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1LUNAM Université, Laboratoire de Photonique d’Angers, Université d’Angers,
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We consider the kick- (tilt-) induced mobility of two-dimensional (2D) fundamental dissipative solitons
in models of bulk lasing media based on the 2D complex Ginzburg-Landau equation including a spatially
periodic potential (transverse grating). The depinning threshold, which depends on the orientation of the kick, is
identified by means of systematic simulations and estimated by means of an analytical approximation. Various
pattern-formation scenarios are found above the threshold. Most typically, the soliton, hopping between potential
cells, leaves arrayed patterns of different sizes in its wake. In the single-pass-amplifier setup, this effect may
be used as a mechanism for the selective pattern formation controlled by the tilt of the input beam. Freely
moving solitons feature two distinct values of the established velocity. Elastic and inelastic collisions between
free solitons and pinned arrayed patterns are studied too.
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I. INTRODUCTION

A well-known fact is that the formation of stable dissipative
solitons—most typically, in lasing media [1,2] and plasmonic
cavities [3]—relies upon the simultaneous balance of com-
peting conservative and dissipative effects in the system, i.e.,
the diffraction and self-focusing nonlinearity and linear and
nonlinear loss and gain, respectively [4]. The generic model
describing media where stable dissipative solitons emerge via
this mechanism is based on the complex Ginzburg-Landau
(CGL) equations with the cubic-quintic (CQ) combination
of gain and loss terms, which act on top of the linear loss
[2]. In addition to modeling the laser-physics and plasmonic
settings, the CGL equations, including their CQ variety,
serve as relevant models in many other areas, well-known
examples being Bose-Einstein condensates in open systems
(such as condensates of quasiparticles in solid-state media)
[5], reaction-diffusion systems [6], and superconductivity [7].
Thus the CGL equations constitute a class of universal models
for the description of nonlinear waves and pattern formation
in dissipative media [8].

The CGL equation with the CQ nonlinearity was originally
postulated by Petviashvili and Sergeev [9] as a model admitting
stable localized two-dimensional (2D) patterns. Subsequently,
systems of this type were derived or introduced phenomeno-
logically in many physical settings, in which a great deal of
1D and 2D localized solutions, i.e., dissipative solitons, have
been studied in detail [10–13].

A 2D model of laser cavities with an internal transverse
grating, based on the CQ-CGL equation supplemented by
a spatially periodic (lattice) potential, which represents the
grating, was introduced in Ref. [14]. Note that the currently
available laser-writing technology makes it possible to fab-
ricate permanent gratings in bulk media [15]. In addition,
in photorefractive crystals virtual photonic lattices may be
induced by pairs of pump laser beams with the ordinary

polarization, which illuminate the sample in the directions
of x and y, while the probe beam with the extraordinary
polarization is launched along the z axis [16]. In fact, the
laser cavity equipped with the grating may be considered
as a photonic crystal built in the active medium. Periodic
potentials are also known in passive optical systems, driven
by external laser beams and operating in the temporal domain,
unlike the spatial-domain dynamics of the active systems. In
such systems, effective lattices may be induced by spatial
modulation of the pump beam [17,18].

A notable fact reported in Ref. [14] is that localized vortices,
built as sets of four peaks pinned to the periodic potential, may
be stable without the presence of the diffusion term in the
CGL laser model, which is necessary for the stabilization
of dissipative vortex solitons in uniform media (see, e.g.,
Ref. [11]), but is unphysical for waveguiding models (the
diffusion term is relevant in models describing light trapped
in a cavity, where the evolutional variable is time rather than
the propagation distance [19]). In subsequent works, stable
fundamental and vortical solitons in 2D [20] and 3D [21]
CGL models with trapping potentials were studied in detail.
Spatiotemporal dissipative solitons in the CQ-CGL model
of 3D laser cavities including the transverse grating were
investigated too [21]. Both fundamental and vortical solitons
were found in a numerical form as attractors in the latter model
and their stability against strong random perturbations was
tested by direct simulations.

While the stability of various 2D localized patterns has
been studied thoroughly in the framework of the CQ-CGL
equations with the transverse lattice potential used as the
stabilizing factor, a challenging problem is the mobility of
such 2D dissipative solitons under the action of a kick applied
across the underlying lattice. Actually, the action of the kick
in this context implies the application of a tilt to the beam.
It should be noted that the CGL equation models single-pass
optical amplifiers as well as laser cavities. In the latter case
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the evolution is considered in the temporal domain, while in
the former the evolution variable is the propagation distance.
In order to build the required initial data in a laser cavity,
the tilt should be applied very quickly. This may be achieved
by means of an optically induced grating or mirrors, using
some fast device. In contrast, in the single-pass amplifier the
input is an incident beam, the tilt being a mere misalignment
between the beam and the amplifier’s axis. Below we present
the analysis in terms of the amplifier’s setup, which is more
straightforward for the experimental implementation.

