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We report experimental observation of light filamentation in carbon disulfide (CS2). Accurate measurements
of the nonlinear index show an unusual saturation law of the Kerr effect, which is used to build a model of light
propagation in CS2, which describes the filamentation in good agreement with experimental observations.
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I. INTRODUCTION

Filamentation of a high-intensity optical pulse was ob-
served even before the concept of an optical soliton was
introduced and first modeled through a purely cubic Kerr
effect [1]. The high intensities reached in filaments allow
one to observe many nonlinear phenomena such as high-
harmonic or supercontinuum generation (see the review in
[2]). Permanent index changes induced by light filaments in
glass were observed very early [3] and more recently used to
burn waveguides (see, e.g., [4]). Filamentation in air has been
especially studied; it was shown that the arrest of collapse
is due to ionization [2], including multiple filamentation for
powers in the terawatt range [5]. Whatever the reason for
arresting collapse, many explanations have been proposed
for the formation of the filament pattern such as polarization
effects [6] and ellipticity of the beam [7]. Exotic beam shapes,
such as Bessel beams [8] or unstable optical vortices [9], have
been shown to lead to filamentation.

Recently, two-dimensional spatial soliton propagation es-
sentially stabilized due to the χ (3)-χ (5) balance in carbon
disulfide (CS2) at λ = 920 nm was reported [10] and we con-
sider here light filamentation in this liquid. Carbon disulfide
has been used for a long time as a reference material for
nonlinear index measurements. Hence many experiments of
nonlinear index characterization are available in the literature
[10–15]. It is indeed commonly stated that CS2 possesses a
third-order nonlinear refractive index n2 that essentially does
not vary with input intensity, at least if it remains moderate.
We found that this statement is not true and even that it is
not possible to correct it by merely adding a fifth-order index
term n4. Maybe it is the actual reason why very few papers, if
any, report measurements of n4 in CS2 at λ = 532 nm in the
picosecond regime. Consequently, the standard model for the
description of the nonlinear dynamics of a light beam in this
medium, which is based on the cubic nonlinear Schrödinger
(NLS) equation, eventually refined by adding several terms
to account for the higher-order nonlinear index and nonlinear
absorption, does not remain valid as an accurate description
of the saturation of the Kerr effect is required, which is the
case in modeling filamentation. We propose in this paper an
alternative model based on accurate measurements of effective
n2.

II. OBSERVATION OF THE FILAMENTATION

First we investigate the propagation of a laser beam in a cell
filled with CS2, with thickness L = 10 mm. The experimental

setup is shown in Fig. 1. The lens L1 (f1 = 200 mm) is used
to focus the light at the entry of the cell while the dashed box
(L2 and the CCD sensor) is an imaging system that can be
translated following the z axis to image the entry and the
output of the cell (from z = 0 to z = L, respectively). The ratio
between i and o corresponds to a magnification equal to 10.
The light source is a Nd:YAG laser, operating at wavelength
λ = 532 nm and emitting 12-ps-long pulses with Gaussian
time profile, linearly polarized, operating at a repetition rate of
10 Hz, which prevents any thermal effect. The output beam is
acquired using a (1024 × 768)-pixel (6.45 × 6.45 μm2 each)
CCD sensor triggered with the laser. At the entrance of the
setup, a waveplate and a Glan prism allow one to control the
input light intensity and to maintain linear polarization. Beam
shaping is achieved using a spatial filter, so the spatial profile
of the collimated beam is close to Gaussian at the input of the
setup (see Fig. 1).

We set the Rayleigh distance to be zR = L/10 = 1 mm
by adjusting the beam waist in the focus of L1 to be w0 =√

zRλ/π = 13 μm. Above an input energy per pulse of 1.4 μJ,
we observe the formation of filaments at the output of the cell
(see Fig. 2). Changing the input intensity allows us to control
the number of filaments.

III. NONLINEAR INDEX MEASUREMENTS

To give a theoretical account of these observations, an
accurate measurement of the nonlinear parameters of CS2 is
required. We perform it using the well-known Z-scan method
[11]. The standard model for the evolution of the light intensity
I and the beam phase ϕ during propagation in a nonlinear
medium, in the thin sample approximation, i.e., if diffraction
is negligible, can be set as

dI

dz
= −αI − βI 2 − γ I 3, (1)

dϕ

dz
= kn2,eff(I ) = k(n2I + n4I

2), (2)

where z is the spatial variable in the propagation direction;
k is the wave vector; α, β, and γ are the linear, two-photon,
and three-photon absorption coefficients, respectively; and n2

and n4 are the third-order and fifth-order nonlinear refraction
indices, respectively. Measurements using a nonlinear fitting
of the curve yielded by numerical solution of the differential
evolution equation and analytical solutions of Eqs. (1) and (2),
with the necessary approximations, have been given [16,17].
Equations (1) and (2) can be solved analytically in special
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FIG. 1. Experimental setup used to produce filamentation: NLM,
nonlinear medium (CS2); L1 and L2, lenses; f1, focal length of L1;
CCD, digital camera; i, image distance; and o, object distance.

cases where some of the nonlinear coefficients vanish [18].
In the general case, an analytical expression of z versus I is
found and inverted numerically [15].

