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a b s t r a c t

In this paper, Using a classical model of the radiation-matter interaction, we show that the propagation

of (1þ1) dimensional few-optical-cycle pulses in quadratic nonlinear media, taking moderate

absorption into account, can be described by the Korteweg–de Vries-Burgers’ (KdVB) equation without

using the slowly varying envelope approximation. To fulfill this purpose we use the reductive

perturbation method and consider the long-wave approximation, assuming that the characteristic

frequency of the pulse is much lower than the resonance frequency of the atoms. We also study both

analytical and numerical solution of the KdVB equation describing damped few-optical-cycle soliton

propagation.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the last few years, production of few-cycle pulses (FCPs)
[1–3] and their various applications such as material processing
[4], attosecond physics [5,6], extreme nonlinear optics and
light–matter interaction, have received extensive interest.
Although it has been shown that theoretical models based on
the slowly varying envelope approximation (SVEA), i.e., nonlinear
Schrödinger type equations, are able to describe the propagation
of optical pulses down to ten optical cycles in nonlinear disper-
sive media [7–10], the validity of this approach is contested for
shorter pulses and definitely falls down in the single- and sub-
cycle ranges. For pulses considered in the present paper with
duration of only a few optical cycles, we consider a non-SVEA
dynamical model in which the concept of the envelope has not
been used [11–13].

Recently propagation of FCPs in nonlinear media has attracted
a lot of attention and it has been shown that the physics of (1þ1)
dimensional FCP solitons in Kerr media could be adequately
described beyond the limitation of the SVEA by means of the
modified Korteweg–de Vries (mKdV) [13,14], the sine-Gordon
(sG) [15], or mKdV-sG [16] equations. Vectorial models have also
been proposed, showing the existence of circularly polarized FCP
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solitons [17–19]. Dissipative FCP solitons are another subject of
interest whose formation in active nonlinear optical fibers has
been studied in Ref. [20] by means of the Maxwell–Bloch
equations. Moreover, starting from a model of the same type, a
non-SVEA version of the Lorenz–Haken equation governing the
physics of dissipative FCP solitons in the laser cavity has been
derived [21,22]. Propagation of ultrashort optical solitons in
(conservative) quadratic media has also been considered, either
by the direct numerical solution of the Maxwell–Bloch Eqs. (23)
and (24) or reducing them to the Korteweg–de Vries (KdV) Eqs.
(25) and (26). In both mentioned approaches [23–26], it has been
shown that the FCP input evolves into unipolar half-cycle pulses.

FCP soliton propagation requires a strong nonlinear effect.
Therefore, a material with a high nonlinear susceptibility is
required as a propagation medium. It is but well known from
the Kramers–Kronig relations [27] that, if the real part of the
nonlinear susceptibility is large, the imaginary part is also large,
i.e., damping occurs. On the other hand, according to Millers’ rule
[28], the nonlinear and linear susceptibilities are not independent,
and the resonance of the fundamental frequency has an important
effect on the magnitude of the second order susceptibility. Hence,
although soliton propagation assumes in principle that the linear
absorption can be neglected, it will very hardly be the case in a
real experiment.

The aim of the present paper is to derive an equation which
governs the dynamics of (1þ1) dimensional few-optical-cycle
damped solitons in quadratic nonlinear media beyond the SVEA.
For this purpose, damping is assumed to be small and treated as a
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perturbation so that the assumption made in Ref. [25] by which
the central pulse frequency is far from the resonance frequency of
the atoms can be used. The resonance frequency can be far below
the central pulse frequency (typically in the infrared range), or far
above it (typically in the ultraviolet range). The former case can
be described by using a short-wave approximation and the latter,
which is considered here, is treated by means of a long-wave
approximation.

The present paper is organized as follows. Section 2 presents a
basic set of equations which introduces our classical model. By
using the reductive perturbation method in the long-wave
approximation, the KdVB equation governing the propagation of
(1þ1) dimensional damped FC solitons is derived in Section 3.
Section 4 deals with both analytical and numerical solution
of the KdVB equation, and finally in Section 5 the conclusion is
presented.
2. Classical model

We consider a classical model of an elastically bounded
electron oscillating perpendicular to the propagation direction
of a wave (z). The wave is linearly polarized along the oscillation
direction (x). The evolution of the position x of the atomic electron
is described by the anharmonic oscillator equation

d2x

dt2
þ2O ~g dx

dt
þO2xþax2 ¼�

e

m
E, ð1Þ

where m is the electron mass, �e is its charge, O is the resonance
frequency, E is the electric field component along the x axis and ~g
is the damping ratio. Here, damping is assumed to be weak so that
it is considered as a perturbation. Hence we set

~g ¼ epg, ð2Þ

where g is a normalized damping parameter, e is a small
parameter and p is a positive integer.