Thus we assume that an external source produces a beam,
which is shaped into the fundamental-soliton mode of the
amplifier by means of an adequate setup. Then the direction
of this input beam is slightly tilted with respect to the
amplifier’s axis, allowing the transverse part of the beam’s
momentum to acts as the kick applied to the fundamental
spatial soliton. Furthermore, we demonstrate that the effective
hopping motion of the kicked soliton through cells of the
periodic potential can be used for controlled creation of various
patterns filling these cells (or a part of them).

Thus the main objective of this work is to study the mobility
of the 2D fundamental solitons, and scenarios of the pattern
formation by kicked ones, in the framework of the CQ-CGL
models with the lattice potential. The model is formulated in
Sec. II, which also presents an analytical approximation that,
using the concept of the Peierls-Nabarro (PN) barrier, makes
it possible to predict, with reasonable accuracy, the minimum
(threshold) strength of the kick necessary for depinning the
quiescent soliton trapped by the lattice. The main numerical
results for the mobility of the kicked soliton and various
scenarios of the pattern creation in the wake of the soliton
hopping between cells of the potential lattice are reported in
Sec. III, while Sec. IV deals with collisions between a freely
moving soliton and a standing structure created and left by it
in the case of periodic boundary conditions (which correspond
to a pipe-shaped amplifier, i.e., one in the form of a hollow
cylinder). In particular, elastic collisions provide an example
of a soliton Newton cradle. A summary is given in Sec. V.

II. MODEL AND ANALYTICAL APPROXIMATIONS

A. Ginzburg-Landau equation

Following Refs. [14,20], the scaled CQ-CGL equation
for the evolution of the amplitude of the electromagnetic
field u(X,Y,Z) in two dimensions with transverse coordinates
R = (X,Y ) along the propagation direction Z is written as

∂u

∂Z
=

[
− δ + iV (X,Y ) + i

2
∇2

⊥ + (i + ε)|u|2

− (iν + μ)|u|4
]
u, (1)

where the paraxial diffraction is represented by ∇2
⊥ =

∂2/∂X2 + ∂2/∂Y 2; real coefficients δ, ε, and μ account for
the linear loss, cubic gain, and quintic loss, respectively;
and coefficient ν > 0 accounts for the saturation of the Kerr
nonlinearity. The transverse grating is represented by the
periodic potential

V (X,Y ) = −V0[cos(2X) + cos(2Y )], (2)

of depth 2V0, with the period scaled to be π . Localized modes
produced by Eq. (1), which physically correspond to light
beams self-trapped in the (X,Y ) plane, are characterized by
the total power

P =
∫∫

|u(X,Y,Z)|2dX dY. (3)

In the simulations, Eq. (1) was solved by means of the
standard fourth-order Runge-Kutta scheme in the Z direction
and the five-point finite-difference approximation for the
transverse Laplacian. As specified below, we used periodic
boundary conditions. The integration domain correspond to
an (X,Y ) matrix of 256 × 256 grid points covering the area of
|X|,|Y | � 22. Generic results for the mobility of fundamental
dissipative solitons can be adequately represented by fixing
the following set of parameters:

δ = 0.4, ε = 1.85, μ = 1, ν = 0.1, V0 = 1, (4)

for which the quiescent fundamental soliton is stable.

B. Description of tilted beams

In simulations of Eq. (1), the kick (i.e., tilt) was applied to
the self-trapped beam, as usual, by multiplying the respective
steady state u0 by exp(ik0 · R), with the vectorial strength of
the kick defined as

k0 = (k0 cos θ,k0 sin θ ), (5)

where the square-lattice symmetry of potential (2) makes it
sufficient to confine the orientation angle θ to the interval
0 � θ � π/4. In terms of the amplifier setup, a small angle ϕ

between the carrier wave vector K0 = (Kx,Ky,Kz) of the beam
(in physical units) and the Z axis gives rise to the transverse
component k0, which corresponds to the kick. The paraxial
approximation implies that

ϕ ≈
√

K2
x + K2

y /Kz � 1. (6)

Before studying the effects induced by the kick, it is relevant
to explain the corresponding physical setting in more detail,
making sure that the tilted beams remain within the confines
of the paraxial description.