It is known that CS2 has neither linear nor two-photon
absorption (α = 0, β = 0). However, Kong et al. have reported
an appreciable three-photon absorption γ at 800 nm [19]; they
also found the value of γ = 1.37 × 10−27 m3/W2. Moreover,
one of the absorption bands of CS2 is centered at about
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FIG. 2. (Color online) Filamentation observed at the output of
the CS2 cell for different values of the pulse energy: (a) 2.7 μJ and
(b) 14.2 μJ.

FIG. 3. (Color online) Normalized transmittance (open circles)
obtained by the OA Z-scan with a 1-mm-thick cell filled with CS2,
measured at λ = 532 nm and I0 = 25 GW/cm2. The dashed (blue)
line is a fitting using two-photon absorption [Eq. (3)] only, β =
8.5 × 10−12 m/W, while the solid (red) line shows the numerical
fit considering three-photon absorption [Eq. (4)] only, γ = 9.3 ×
10−26 m3/W2. The radius of the circular object is 1.7 mm, the beam
diameter in the focal plane is 19 μm, and the focal length of lens L3

is f3 = 20 cm.

200 nm [10], which is approximately the third harmonic λ/3
of the wavelength λ = 532 nm. This closeness to resonance
increases the fifth-order optical susceptibility |χ (5)| ∝ γ in this
experiment.

We use the standard open aperture (OA) Z-scan method,
together with analytic solution of (1) and (2) and numerical
inversion of it [15]. The open circles in Fig. 3 corresponding
to the experimental data are fitted with both Ansätze

z = I0 − IL

βI0IL

, (3)

z = I 2
0 − I 2

L

2γ I 2
0 I 2

L

, (4)

where I0 is the input intensity at the entrance of the nonlinear
medium, IL is the output one, and L is the sample thickness.
The best fit is obtained with the three-photon absorption, which
confirms that CS2 does not exhibit two-photon absorption
and gives the value of the three-photon absorption coefficient
γ = 9.3 × 10−26 m3/W2. The change in transmittance of the
material is observed via a cooled CCD camera (−30 ◦C) with
a sensor of 1000 × 1018 pixels (12 × 12 μm2).

The standard closed-aperture (CA) Z-scan [11] requires
that the incident intensity is calibrated using a reference
nonlinear medium (which is usually CS2). Recently, however,
“absolute” measurement methods have emerged [20], avoiding
the calibration. For this, the used setup is a 4f system (see
Fig. 4), consisting of two lenses L3 and L4. The top-hat beam
object is located in the front focal plane focus of the lens L3

and its Fourier transform is obtained in the rear focal plane of
the same lens, where the sample is placed, here a 1-mm-thick
cell filled with CS2. The same point is also the front focal
point of L4, which performs the Fourier transform into the
camera. A recent improvement of the technique allows us to
avoid the division of the two normalized Z-scan transmittances
(closed and open aperture ones) by recording the beam waist
relative variations according to the second-order momentum
(the D4σ method) [21]. We measure the effective third-order
refraction index n2,eff using the D4σ method, with increasing
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FIG. 4. Setup of the Z-scan measurement: BS, beam splitter; M,
mirrors; L3 to L5, lenses with focal length f3 to f5; NLM, nonlinear
medium; and CCD, digital camera. Using digital filters allows us to
switch from one measurement method to another (D4σ , OA, or CA).

intensity, for two wavelengths λ = 532 and 1064 nm (see
Fig. 5). We observe a steep increase of n2 as the input intensity
I0 increases. Then, after having reached a maximum value, n2

decreases rapidly again. We observe the same evolution for
both wavelengths, except that, at λ = 1064 nm, the variations
are slower and the intensity range is wider.

These results call into question the use of CS2 as a reference
material for calibrating nonlinear measurement systems. It is
known that the response of materials may vary depending on
the pulse duration, wavelength, and polarization. The non-
linear index coefficient n2 cannot be defined unambiguously
anymore since it is not a constant even in the weakly nonlinear
regime. The definition of n4 is a fortiori problematic.

