on themultiscale approach, and as a result of using the powerful reductive perturbationmethod [93],
a generic cubic generalized Kadomtsev–Petviashvili partial differential evolution equationwas introduced andwas analyzed
by both analytical and numerical technique. Moreover, the evolution of the spectrum (integrated over the transverse spatial
coordinate) was also calculated and a strongly asymmetric spectral broadening of ultrashort pulses during collapse was also
put forward [32], in contrast to the case of long spatiotemporal waveforms described within the SVEA.

8.3. Ultrashort light bullets in cubic nonlinear media: the short-wave approximation regime

In this subsection we consider the problem of existence and robustness of ultrashort light bullets described by the two-
dimensional sine–Gordon equation. A reductive perturbation technique applied to a two-levelmodelwas used in Ref. [33] in
order to get the corresponding nonlinear evolution equation. A generic two-dimensional sine–Gordon evolution equation
governing the propagation of femtosecond spatiotemporal optical solitons in Kerr media beyond the SVEA was derived
in Ref. [33] and direct numerical simulations have shown that, in contrast to the long-wave approximation, no collapse
occurs. Robust (2+1)-dimensional ultrashort light bulletsmay form fromadequately chosen few-cycle input spatiotemporal
waveforms. One notices that in contrast to the case of quadratic nonlinearity, the light bullets oscillate in both space and
time and are therefore not steady-state lumps.

One notices that there exist in the published literature several generalizations to (2 + 1) dimensions of the generic sG
equation. Such evolution equations can be derived in the short-wave approximation regime; some of them support localized
solitons which are not oscillating as either the sG breathers or as the one-dimensional FCP solitons in Kerr media [219–222].
The question whether the (2 + 1)-dimensional generalization of sG equation, which is valid for FCP propagation in cubic
nonlinear media, is one of the nonlinear dynamical systems discussed in Refs. [219–222] or some other one, can only be
decided by means of a rigorous derivation starting from the basic equations. We will show below that we get a nonlinear
system of equations which cannot be reduced to any of the equations obtained by using the same reductive perturbation
method in the case of electromagnetic wave propagation in ferromagnetic media; see Refs. [219–222].

We consider the so-called short-wave approximation, by assuming that ωw is much larger than Ω . In [33] the short
wave approximation was presented through a rescaling of the time, based on the assumption that Ω is small, considering
a small reductive perturbation parameter ε ∼ Ω/ωw . It is equivalent to state that the typical wave frequency ωw is very
large, and corresponds thus to a fast variable τ = (1/ε) (t − z/V ), as in the standard short-wave approximation defined
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in Refs. [93,175,176]. The delayed time τ involves propagation at some speed V to be determined. It is assumed to vary
rapidly in time according to the assumption ωw ≫ Ω . This motivates the introduction of the new scaled variables ζ = z
and η = y/

√
ε. The pulse shape described by the variable τ evolves more slowly in time, the corresponding scale being that

of variable ζ . The transverse spatial variable y has an intermediate scale, comparable to what is usually considered in long-
wave approximations [93]. In fact, the situation presented in Fig. 29 still holds as concerns the relative order of magnitude
of the various characteristic lengths; only their relation with the reference length (which defines the order ε0) is changed.

Thus we expand the electric field E, the polarization density P and the density matrix ρ as power series of a
small parameter ε: E = (1/ε)


E0 + εE1 + ε2E2 + ε3E3 + · · ·


, P = (1/ε)


P0 + εP1 + ε2P2 + ε3P3 + · · ·


, and ρ =

ρ0 + ερ1 + ε2ρ2 + ε3ρ3 + · · ·

.

The large amplitude assumption plays the same role as the rescaling used in Ref. [33]; see Section 3.2 above. These
expansions are then introduced into the Schrödinger–von Neumann and Maxwell equations, which are solved order by
order. The computation follows the same steps as the (1 + 1)-dimensional case; see Ref. [73].