Equation (1) can be derived from the underlying wave
equation by means of the standard slowly varying envelope
approximation (SVEA) [1]. For this purpose, the electric field
E (in its scalar form) is split into a slowly varying amplitude
and the rapidly oscillating carrier either as

E = A(x,y,z − vt)ei(Kxx+Kyy+Kzz−ωt) + c.c., (7)

where (x,y,z,t) are the coordinates and time in physical
units, v is the group velocity, and c.c. stands for the complex
conjugate, or, alternatively, as

E = A(x,y,z − vt)ei(Kzz−ωt) + c.c. (8)

The difference is that that carrier wave is oblique in Eq. (7),
while in Eq. (8) it is always defined as the straight one. Obvi-
ously, A(x,y,z − vt) = A(x,y,z − vt)ei(Kxx+Kyy) and the two
forms are fully equivalent within the framework of the SVEA
if the oscillations due to the term ei(Kxx+Kyy) are not essentially
faster than the transverse variations of the beam described by
the amplitude A(x,y,z − vt). Thus the SVEA can be fixed
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in the form of Eq. (8), with Kz = 2πn/λ, where n the linear
index of the medium.

Further, to proceed to the normalized equation (1), we
set {X,Y } ≡ w−1{x,y}, where w is a characteristic scale of
the beam’s width, say, w ∼ 10 μm for narrow beams, if the
underlying wavelength (in vacuum) is λ ∼ 1 μm. Accordingly,
the period of grating (2) is πw in physical units. Note that
w ∼ 10 μm corresponds to the period πw ∼ 30 μm, which
is a relevant estimate (gratings with the period on this order
of magnitude can be readily manufactured). Then the scaled
propagation distance is Z = z/Kzw ≡ (λ/2πnw)z and the
scaled wave amplitude is

u =
√

1

2
Re(χ (3))

ωw

c
A,

where χ (3) is the third-order nonlinear susceptibility. Further,
the respective rescaling of the wave vector components is given
by {kx,ky} = w{Kx,Ky}. Thus the deviation angle can be
estimated as tan ϕ = √

K2
x + K2

y /Kz ≡ (λ/2πnw)
√

k2
x + k2

y

and, for generic tilted modes, with
√

k2
x + k2

y ∼ 1 in the scaled
notation, the condition (6) for the validity of the paraxial
approximation amounts to λ � 2πnw, which is nothing but
the standard paraxial assumption.

With the above-mentioned typical values, λ ∼ 1 μm and
w ∼ 10 μm, along with n ≈ 1.5, the above estimate yields
ϕ ∼ 0.01 (in radians). Then the minimum propagation distance
relevant to the experiment, z ∼ 1 cm, corresponds to the
transverse deviation of the tilted beam �x ∼ 100 μm, which
can be easily detected and employed in applications.

C. Analytical estimates

The first characteristic of kink-induced effects is the
threshold value (k0)thr such that the soliton remains pinned
at k0 < (k0)thr and escapes at k0 > (k0)thr. To develop an
analytical approximation that aims to predict the threshold, one
can, at the lowest order, drop the loss and gain terms, as well as
the lattice potential, in Eq. (1). The corresponding 2D nonlinear
Schrödinger equation gives rise to the commonly known
family of Townes solitons, which share a single value of the
total power PT ≈ 5.85 [22]. The family may be approximated
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FIG. 1. (Color online) Stable fundamental soliton: (a) contour
plot of the local amplitude |u(X,Y )| and (b) cross-section profile of
|u(X)| at Y = 0. The soliton emphasizes the potential V (X,Y ) = −
[cos(2X) + sin(2X)].
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FIG. 2. (Color online) (a) Evolution of the local amplitude
|u(X,Z)| in the cross section Y = 0 of the fundamental soliton kicked
with the below-threshold strength k0 = 1.61 at θ = 0. (b) Evolution
of the total power in this case. The horizontal line designates the
power of the quiescent fundamental soliton.

by the isotropic Gaussian ansatz with arbitrary amplitude A,

u(Z,R ≡
√

X2 + Y 2) = A exp

(
ibZ − πA2

2PT

R2

)
, (9)

and propagation constant b = A2/4 [23]. Then, taking into
account the loss and gain terms as perturbations, one can
predict the equilibrium value of the amplitude from the
power-balance equation

δP + μ

∫∫
|u(X,Y )|6dX dY = ε

∫∫
|u(X,Y )|4dX dY.

(10)
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FIG. 3. (Color online) Evolution of the local field amplitude
|u(X,Y )|, corresponding to the kicked soliton, for k0 = 1.6878 and
θ = 0. The field distributions are displayed at different values of
propagation distance Z.
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FIG. 4. (Color online) Evolution of the total power of the pattern
in the case displayed in Fig. 3, with k0 = 1.6878 and θ = 0. The
horizontal lines show the powers for the sets of one to four quiescent
fundamental solitons.