The Maxwell equations are used to describe the evolution of E;

in the absence of the magnetic field and in the scalar (1þ1)
dimensional case, they reduce to

@2
z E¼

1

c2
@2

t Eþ4pPð Þ, ð3Þ

where P¼�Nex is the polarization density and N is the density
of atoms.

In the most restricted sense, soliton propagation requires a
conservative system, and hence no absorption or damping occurs.
From the optics point of view, it means that the resonance
frequency O of the atoms is far away enough from the character-
istic frequency ow of the considered radiation, so that absorption
can be neglected. In the present paper, damping is taken into
account but is assumed to remain small. Mathematically, it is
treated as a perturbation (Eq. (2)). Hence we can assume that O
remains far from ow. Then, the long wave approximation can be
considered in which O is much larger than ow. Since ow is
assumed to belong to the visible range, O belongs to the
ultraviolet.

The derivation is performed using the reductive perturbation
method [29,30]. The long wave approximation involves the
introduction of the slow variables

t¼ e t�
z

V

� �
, z¼ e3z, ð4Þ

where V is the propagation speed. The retarded time t describes
the shape of the pulse. According to the assumption Obo, the
variable t is a slow variable, accounting for a wave period large
with respect to the period corresponding to the resonance
frequency O. For a FCP, the pulse duration has the same order
of magnitude as the optical period, which formally is long in this
formalism. The other slow variable, z, shows long distance
propagation.

In order to have a soliton perturbed by a small amount of
damping, nonlinearity and dispersion must arise simultaneously
during the propagation distance. Thus, considering weak amplitude
assumption and using the reductive perturbation method [30], we
expand the polarization density and the electric field in power
series of the small parameter e as

P¼
X
n41

enPn, E¼
X
n41

enEn: ð5Þ
3. Derivation of the KdVB equation

We give here the main lines of the derivation, further detail
can be found in [25], which presents an analogous derivation in
the more restricted case where damping is neglected. Substituting
expressions (4) and (5) into Eqs. (1) and (3) (where P¼�Nex), and
considering the terms in the different powers of e, Eq. (1) at the
order of e2, results in

P2 ¼
Ne2

mO2
E2: ð6Þ

Using Eqs. (6) and (3) at the order of e4 gives the value of the
velocity as below

V ¼ c 1þ
4pNe2

mO2

� ��1=2

: ð7Þ

From Eq. (1), it is seen that the lowest power of e for the
damping term is pþ3. Thus, according to different positive
integer values which can be taken by p, two different cases arise:

Case (a): For p¼1, From Eq. (1) at the order of e4, we get

P4 ¼
Ne2

mO2
E4�

2gNe2

mO3
@tE2þ

aNe3

m2O6
E2ð Þ

2
�

Ne2

mO4
@2
tE2: ð8Þ

Substituting Eq. (8) into Eq. (3) at the order of e6 and
considering Eq. (7), the terms that contain E4 cancel each other
and we obtain the following KdVB equation

@zE2 ¼ A@3
tE2þB@tE2

2þC@2
tE2, ð9Þ

where coefficients

A¼
2pVNe2

mc2O4
, B¼

�2pVaNe3

m2c2O6
, C ¼

4pVNge2

mc2O3
, ð10Þ

are related to dispersion, nonlinearity and damping,
respectively.

Case (b): For p41, Eq. (1) at the order of e4
, gives

P4 ¼
Ne2

mO2
E4þ

aNe3

m2O6
E2ð Þ

2
�

Ne2

mO4
@2
tE2: ð11Þ

Thus, using Eq. (7) and substituting Eq. (11) into Eq. (3) at the
order of e6, we get

@zE2 ¼ A@3
tE2þB@tE2

2, ð12Þ

which is the KdV equation that has been studied in Ref. [25].
Coefficients A and B demonstrating dispersion and nonlinearity,
respectively, are the same as the case (a).