IV. AN ADAPTED MODEL

The measurements show that the usual formula n2,eff(I ) =
n2 + n4I cannot be used anymore. The situation differs
greatly from the experiments of [10] and theory of [22]
because the nonlinear index n2,eff is here increasing with
moderate intensities, instead of decreasing. In other words, n4

is positive at the considered wavelengths and not negative as in
[10]. Indeed, measurements performed at moderate intensities
have provided the values n4 = (1.2 ± 0.3) × 10−32 m4/W2

at λ = 532 nm and n4 = (2.2 ± 0.4) × 10−33 m4/W2 at λ =

FIG. 5. (Color online) Plot of n2,eff (m2/W) versus I0(W/m2)
at 532 nm (solid red line) and 1064 nm (solid blue line). The
dashed lines correspond to the n2,eff fitting, taking into account the
uncertainties.

1.064 μm [15], in contrast to n4 = −2 × 10−35 m4/W2 at
800 nm [19] or n4 = −5.2 × 10−35 m4/W2 at 920 nm [10].
The change in the sign of n4 with wavelength is related
to the location of the third harmonic with respect to the
absorption bands of the material. The main point is that, in
the present situation, the saturation of the Kerr effect cannot
be accounted for by the n4 term. One may consider the option
of retaining more terms in the expansion of the response
function of the material in a power series of the electric
field (higher-order nonlinear susceptibilities). However, two
difficulties would arise then. First, from theoretical point of
view, the expansion cannot remain valid when the higher-order
corrections get the same order of magnitude as the leading
one. In [10] it was possible to have a n4 term comparable to
the n2 one because the third-harmonic resonance increased
considerably the former with respect to the latter, which was
not resonant. At the wavelengths considered in this paper, no
such resonance effect is observed. Second, there is a practical
difficulty in the measurement: Accurate values of n2 are
difficult to obtain; the difficulty is considerably increased for
n4, etc., so the accuracy required to reproduce the experimental
results in our computations would not be reached with enough
confidence.

One may think that nonlocality plays a role in these
variations. The time response of the component of n2,eff due to
molecular reorientation in CS2 was measured a long time ago
[23] and was found to be about 1.6 ps. Hence it is less than
the pulse duration for one order of magnitude, so retardation
effects are small and will have no consequence at all on spatial
behavior. Spatial nonlocality has been studied and has been
found to have appreciable effects if the distance covered by
excited atoms due to diffusion is appreciable with respect to
the beam radius [24]. In contrast to gases, this distance is very
small in liquids, especially for times in the picosecond range.
Hence nonlocality is completely negligible here.

Hence we provide an empirical model that describes
the variations of n2 with intensity we observe experi-
mentally by fitting the experimental curve with an ade-
quate Ansatz. After several trials, including the expressions
n2,eff(I ) = aI exp(−bI c) and n2,eff(I ) = aI/(1 + b2I )c, with
c = 1 or 2, and n2,eff(I ) = aI/(1 + b2I 2)2, we find that the
Ansatz

n2,eff(I ) = aI

1 + b2I 2
(5)

allows us to correctly reproduce the data at 532 and
1064 nm. To adjust the parameters a and b in (5), we use
the Levenberg-Marquardt nonlinear fit algorithm [25,26], as
already implemented in the GNU OCTAVE software. The best
fit, for data at 532 nm, is obtained with the set of parameters
a = 3.3921 × 10−32 m4/W2 and b = 5.7643 × 10−15 m2/W,
while at 1064 nm, a = 6.2989 × 10−33 m4/W2

and b = 2.2673 × 10−15 m2/W, as illustrated in
Fig. 5.

The NLS equation, in its most general form, reads

i
∂E

∂z
= − 1

2n0k
�⊥E − F (|E|)E, (6)

in which �⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian
operator accounting for the paraxial diffraction, k is the wave
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vector in vacuum, n0 is the linear refractive index, and F (|E|)
is some function, real in the conservative case, that accounts
for the nonlinearity. In the cubic case (pure Kerr effect),

F (|E|) = 3k

2n0
Re(χ (3))|E|2. (7)

If absorption is taken into account up to fifth order, as
fifth-order susceptibility, it becomes

F (|E|) = k2[i Im(χ (1)) + 3χ (3)|E|2 + 10χ (5)|E|4]. (8)

Here χ (1), χ (3), and χ (5) are the optical susceptibilities of the
first, third, and fifth order, respectively, which are complex
numbers. The real part of χ (1) does not appear in Eq. (6); it
is incorporated into the index n0. Note that the NLS equation
including damping is then formally identical to the cubic-
quintic Ginzburg-Landau (CGL) equation. However, the CGL
equation is always considered in the presence of gain while,
if only dissipation is present as in the present situation, the
properties are fundamentally different and essentially driven
by those of the conservative case.