The substitution of approximation (9) into Eq. (10) leads to a
quadratic equation for A2, with roots

A2 = 3ε ±
√

3(3ε2 − 16μδ)

4μ
, (11)

the larger one corresponding to a stable dissipative soliton (cf. a
similar analysis for the CQ-CGL model in one dimension [24]).

Proceeding to the kicked soliton, the threshold magnitude
of the kick for the depinning (k0)thr can be estimated from a
comparison of the PN potential barrier UPN and the kinetic
energy of the kicked soliton Ekin. The Galilean invariance of
Eq. (1) [25] (in the absence of the lattice potential) implies that
the kick (5) gives rise to the velocity k0, so that the solution
will become a function of R − k0Z ≡ R−ϒ instead of R, the
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FIG. 5. (Color online) Same as in Fig. 3, but for k0 = 1.6872 and
θ = 0.

corresponding kinetic energy being

Ekin = (1/2)Pk2
0 (12)

(P plays the role of the effective mass of the soliton). Further,
assuming that the kicked soliton moves in the direction of θ

[see Eq. (5)], the effective energy of the interaction of the
soliton, taken as per approximation (9), with lattice potential
(2), treated as another perturbation, is

Epot(ϒ) = −V0

∫∫
[cos(2X) + cos(2Y )]

× |u(X − ϒ cos θ,Y − ϒ sin θ )|2dX dY

= −V0P exp

(
− PT

πA2

)

× [cos(2ϒ cos θ ) + cos(2ϒ sin θ )], (13)
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FIG. 6. (Color online) Same as in Figs. 3 and 5, but for
k0 = 1.694. In this case, the kicked soliton eventually creates an
arrayed set of five solitons [in panel (f) the additional freely moving
(sixth) soliton hits the array from the opposite direction, completing
its round-trip in the system].
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FIG. 7. (Color online) Evolution of the local amplitude |u(X,Z)|
in the cross-section plane Y = 0 for the same case as in Fig. 6
(k0 = 1.694 and θ = 0).

where ϒ is the shift of the soliton from X = Y = 0 in the
direction of θ . As follows from this expression, the PN barrier,
i.e., the difference between the largest and smallest values of
the potential energy, is estimated as

EPN = V0P exp

(
− PT

πA2

)
�(θ ), (14)

where �(θ ) is the difference between the maximum and
minimum of the function cos(2ϒ cos θ ) + cos(2ϒ sin θ ). Ob-
viously, �(0) = 2 and �(π/4) = 4. For intermediate values
of θ , it may be approximated by the difference of the values
of the function between points ϒ = 0 and π/2 cos θ , i.e.,

�(θ ) ≈ 3 − cos(π tan θ ). (15)

Finally, the threshold value of the kick is determined by the
depinning condition Ekin = EPN, i.e.,

(k0)thr =
√

2V0[3 − cos(π tan θ )] exp

(
− PT

2πA2

)
. (16)

This prediction is compared with numerical results below.

FIG. 8. (Color online) Number of solitons in the established
pattern versus the kick’s strength k0 at θ = 0. In the narrow gaps
between intervals presented in the graphic, the number cannot be
defined exactly, as it changes there by 1.
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FIG. 9. (Color online) Same as in Fig. 6, but for k0 = 1.705. In
this case, a free soliton splits away from the quiescent array, hits it
from the other side, and then gets absorbed by it.

III. NUMERICAL RESULTS: MOBILITY
AND PATTERN FORMATION

The stable fundamental soliton constructed in the model
based on Eqs. (1) and (2) at the parameter values in Eq. (4) is
shown in Fig. 1. For these parameters, the analytical prediction
(11) yields the amplitude of the stable soliton A ≈ 1.496 ,
which is quite close to the amplitude of the numerically
found solution in Fig. 1: A ≈ 1.479, which implies that the
isotropic Gaussian (9) is quite appropriate as the ansatz for the
description of static properties of the solitons.
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FIG. 10. (Color online) Top view of the same dynamical picture
as in Fig. 9.
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FIG. 11. (Color online) (a) Field amplitude |u(X,Z)| in the cross section Y = 0 and (b) evolution of the total power for the kick’s strength
k0 = 1.693 at θ = 0, which leads to the establishment of the six-soliton pattern.