Formally, in the case of p41, i.e., pZ2, damping effect is too
weak and does not have enough time to arise so it can be
neglected.

The susceptibilities pertaining to the model Eq. (1) are computed
by seeking the response of the latter to a field E¼Aeiot

þcc; we obtain

wð1Þ oð Þ ¼ 4pNe2

m O2
�o2þ2ioO ~g

� � , ð13Þ
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wð2Þ 0;o,�oð Þ ¼
4pNe3a

m2O2 O2
�o2

� �2
, ð14Þ

wð2Þ 2o;o,oð Þ ¼
4pNe3a

m2 O2
�4o2

� �
O2
�o2

� �2
: ð15Þ

The absorption has been neglected in the expression of the
nonlinear susceptibility. We see that Eq. (7) is V¼c/n with
n2
¼(w(1))o¼0, in which damping is neglected. Still neglecting

damping, we set

b2 ¼
d2wð1Þ

do2

 !
o ¼ 0

¼
8pNe2

mO4
, ð16Þ

it is seen that the dispersion coefficient in the KdVB Eq. (9) is

A¼
b2

4nc
, ð17Þ

according to Refs. [25,26]. In the presence of long wave
approximation, o-0, both w(2)(0;o,�o) and w(2)(2o;o,o) coin-
cide, let us denote by

wð2Þ ¼ 4pNe3a

m2O6
, ð18Þ

their common value. Then the nonlinear coefficient in (9) is

B¼
�1

2nc
wð2Þ, ð19Þ

as in Refs. [25,26] again. Im wð1Þ
� �

is computed in the limit of
both small g and o, as

Im wð1Þ
� �

¼
�8pNe2o ~g

mO3
, ð20Þ

and consequently, the damping coefficient in Eq. (9) is

C ¼
�1

2nc

Imwð1Þ

o

� �
o ¼ 0

: ð21Þ

Since the absorption coefficient is a¼�oImw(1)/(nc), it is
related to the latter through C¼a/2o2, where o is the angular
frequency at which a has been measured.
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Fig. 1. The FCP soliton in quadratic nonlinear media (Soliton solution to KdV).
4. The damped soliton

In order to find the asymptotic solution of the KdVB equation,
we commence with the case of C¼0, in which Eq. (9) reduces to
Eq. (12).

It is well known that the KdV equation can be solved by means
of the inverse scattering transform (IST) [31]. Moreover, N-soliton
solutions can be obtained by different methods such as the Hirota
one [32]. The fundamental soliton can also be obtained by direct
calculation, derived first in 1871 by Boussinesq [33]. In the
present case, the fundamental soliton is written as

E2 ¼
6mO4q2

�ae
sech2 qO tþ 8pVNe2

mc2O2
q2z

� �� 	
, ð22Þ

where q is a positive number. For the sake of simplicity, the KdV
equation in its dimensionless form is written as

@ZU ¼ @3
T Uþ6U@T U, ð23Þ

in which U, Z and T are dimensionless variables in the form of

U ¼
E2

E0
, Z ¼

z
L0

, T ¼
t

T0
, ð24Þ
where

E0 ¼
3A

BT2
0

¼
�3b2

2wð2ÞT2
0

, L0 ¼
T3

0

A
¼

4ncT3
0

b2

, ð25Þ

And T0 is arbitrary.
Using values pertaining to beta barium borate (BBO) (extra-

ordinary index) given by textbooks [34] and industrials [35], and
taking as a reference time T0¼0.8 fs, so that a dimensionless
angular frequency o¼1.5 corresponds to a wavelength very close
to 1 mm, we get E0¼9.6�109 V/m and L0¼53 mm. The one-
soliton solution of the KdV equation is shown in Fig. 1.