At order 1/ε, the Schrödinger–von Neumann equation for the evolution of the density matrix reduces to ih̄∂τρ0 =

−E0 [µ, ρ0]. In what follows we label the components of any Hermitian matrix u as

u =


ua ut
u∗

t ub


. (8.12)

We assume that the coherences ρjt are zero long before the pulse, i.e., as z → +∞ or t̃ → −∞ we have limτ→−∞ ρjt = 0
for any j ≥ 0. Then one can express the coherence ρ0t as

ρ0t =
iµ
h̄

 τ

−∞

E0w0dτ ′, (8.13)

where w0 = ρ0b − ρ0a is the population difference. We do not assume a pumping, hence limτ→−∞w0 = wth, where
−1 < wth < 0 is the population difference at thermodynamic equilibrium. If all atoms are initially in the fundamental state,
then we have wth = −1. Note that the higher order terms of the population difference (wj = ρjb − ρja with j ≥ 1) vanish
at infinity. Using the above boundary conditions and definitions, we get from the Schrödinger–von Neumann equation at
order 1/ε the evolution equation forw0, as

∂τw0 =
−4 |µ|

2

h̄2 E0

 τ

−∞

E0w0dτ ′. (8.14)

Since the polarization density at this order is P0 = N (ρ0tµ∗
+ cc) = 0, where cc denotes the complex conjugate, we see

from thewave equation at leading order 1/ε3 that the velocity V should be V = c up to this order. Next, the Schrödinger–von
Neumann equation at order ε0 gives

ih̄∂τρ1 =


H̃0, ρ0


− E0 [µ, ρ1] − E1 [µ, ρ0] ,

and the off-diagonal terms of the above equation yield

ρ1t = iΩ̃
 τ

−∞

ρ0tdτ ′
+

iµ
h̄

 τ

−∞

(E0w1 + E1w0) dτ ′. (8.15)

It allows us to compute the leading term of the polarization density
P1 = N


ρ1tµ

∗
+ cc


,

as

P1 =
−2NΩ̃ |µ|

2

h̄

 τ

−∞

 τ ′

−∞

E0w0dτ ′′dτ ′. (8.16)

If we insert the polarization P1 into the Maxwell wave equation at order 1/ε2 we finally get the evolution equation for the
electric field E0:

∂2η −
2
c̃
∂ζ ∂τ


E0 =

−8πNΩ̃ |µ|
2

h̄c̃2
E0w0. (8.17)

Eq. (8.17) together with Eq. (8.14) yield the sought nonlinear system of equations for the variables E0 andw0.
At this point we put the coupled nonlinear equations (8.14) and (8.17) in their normalized form as

∂Z∂TB = AB + ∂2YB, (8.18)

∂TA = −BC, (8.19)
∂TC = AB, (8.20)

by setting Y = y/lr , Z = z/Lr , T = (t − z/c) /Tr , A = w0/wr , B = E0/Er , with Lr a reference length in themicrometer range,

lr = Lr/
√
2, Tr = Lr/c, wr = (h̄c2)/(4πNΩ|µ|

2L2r ), Er = (h̄c)/(2|µ|Lr).
The boundary conditions, are then limT→−∞ C = 0, and limT→−∞ A = wth/wr .
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Fig. 37. (Color online) Evolution of a perturbed input FCP plane wave into two-dimensional FCP solitons. (a) Input (Z = 0), (b) output (Z = 52.2). After
Ref. [33].

Fig. 38. (Color online) The evolution of a two-dimensional soliton, from an input roughly reproducing it. (a) Input (Z = 0), (b) output (Z = 316.8). After
Ref. [33].

Wenote that the coupled system of partial differential equations (8.18)–(8.20) is a two-dimensional generalization of the
sine–Gordon equation [33]. It is worthwhile to compare it to the set of equations derived by the same reductive perturbation
method in the case of electromagnetic wave propagation in ferromagnetic media [219–222]; however a careful analysis
shows that system (8.18)–(8.20) cannot be reduced to any of these equations.