A. Formation of arrayed soliton patterns

First we consider the solitons kicked with θ = 0, i.e., along
bonds of the lattice [see Eq. (5)]. Below the threshold value of
the kick’s strength, whose numerically found value is

(k0)thr(θ = 0) ≈ 1.6865, (17)

the kicked soliton exhibits damped oscillations, remaining
trapped near a local minimum of the lattice potential, as shown
in Fig. 2. Originally (at 0 < z < 8 in Fig. 2), the total power
(3) increases and then drops to the initial value P ≈ 3.2. As
a result of the kick, a portion of the wave field passes the
potential barrier and penetrates into the adjacent lattice cell,
but, at k0 < (k0)thr, the power carried by the penetrating field is
not sufficient to create a new soliton and is eventually absorbed
by the medium.

In contrast, the analytical prediction (16) yields (k0)thr(θ =
0) ≈ 1.32. A relative discrepancy �20% with the numerical
value of Eq. (17) is explained by the fact that, near the
depinning threshold, the moving soliton suffers appreciable
deformation, while the analytical approach assumed the fixed
shape (9) and did not take into account energy losses (the
latter factor makes the actual threshold somewhat higher). In

other cases considered below [see Eqs. (18) and (19)], the
analytical predictions for (k0)thr are also �20% smaller than
their numerically found counterparts.

If the kick is sufficiently strong k0 > (k0)thr, the portion of
the wave field passing the potential barrier has enough power
to create a new dissipative soliton in the adjacent cell. The
emerging secondary soliton may either stay in its cell or keep
moving through the lattice.

Figure 3 demonstrates the creation of two new solitons at
k0 = 1.6878, which slightly exceeds the threshold value (17).
This figure represents a generic dynamical scenario, which can
be summarized as follows.

(i) The initial soliton (or a part of it) passes the potential
barrier and gets into the adjacent (second) cell.

(ii) It then stays for some time in that cell.
(iii) If the initial kick is not strong enough, the secondary

soliton permanently stays at this location.
(iv) If the kick is harder, the soliton again passes the

potential barrier, getting into the third cell, and may continue
to move through the grating.

(v) A portion of the wave field of the secondary soliton
stays in the second cell and grows into a full soliton in this
cell.
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FIG. 12. (Color online) (a) Distribution of the field amplitude |u(X,Z)| in the cross section Y = 0 and (b) evolution of the velocity of the
fundamental soliton kicked by k0 = 2.1 at θ = 0.
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TABLE I. Number of solitons in the established pattern versus
the kick’s strength k0 at θ = π/4.

Number of solitons Range of k0

1 k0 ∈ [0,2.355]
0 k0 ∈ [2.36,4.337]
1 k0 ∈ [4.563,10]

(vi) If the kick is not sufficient to continue the filling
of farther cells, oscillations of all the persistent solitons
relax.

The present case is further illustrated in Fig. 4 by the plot
for the evolution of the total power, which shows that P

attains the first maximum at Z = 15.89 and then oscillates.
Every minimum corresponds to the collision between the two
solitons. For the sake of comparison, four horizontal lines
in the figure mark the powers corresponding to the single
stable soliton (Psol ≈ 3.15) multiplied, respectively, by 1, 2, 3,
or 4.

It has been found that solitons can duplicate several times,
thus forming extended patterns in the form of soliton arrays.
The increase of the kick’s magnitude leads to the decrease
of the number of solitons forming this pattern, as the soliton
moves faster and does not spend enough time in each cell
to create a new soliton trapped in it. In particular, Fig. 5
demonstrates that only one additional soliton is generated at
k0 = 1.6872, both solitons remaining pinned (note that this
value is smaller than the k0 = 1.6878 appertaining to Fig. 3).
Further, at k0 = 2.082 the soliton performs unhindered motion,
without leaving any stable pattern in its wake (not shown here
in detail).

In contrast, the smaller kick can initiate the creation of
an arrayed pattern. This outcome of the evolution is shown
in Fig. 6, where the array of five solitons is created, starting
with the soliton initially kicked by k0 = 1.694, in addition
to which a free soliton keeps moving as a quasiparticle (see
Ref. [26]), until it collides with the array from the opposite
direction, due to the periodic boundary conditions along X,
and is subsequently absorbed by the array [the collision is
displayed in Fig. 6(f), where an additional soliton is observed
at X < 0]. This dynamical scenario is additionally illustrated
below in Fig. 11.

TABLE II. Same as in Table I, but for the oblique kick oriented
under angle θ = π/8.