The normalized form of the KdVB equation (Ca0)

@ZU ¼ @3
T Uþ6U@T Uþ2G@2

T U, ð26Þ

with G¼ ~gOT0, is obtained by using the same linear transforma-
tion as the KdV equation without changing the propagation
direction. Using again data pertaining to BBO [35], it is said that
the absorption coefficient ao0.1%/cm. Let us assume a equal to
this maximal value; then, using Eqs. (20) and (21), with o
corresponding to the wavelength 1 mm at which a was measured,

we get ~gC6� 10�8. Further, O is evaluated in such a way that the

value of b2 computed according to Eq. (16) coincides with the

measured value, i.e., O¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n2�1
� �

=b2

q
. Still for BBO, extraordin-

ary index, we get O¼12.4 rad/fs, and consequently GC6� 10�7.
It is seen that the perturbative approach is fully justified, one may
even consider that linear absorption is too small to be taken into
account. Much higher values can be reached in other materials,
for example, in ZnGeP2 at 1.2 mm [36], a is about 1/cm, we get

~gC10�4, O¼2.5 rad/fs and GC2� 10�4. Much closer to the
resonances, dissipation becomes much higher, however dispersion
increases in the same time, and our derivation of the KdVB model
ceases to be valid, which prevents us to give quantitative data in
this domain. However, second harmonic generation in the UV
domain has been considered in such materials [37]. Hence we
consider below large values of tilde gamma, much higher than
experimentally available, we show that: even in this range of huge
absorption, linear absorption does not prevent KdV soliton
formation.

An approximate analytical expression of the damped soliton
solution can be obtained by using the Krylov–Bogoliubov expansion,
which has already been done by Ott and Sudan [38,39]. Considering
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Eqs. (9) and (10), this approximate analytical expression yields

E2 ��K zð Þsech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aeKðzÞ
6mO2

s
t�t0þ

4pVaNe3

3m2c2O6

Z z

0
KðzÞdz

 !" #
, ð27Þ

where

K zð Þ ¼
K0

1þz=z0
ð28Þ

with

z0 ¼
45m2c2O5

32K0pVaNe3g
, ð29Þ

is the amplitude of the damped soliton and K0¼6 mO4q2/ae is the
amplitude of the KdV soliton obtained from Eq. (22). Obviously,R z

0 KðzÞdz¼ K0z0ln 1þ z=z0

� �
Þ

�
. The evolution of the damped KdVB

soliton for some rather high values of the damping ratio is shown
in Fig. 2.

It should be noted that Eqs. (22) and (27) are written by weak
amplitude and damping assumptions in a frame traveling at the
group velocity of the linear wave. Thus, by getting back to the
laboratory variables the electric field would be ~E ¼ e2E2, and since
K0 is the maximum of E2 at z¼0 it is considered as ~K 0 ¼ e2K0.
Comparing Eqs. (22) and (27) in the laboratory variables, one can
see that in the presence of damping, the amplitude of the solitary
wave decreases according to

~K zð Þ ¼
~K 0

1þz=z0
ð30Þ
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Fig. 2. Evolution of the damped solitons for different propagation distances. (a) for

G¼0.008 and (b) for G¼0.05.
with z0 ¼�45=16 ~K 0 ~gBO¼ 45nc=8wð2Þ ~K 0 ~gO, where ~g ¼ eg, and
therefore its corresponding width increases. This process is accom-
panied by the decrease of the propagation speed according to

v¼ V 1�
2V ~K 0B

3 1þ 16 ~K 0 ~gBO
45 z

� �
0
@

1
A
�1

, ð31Þ

in which B is the nonlinear coefficient obtained from Eq. (10). In Eq.
(31) it is seen that v decreases monotonically from
v¼ V= 1�2V ~K 0B=3

� �
at z¼0, to V¼c/n as z-N. The damping

distance is evaluated according to z0¼15t2/(16C)¼15o2t2/(8a).
Assuming the values obtained above for BBO and a very short KdV
soliton of only 1 fs duration, we get z0C67 m. It is seen that in this
case damping is completely negligible, even more than for linear
waves. Using value pertaining to ZnGeP2 at 1.2 mm, a¼1/cm, again
for a 1 fs pulse, we obtain z0¼4.6 cm.

The general theory of the IST states that, within the KdV
model, any input is expected to evolve into a set of solitons and
‘radiation’, i.e., dispersive waves [31]. This issue has been dis-
cussed in detail in Refs. [25,26] for the case of FCP-type inputs,
with the form of a Gaussian envelope modulating a cosine. Here
the question is whether this evolution of a FCP toward one or a
few solitons still will occur in the presence of damping or not,
especially in the case of very high damping. This case can be
discussed by a numerical approach. The KdVB Eq. (26) is solved
numerically using the exponential time differencing method [40],
in which the modified Euler scheme is used. We use a specific
choice of the FCP input, for which a single soliton and reasonably
a little radiation is produced in the absence of damping.