Next it is seen from Eqs. (8.19)–(8.20) that ∂T

A2

+ C2


= 0. This allows us to introduce a function ψ = ψ(Z, T )
as A = U cosψ , C = U sinψ , where U depends on Z only. From the above written boundary conditions, we see that
limT→−∞ ψ = 0 and thus U = wth/wr , and is independent of Z (except if inhomogeneous pumping is present, but this
situation is excluded here as we have said above). By a straightforward manipulation of the above equations we getψT = B
and after integration over T of Eq. (8.18), we are left with the evolution equation

ψZT = U sinψ + ψYY , (8.21)

which is known as the two-dimensional sG equation; see Ref. [33].
In Ref. [33] the two-dimensional sG equation was solved numerically starting from an input field distribution in the form

of a FCP plane wave with temporal shape as

B = β exp

−
(T − T1 − T0)2

w2
T


cos


2π
θ
(T − T1)+ π/2


, (8.22)

in which T1 = 0.1 exp

−Y 2/w2

Y


yields a transverse perturbation. The set of parameters was wT = 1, wY = 2, T0 = −0.2,

θ = 1.5, β = 8, and U = −10. The numerical calculations clearly show that we get the formation of robust localized
two-dimensional sG solitons; see Fig. 37. Note that the two-dimensional sG solitons are oscillating structures, which are
localized in both space and time. These two-dimensional FCP solitons were fitted by an expression of the form

B = β exp

−(T 2/w2

T )− (Y 2/w2
Y )

sin [ω(T − T1)] ,

in which the coefficients were chosen to fit the obtained numerical data. For the above numerical data, the following values
were obtained in Ref. [33]: wT = 0.7, wY = 0.75, ω = 3.5, β = −18, and T1 = 0.04. Then the fit was used as input;
its evolution is shown in Fig. 38. We see that the input spatiotemporal waveform stably propagates, being neither affected
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by dispersion nor by diffraction; after a transitory stage in which the pulse radiates energy, and its amplitude decreases,
stabilization is reached eventually. Note that light bullets in the two-dimensional sG model have been also introduced in
Ref. [223], and even interactions have been studied in Ref. [224]. In Ref. [223], the two-dimensional sG equation was also
derived from the Maxwell–Bloch equations, but the derivation was performed from a reduced form of the Maxwell–Bloch
equations, and the physical assumptions were not so clearly given. In Ref. [33] we clearly demonstrated that the short
wave approximation of the Maxwell–Bloch equations is indeed the two-dimensional sG equation, and not one of the
nonlinear systemof equations found in the study of nonlinear electromagneticwaves in ferromagnets [219,221]. In Ref. [223]
ultrashort light bullets were also simulated numerically, but on a rather short propagation distance; it was stated in that
work that the light bullets loose energy and will become destroyed eventually. However, according to the computations
reported in Ref. [32] on propagation distances twenty times larger than in Ref. [223], in which stabilization of the energy
occurs, the energy loss seems rather to be due to the reshaping of the input pulse, and the light bullet is expected to be a
remarkable robust physical object.

As we already mentioned in this review, soliton propagation in a nonlinear medium implies that damping can be
neglected (we are not considering here the case of the so-called dissipative solitons where gain and loss effects also
compensate each other in order to get a solitonic waveform in a dissipative medium). In dielectric media, the damping
effects can be neglected when the propagation occurs at a given frequency which is far from any resonance frequency.
Let us consider a two-level model with characteristic frequency Ω , and denote by ωw a frequency characteristic for the
FCP soliton under consideration. The transparency condition implies that either ωw ≪ Ω or Ω ≪ ωw . The former case
(ωw ≪ Ω) corresponds to the longwave approximation, whereas the latter case corresponds to the short wave approximation.
We have shown in Section 3.1 that in the framework of a two-level model, a mKdV equation is obtained if the frequency
of the transition Ω is far above the characteristic wave frequency ωw (the long-wave approximation regime), while a sG
model is valid ifΩ is much smaller than ωw (the short-wave approximation regime); see Section 3.2. However, some of the
transition frequenciesΩj are much smaller than ωw , and the other ones much larger than ωw . This more realistic situation
can be modeled by considering two transitions only, with different frequencies Ω1 and Ω2. The physical system is thus
equivalent to a two-component medium, each of the two components being described by a two-level model. As a result, a
mKdV–sGmodel was put forward [68,76], which is completely integrable in certain particular cases bymeans of the inverse
scattering transform. It admits stable solutions of ‘breather’ type, which also give a good description of few-optical-cycle
soliton propagation.