Number of solitons

Total Along X Along Y Range of k0

1 0 0 k0 ∈ [0,1.816]
3 2 0 k0 = 1.974
2 1 0 k0 = 2.1
1 0 0 k0 ∈ [2.224,4.569]
0 0 0 k0 ∈ [4.816,5.804]
1 0 0 k0 ∈ [6.05,∞)

The emerging array remains in an excited state, featuring
localized density waves running across it, as shown, on a
much longer scale of Z, by means of the cross-section picture
in Fig. 7. It is worth noting that the wave is reflected from
the last pinned soliton. Such localized density perturbations
propagating through a chain of pinned solitons are similar to
the so-called superfluxons, which were investigated experi-
mentally and theoretically in arrays of fluxons (topological
solitons, representing magnetic-flux quanta) pinned in a long
Josephson junction with a periodic lattice of local defects
[27] as well as in an array of mutually repelling solitons
forming a Newton cradle in a two-component model of binary
Bose-Einstein condensates [28].

B. Dependence of the outcome of evolution
on the strength of the initial kick

Results of the systematic analysis of the model are sum-
marized in Fig. 8, where the number of solitons in the stable
arrayed patterns established by the end of the simulation is
plotted versus the initial kick k0 for θ = 0, where intervals
of the values of k0 corresponding to constant numbers of the
solitons are adduced.

In the case in which the free soliton collides with the
quiescent array after performing the round-trip in the system
with the periodic boundary conditions [see the example above
in Fig. 6 and an additional one (for four solitons) in Figs. 9
and 10], the number of solitons was counted just before the
first such collision. Otherwise, the number was recorded after
any motion in the system would cease.
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FIG. 13. (Color online) Distribution of the
(a) field amplitude |u(X,Y )| and (b) phase in
the pattern produced by kicking the fundamental
soliton in the diagonal direction (θ = π/4) very
hard, with k0 = 100. The picture corresponds to
evolution distance Z = 49.98.
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FIG. 14. (Color online) Local field amplitude |u(X,Z)| in the
cross section Y = 0 for k0 = 1.9743 and θ = π/8.

The results demonstrate that the number of solitons in the
established patterns rapidly increases from 1 at k0 � (k0)thr ≈
1.6865 [see Eq. (17)] to a maximum of five solitons, plus a
sixth freely moving one, at k0 = 1.6927. New solitons add to
the established pattern according to the scenario outlined in
Sec. III A. At k0 > 1.6927, the soliton number decreases by
steps with increasing length of the corresponding intervals of
the kick’s strength (see Fig. 8).

As mentioned above, the largest number of six solitons is
attained at 1.6927 < k0 < 1.6942. In addition to Figs. 6 and 7,
this situation is illustrated in Fig. 11(a), where the average total
power is P = 23 [see Fig. 11(b)]. The horizontal reference
lines in this figure show the power levels corresponding to
a single quiescent soliton (recall Psol ≈ 3.15), multiplied by
factors from 1 to 7, which demonstrates that the total power
of the six-soliton complex exceeds the sevenfold power of the
single soliton. This is due to the fact that the energy of the
moving soliton is roughly twice that of a soliton at rest.

At k0 � 2.082, the kicked soliton moves freely across the
simulation domain [see Fig. 12(a)]. In this case, the figure
demonstrates that the soliton’s velocity increases, approaching
a certain limit value. The computation of the velocity was

FIG. 15. (Color online) Examples of curvilinear trajectories of
the soliton for θ = π/8 and two large values of the kick k0 = 6.05
and 10. Straight lines with slopes θ = π/8 and π/4 are displayed for
reference.

TABLE III. Number of solitons versus the k0x component of the
kick vector for orientations θ = 0 and π/8.

Range of the Number of Number of
Range of k0 projection k0x solitons θ = 0 solitons θ = π/8

[0,1.816] [0,1.6778] 1 1
1.974 1.8237 3 3
2.1 1.9401 2 2
[2.224,4.569] [2.0547,4.2212] 1 1
[4.816,5.804] [4.4494,5.3622] 1 0

performed by means of the Lagrange interpolation of the
numerical data to accurately identify the soliton’s center. To
display the results, small-scale oscillations of the velocity
of the soliton passing the periodic potential (obviously, the
velocity is largest and smallest when the soliton traverses the
bottom and top points of the potential, respectively) have been
smoothed down by averaging the dependence over about 15
periods.

C. The evolution initiated by an oblique kick

The application of the kick under an angle to the lattice, i.e.,
with θ �= 0 [see Eq. (5)], was considered too. The results are
summarized in Table I for θ = π/4 (the kick oriented along
the diagonal) and in Table II for θ = π/8.