The evolution of the phase ϕ is given by Eq. (2), in
which, as we have seen previously, the effective nonlin-
ear refractive index n2,eff(I ) = n2 + n4I must be replaced
with the experimentally observed variation law, according
to Eq. (5). The intensity I follows Eq. (1), in which, for
sake of simplicity and taking into account the results of
Ref. [15], the coefficients α and β can be set to zero, which
yields

∂ϕ

∂z
= kaI

1 + b2I 2
I, (9)

∂I

∂z
= −γ I 3. (10)

We intend to define the function F (|E|) to be used in the NLS
equation (6) in accordance with Eqs. (9) and (10). We apply the
thin sample approximation to Eq. (6), i.e., the diffraction term
involving �⊥E is set to zero. The amplitude and the phase are
separated by substituting |E| exp(iϕ) for E in Eq. (6). Then
the imaginary part yields, after simplification, the evolution
equation of the phase ϕ,

∂ϕ

∂z
= Re[F (|E|)]. (11)

The real part is multiplied by the conjugate E∗ of E to yield,
after substitution of |E|2 = I/2cε0n0, the equation for the
intensity I ,

∂I

∂z
= −2 Im[F (|E|)]I. (12)

Comparing Eqs. (11) and (12) with Eqs. (9) and (10) allows
us to identify both the real and imaginary parts of F (|E|).
Substituting this function into the NLS equation (6) yields the
model equation

i
∂E

∂z
= − 1

2n0k
�⊥E −

[
kaI 2

1 + b2I 2
+ i

γ I 2

2

]
E. (13)

For the numerical solution it is more convenient to work
with the normalized form of the equation

∂u

∂z
= i

2
�u + i

η|u|4u
1 + |u|4 − μ|u|4u, (14)

where � is the Laplacian operator relative to normalized
space variables X = x/w0, Y = y/w0, Z = z/l, and u =
E/Er , with l = n0kw2

0 and Er = 1/
√

b2n0cε0 being the
reference length and electric field, respectively. The field
is normalized with respect to the intensity 1/b at which
n2,eff reaches its maximum value. Further, η = lka/b2 and
μ = γ l/2b2.

Equation (14) is solved numerically by means of a standard
fourth-order Runge-Kutta scheme in z using five-point finite
differences for the computation of the transverse Laplacian
operator and absorbing boundary conditions. The D4σ method
is used on the image at the entrance of the cell to get an
accurate measurement of the beam diameter: 2w0 = 34 μm.
Computations have been run over a propagation distance
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FIG. 6. (Color online) Intensity pattern after 10-mm propagation
according to Eq. (13) for the input intensity (a) I0 = 5.54 GW/cm2

and (b) I0 = 139 GW/cm2.
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zmax = 10 mm, corresponding to the cell thickness. The
normalized propagation distance is Z = 0.14, the reference
intensity is Ir = 17.348 GW/cm2, and the reference length
is l = 70.369 mm. We used a spatial step size dX = dY =
1.057 × 10−2 and the normalized nonlinear parameters are
η = 848.45 and μ = 98.479.

The input data used for calculations is an image of the
beam at the entrance of the cell recorded by the camera.
This profile is multiplied by an adequate constant, so its
maximum value becomes |E| = √

I0/2n0cε0, where I0 is the
required peak intensity. The background noise of the camera
was subtracted numerically from the input signal. To avoid
excessive computation time and data storage, the width of the
computation domain is restricted to 3w0.

For moderate intensities (1–5.53 GW/cm2) diffraction
occurs. Then a first filament is formed for I0 = 5.54 GW/cm2

(see Fig. 6). A second filament appears when the input peak
intensity is I0 = 15 GW/cm2.

It is seen from the profiles that the shape of the filaments
is close to a Gaussian distribution. The numerical results are
found in good agreement with experimental ones.

V. CONCLUSION

Accurate measurements of the nonlinear optical parameters
of CS2 have shown unexpected variations of the effective non-
linear index n2,eff with intensity, which call into question the
use of this liquid as a reference material for n2 measurements.
Further, the saturation of the Kerr effect, which is responsible
for the formation of filaments, cannot be using the standard n2-
n4 model since n2,eff increases at moderate intensities. Hence
an adequate model has been built to reproduce the formation
of filaments observed in experiments. Further research is
planned with the aim of controlling the filaments location by
manipulating the input beam phase and shape, for example, by
means of a spatial light modulator.
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