The propagation of FCPs in a quadratic medium has also been described by either a KdV or a KP equation, in (1 + 1)
or (2 + 1) dimensions, respectively, which evidenced either the stability of a plane wavefront, for a normal dispersion, or
the formation of a localized spatiotemporal half-cycle soliton, for an anomalous dispersion [120,31]. By using a multiscale
analysis, a generic KP evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in
quadratic nonlinear media beyond the SVEA was put forward [31]. Direct numerical simulations showed the formation,
from adequately chosen few-cycle input pulses, of both stable line solitons (in the case of a quadratic medium with
normal dispersion) and of stable lumps (for a quadratic medium with anomalous dispersion). The perturbed unstable line
solitons decay into stable lumps for a quadratic nonlinear medium with anomalous dispersion [31]. However, in Ref. [31]
it was considered a set of two-level atoms and it was assumed that the characteristic frequency ωw of the considered
electromagnetic wave in the optical spectral range is much less than the transition frequency Ω of the atoms (long-wave
approximation regime). Thus in the long wave approximation regime, in a medium with a quadratic nonlinearity, half-cycle
light bullets in the form of single lumpsmay exist, while in a mediumwith a cubic nonlinearity collapse occurs. However, in
the short wave approximation regime and considering thewave propagation in a nonlinearmediumwith a cubic nonlinearity,
a third physical situation occurs: (2 + 1)-dimensional few-cycle light bullets may form, oscillating in both space and time.
Such ultrashort spatiotemporal optical solitons are adequately described by a (2 + 1)-dimensional sine–Gordon equation.

Concluding this subsection, we point out that this study can be generalized by taking into account both resonant and non-
resonant optical nonlinearities. Moreover, the generalization to two transverse spatial dimensions, in addition to time and
longitudinal coordinates, in order to study the formation of (3 + 1)-dimensional few-optical-cycle spatiotemporal solitons
(alias light bullets) can also be envisaged; see Refs. [130,225] and some recent theoretical and experimental works in the
area of (3 + 1)-dimensional solitons in different physical settings [226–243].

9. Conclusions

The above theory is relevant for all phenomena involving ultra-short pulses or very broad spectrum, for which the SVEA
fails to be valid. An important phenomenon in this class is supercontinuum generation. Preliminary studies have shown that
themKdV–sGmodel is adapted to the description of supercontinuum generation, especially in the later stage of the process,
when the width of the supercontinuum spectrum exceeds the initial central frequency. It is also suited to the description
of supercontinuum generation from femtosecond pulses, which have a broad spectrum from the beginning of the process.
Especially, it allows to take into account the generation of high harmonics, and their own spectral broadening, which seems
to have an important effect, which cannot be accounted for within the SVEA.

Refinements of the theory to make it closer to realistic experimental situations is important. The derivation of the
mKdV model in a general medium has recently been performed [112], the same study for a quadratic nonlinearity was
also reported [112]. Within the long-wave approximation, the effects of the various transitions combine themselves so that
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the general model keeps the same form, the coefficients merely involve the general linear and nonlinear susceptibilities.
Regarding the infrared transitions, or more generally the transitions with frequencies below the wave one, the relevant
approach is the short wave approximation. The question, how the various transitions will combine in the general case is still
open.

The theory of few-cycle dissipative solitons is still at its very beginning, and requires to be developed. In particular, the
experimental setups frequently use the Kerr-lens mode-locking. This phenomenon is clearly a multidimensional one, and
it is unlikely that it can be accounted for by a phenomenological modification of the one-dimensional evolution equation,
even in first approximation. The study of the evolution of multidimensional few-cycle pulses in a gain medium seems to be
required for such a study.

Given the rapid growth of studies in the past decade in the area of few-optical-cycle pulses, extreme nonlinear optics
and interaction of matter with strong optical fields, one can expect many new and exciting developments over the next
years. No doubt, soon one can expect a maturity of these fast growing research fields, leading to new and interesting
physical phenomena and to the utilization of their huge technological potential. We conclude with the hope that this
overview on recent developments in the area of few-optical-cycle solitons will inspire further theoretical and experimental
investigations.
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