For θ = π/4, the initial soliton remains pinned at

k0 � (k0)thr(θ = π/4) = 2.166 (18)

and is destroyed at 2.25 < k0 < 4.337. At k0 > 4.337, the
single soliton survives, moving freely along the diagonal
direction. Thus the final number of solitons in this case is
1 or 0 (see Table I) and no new solitons are generated. As
concerns the comparison with the analytical prediction (16), it
yields (k0)thr(θ = π/4) ≈ 1.87, which, as in the case of θ = 0,
is somewhat lower than its numerical counterpart.

The kick with much larger values of k0 (one or two
orders of magnitude higher than in Table I) causes the
generation of dark-soliton structures, supported by a nonzero
background filling the entire domain (the total power may
then exceed that of the single soliton by a factor ∼1000).
Inspection of Fig. 13(a) reveals stable holes in the continuous
background, whose centers coincide with phase singularities

FIG. 16. (Color online) Soliton velocity as a function of Z at
various values of k0 and θ .
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FIG. 17. (Color online) Basic types of interactions between the moving soliton and the quiescent multisoliton structure: (a) elastic collision
at k0 = 1.8 and θ = 0 and (b) absorption of the incident soliton at k0 = 1.765 and θ = 0.

[see Fig. 13(b)]. These holes represent vortices supported by
the finite background.

The creation of new solitons is possible in the case of the
oblique kick with θ = π/8. In this case, the new solitons may
be oriented along either axis X or Y , as indicated in Table II
(the total count includes the obliquely moving originally
kicked soliton).

Further, for the kick applied at an angle θ = π/8, the
simulations demonstrate that the kicked soliton remains pinned
at

k0 � (k0)thr(θ = π/8) = 1.816, (19)

while the analytical approximation (16) for the same case
predicts (k0)thr(θ = π/8) ≈ 1.54. The creation of new solitons
occurs above the threshold, similar to the case of θ = 0 and
in contrast with θ = π/4. The largest three-soliton pattern
is created at k0 = 1.974. It is composed of two oscillating
pinned solitons and a freely moving one, as shown in Fig. 14.
At k0 = 2.1, the dynamics again amounts to the motion of a
single soliton. Further, the simulations demonstrate that, in all
cases of the free motion of the single soliton, it runs strictly
along the X axis, despite the fact that the initial kick was
oblique.

A harder kick

4.816 < k0 < 5.804 (20)

destroys the soliton (its power at first increases as it moves
across the first PN barrier and then decays to zero). At still

TABLE IV. Collision types versus the magnitude of the initial
kick k0.

Collision type Range of k0

absorption k0 = 1.6879
Newton’s cradle with damping k0 = 1.6909
absorption k0 = 1.692
complex k0 = 1.693
absorption k0 ∈ [1.695,1.765]
Newton’s cradle with damping k0 ∈ [1.766,1.86]
Newton’s cradle k0 ∈ [1.866,2.081]

higher k0, the soliton survives the kick, but in this case its
trajectory is curvilinear in the plane of (X,Y ), as shown in
Fig. 15.

It is relevant to compare the number of solitons in the
patterns generated by the simulations for θ = 0 and π/8. For
both cases, these numbers are presented, as functions of the
projection k0x ≡ k0 cos θ of the kick vector onto the X axis, in
Table III. It is seen that the dependences of the soliton number
on k0x are quite similar for θ = 0 and π/8, barring the case of
the destruction of the soliton (0 in the table), which occurs at
θ = π/8, but does not happen for θ = 0.

Further, the evolution of the soliton’s velocity for different
strengths of the kick is shown in Fig. 16. Recall that for
θ = π/8 there are two domains of values of k0 in which the
kicked soliton moves, separated by the interval (20) where
the soliton is destroyed by the kick. It is observed that
the solitons accelerate and decelerate below and above the
nonexistence interval (20), respectively, but eventually the
velocity approaches a constant value. Moreover, the picture
suggests that, as a result of the long evolution, the velocity is
pulled to either of the two discrete values ≈2 or ≈3. As said
above, these velocities [in other words, the values of k0 that can
directly produce such velocities (see straight horizontal lines
in Fig. 16)] correspond to the single soliton moving along the
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FIG. 18. (Color online) Example of periodic elastic collisions
according to Newton’s cradle scenario at k0 = 1.867 and θ = 0.
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FIG. 19. (Color online) (a) Example of the complex interaction of the free soliton with the standing structure at k0 = 1.693 and θ = 0.
(a) Distribution of the field |u(X,Z)| in the cross section Y = 0 and (b) total power versus Z. In panel (b) horizontal lines show the multiple
powers of the quiescent fundamental soliton.

X axis rather than under an angle to it. The conclusion that the
system relaxes to discrete values of the velocity is natural, as
the dissipative system should give rise to a single or several
isolated attractors rather than a continuous family of states
with an arbitrary velocity.