In particular, when the input is U¼10cos(1.5T)sech2(3T/8), the
result of the evolution for several values of the damping constant G
is shown in Fig. 3. One can observe that for small damping, the
soliton is slightly modified. However, for larger damping (e.g.,
G� 1 for the considered value of parameters), the damped soliton
and the wave profile resulting from the damping of the radiative
wave have comparable amplitudes. In the intermediate range, as
shown in Fig. 4, damped solitons are formed. It is worth mention-
ing that similar to the conservative case [25], the generation of
solitons depends on the carrier-envelope phase of the input FCP. As
an example, for a carrier-envelope phase of p, in the conservative
case two solitons with equal amplitudes are emitted. However, in
our case the slowest soliton which is closer to the radiative waves,
Fig. 3. Evolution of a FCP input (dashed line) into a KdV soliton (solid lines) and

radiation in the presence of damping, for several values of the damping constant

G. The bottom figure is a zoom of the top one showing the produced damped

solitons only. The leftmost soliton with highest amplitude is obtained for G¼0, the

following ones for G¼0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. The propagation distance

is Z¼1.



0
0.2

0.4
0.6

0.8

1

Z

-10
-5

0
5

T

-5

0

5

10

15

U

Fig. 4. Evolution of a FCP input into a damped soliton. Parameters are the same as
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Fig. 5. Formation of several solitons from a FCP, in the presence of damping.

The dotted green line shows the input, and the other lines the soliton part of the

output after a normalized propagation distance Z¼20, for various values of

the damping constant. The red solid: G¼0, blue dashed: G¼0.005, black dash-

dotted: G¼0.025. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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suffers stronger damping than the fastest one, which breaks the
symmetry between them.

Fig. 5 shows the formation of a several solitons in the presence
of damping, from a FCP input which is a bit less short than
previously. We use a super-Gaussian input (namely U¼2cos(1.5T)
exp(�(T/12)4)), and a normalized propagation distance Z¼20,
which would correspond to about 1 mm for the material para-
meters discussed above. The general observation is that absorp-
tion does not prevent soliton formation. However, the fifth soliton
turns into dispersive waves for the highest of the damping values
considered (see the bump of the black dash-dotted line on the
right of Fig. 5). Recall that the KdV model runs in the frame which
moves at the velocity of low-frequency linear waves, correspond-
ing to the index n. The dispersive waves run slower, and come at
higher times, while the solitons run faster, and arrive at lower
times. In fact, in the absence of damping, the fifth soliton, at the
beginning of the process, is only a bump of dispersive waves: its
velocity is less than c/n. Then it receives energy from nonlinear
interaction with dispersive waves coming from the left of the
figure and running faster to the right. When it has reached the
adequate energy level, it becomes a soliton, and its speed
becomes higher than c/n, i.e., it starts going toward the left of
the figure. If damping is stronger, this process cannot occur,
mainly because the dispersive waves loose their energy, and
consequently the soliton cannot be formed. In other words, if a
soliton is present in the input in the sense of the inverse
scattering transform, but not visibly present as a large and narrow
hump, its formation may be prevented by a strong enough
damping, which is not the case for the solitons which propagate
without requiring a so strong reshaping.
5. Conclusion

Using an analysis based on the Maxwell equation and an
assumption in which damping effect is considered as a perturbation,
we have shown that the Korteweg–de Vries-Burgers’ equation is a
partial differential equation which describes the dynamics of (1þ1)
dimensional few-optical-cycle damped solitons propagation, without
using the slowly varying envelope approximation. Analytical and
numerical solution of the KdVB equation shows that by considering
damping effect, both the amplitude and propagation speed of the
solitary wave decrease while the corresponding width of the pulse
increases during the propagation distance. It has been shown that
damping is completely negligible for transparent materials, and that
soliton damping arises in materials which already are considered as
appreciably absorbing. Numerical investigation show that, even in
highly absorbing media, the linear absorption does not prevent
soliton formation, except that the number of solitons may be reduced
when it is quite large. The present theory does not take into account
guiding properties of the medium, which may influence appreciably
the nonlinear propagation. This delicate problem is left for further
investigation.
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