Similar behavior is observed for other orientations of the
kick θ = π/4 and 0 [see the curves labeled by these values
of θ in Fig. 16 and also Fig. 12(b)]. Again, the velocity
asymptotically approaches the same discrete values, close
to 2 and 3, with the acceleration or deceleration below and
above these values, respectively. In the case of θ = π/4, in
the established regime the free soliton moves in the diagonal
direction.

IV. COLLISIONS BETWEEN MOVING SOLITONS
AND STANDING PATTERNS

One of the generic dynamical patters identified above
features a standing multisoliton structure and a freely moving
soliton, which, due to the periodic boundary conditions, hits
the standing structure from the opposite side (see Figs. 6, 9, 11,
and 14). Two distinct scenarios of the ensuing interaction have
been identified in this case, namely, the elastic collision, with
the incident soliton effectively passing the quiescent structure
[via a mechanism resembling Newton’s cradle (see Ref. [28])]
and reappearing with the original direction and velocity of the

motion, and absorption of the free soliton by the structure [see
Figs. 17(a) and 17(b), respectively].

More complex interaction scenarios were observed too,
with several elastic or quasielastic collisions that end up
with the eventual absorption of the free soliton. Outcomes
of the collisions are summarized in Table IV (the range of
k0 > 2.081 is not shown in the table, as only the single soliton
exists in that case). At 1.766 < k0 < 1.86, several elastic
collisions, from one to five, the number of which alternates
in an apparently random fashion, are observed before the
absorption is registered. This scenario is labeled “Newton’s
cradle with damping” in Table IV. At k0 > 1.86, the collision
is elastic and persists to occur periodically, as in the case
of the ordinary Newton cradle (so named too in Table IV)
(see Fig. 18).

A special case is the one corresponding to the creation of
the largest number of solitons at k0 = 1.693, as shown above.
The collision pattern is quite complex in this case, as shown
in Fig. 19(a). Both elastic collisions (at Z � 50 and 100) and
absorptions (at Z � 238) are observed. An unexpected feature
of the process is the reversal of the direction of motion of
two solitons around Z � 150. The whole patterns eventually
relaxes into an array built of six solitons, which is confirmed
by the power-evolution plot in Fig. 19(b).

In the case of elastic collisions between two solitons
recurring indefinitely, we have checked if the velocity of the
transmitted soliton is the same as that of the incident one. To
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FIG. 20. (Color online) Velocities of each
(a) soliton and (b) center of mass versus Z for
the pair of periodically colliding fundamental
solitons. Here k0 = 1.974 and θ = 0.
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this end, it is relevant to consider the case of k0 = 1.974 and
θ = 0. After the first round-trip of the emitted soliton, the one
original is quiescent while the emitted one is running into it. It
is seen in Fig. 20(a) that each collision leads to the exchange
of velocities between the two solitons, as for colliding hard
particles. In addition, we identified the velocity of the center
of mass of the two-soliton set. Figure 20(b) shows that the latter
velocity gradually increases within the sequence of collisions,
approaching one of the above-mentioned discrete values
characteristic of the established motion of single solitons. In
the present case, the asymptotic velocity is close to 1.

V. CONCLUSION

The subject of this work was the mobility of 2D dissipative
solitons in the complex Ginzburg-Landau equation, which
includes the spatially periodic potential. This equation models
bulk lasing media with built-in transverse gratings. The soliton
was set in motion by the application of the kick, which
corresponds to a tilt of the seed beam [29]. The mobility
implies the possibility to generate oblique laser beams in the
medium. Further, the advancement of the kicked soliton may
be used for the controllable creation of various arrayed patterns
in the wake of the soliton hopping between the potential cells.
The depinning threshold, i.e., the smallest strength of the
kick that sets the quiescent soliton in motion, was found by
means of simulations and also with the help of the analytical

approximation based on the estimate of the condition for
the passage of the kicked object across the Peierls-Nabarro
potential. The dependence of the threshold on the orientation
of the kick with respect to the underlying lattice potential was
studied too. Various pattern-formation scenarios have been
identified above the threshold, with the number of solitons
in stationary arrayed patterns varying from one to six. Freely
moving solitons may eventually assume two distinct values of
the velocity, which represent coexisting attractors in this dissi-
pative system. Also studied were elastic and inelastic collisions
between the free soliton and stationary multisoliton structures,
with two generic outcomes: the quasielastic passage, as in the
case of Newton’s cradle, and absorption of the free soliton
by the quiescent structure (sometimes after several passages).
A natural extension of the present work may deal with the
dynamics initiated by the application of the kick to vortices
pinned by the underlying grating.
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