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Abstract: The spatiotemporal dynamics of few-cycle optical pulses in nonlinear Kerr media is studied outside 
the traditional framework of the SVEA. The pulse interactions, collapse threshold, and light bullets are 
calculated both analytically and numerically. 
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In the recent years, there has been a great deal of interest in the area of ultraintense light pulses comprising 
merely a few optical cycles. These few-cycle pulses (FCPs) have both been widely exploited in ultrafast 
nonlinear optics and also pushed extensive modeling studies beyond the slowly-varying envelope 
approximation (SVEA). In particular, numerous applications speed up interest towards deep understanding the 
pulse self-compression down to the single-cycle pulsewidth that goes on in a transparent medium with 
instantaneous cubic (Kerr-like) nonlinearity. The dynamics of a FCP in a self-focusing medium can be 
described beyond the SVEA by means of using the modified Korteweg-de Vries equation (mKdV) [1], sine-
Gordon (sG) [2,3] or mKdV-sG equations [4]. The mKdV and sG equations are completely integrable by the 
inverse scattering transform [5] whereas the mKdV-sG equation is completely integrable only if conditions are 
imposed on the nonlinear properties of the medium [6]. All these equations admit breather solutions which can 
realistically describe the FCP solitons. In (2+1) dimensions, the mKdV-based model should be replaced with 
the (non-integrable) generalized Kadomtsev-Petviashvili equation (GKPE) which, in turn, supplies a very 
distinct electrodynamical explanation for the stable few-cycle beam propagation [7,8].  

These findings have driven us to a specific question if the two-breather solution of the mKdV-sG equations 
describes the interaction in a Kerr-medium of two few-cycle optical solitons initially well separated, can be 
modeled in any optically reasonable setting. In this Report, we first consider the propagation of optical FCPs in 
a (1+1)D optical medium, such as a highly nonlinear optical waveguide. Our second goal is to expand this 
generic mKdV-sG model onto a (2+1)D medium in such way to answer the practical question of optical 
collapse and possibility of its arrest for the FCP. 

In any physical implementation, a train of FCPs can be launched into the medium in such a way that these 
propagate as a train of solitons. Due to the fluctuations of the intensity of the laser, the consecutive FCPs may 
have different energy/peak power, and, subsequently, different velocities. Therefore, it is only natural to expect 
them to overlap with each other and  our goal is to predict what can happen during the interaction. Owing to the 
analytic solutions that describe the two-breather solution of the mKdV-sG equation, we manage to define in 
explicit form, the amplitude, time location and shift resulting from the interaction. 

In the (2+1)D case of a Kerr-like medium, the evolution equation (1) should be replaced with a cubic 
GKPE as (see [10]) 

2
2( ) ,z yyU U U U U     (1) 

where the dimensionless variables U, z, and τ are proportional to the electric field, propagation distance, and 
retarded time, correspondingly,  and y is proportional to the transverse coordinate. Notice that U is not the 
amplitude of the FCP, but is proportional to the true electric field itself. The constants σ1,2 = ±1 are related to the 
dispersion and nonlinearity properties of the medium; see, e.g., Refs. [2-4]. As an input FCP train we chose a 
linear superposition of the two-breather solution which we believe is the best fit for the two-cycle optical pulse. 
Since the final expressions are somewhat cumbersome, here we restrict ourselves to the highlight of the results 
obtained analytically.     

Let us assume first that σ1,2 = -1, that is, the nonlinearity and dispersion yield temporal  self-
compression while nonlinearity and diffraction tend to defocus the FCP and what is more memory effects come 
into action here. The peculiarities of such diffraction are displayed at Fig. 1 where the optical field is strongly 
localized in time domain yet considerably spatially delocalized. This typical crescent shape is due to the 
conjugated action of temporal self-compression and diffraction. If the joint effect of nonlinearity and diffraction 
is focusing (σ1,2 = +1), and if the input is strong enough, the self-focusing might happen and two distinct 
regimes of the collapse are found numerically. At the same time, the spectrum of the FCP presents a strongly 
asymmetric oscillatory behavior that is in strict contrast with the case of the “long” pulses described within the 
SVEA. 

1



In other typical case (the so called short-wave limit), when the characteristic frequency of the optical 
transition is much smaller than the carrier frequency of the FCP, the spatiotemporal dynamics is described by a 
two dimensional sine-Gordon equation as [11]:    

sin ,z yyU C U U            (2) 
where C depends on z and is proportional to the inverse population. 
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Figure 3  Nonlinear diffraction of the FCP: (a) input profile at the (y, t)-plane; (b) an intermediate stage 
with a typical crescent shape; (c) nonlinear diffraction; (d) linear diffraction. 

The numerical simulations to Eq. (3) reveal evolution (not shown here) of the Gaussian pulse into a stable 
localized structure being affected neither by dispersion nor by diffraction; after a transient stage where the FCP 
radiates energy, its amplitude decreases and stabilization in the form of a localized oscillatory structure is 
reached eventually. 

In conclusion, we study the spatiotemporal dynamics of few-cycle optical solitons by making use of the 
two-breather solution of the mKdV-sG equation (or GKPE-sG) found earlier [7, 9-11]. The shapes of input and 
output soliton envelopes as well as the phase and location shifts are computed by mean of the exact expressions 
for the four-soliton (two-breather) solutions of the mKdV-sG equation. The remarkable feature is that, contrary 
to the case of the traditional (SVEA-type) soliton envelopes, no phase matching of any kind is required for the 
two-cycle pulses to interact efficiently. This interaction may bring  novel features into the nonlinear propagation 
of trains of few-cycle optical pulses. At the same time, light bullet formation is proven for a medium, where the 
characteristic frequency of the optical transition is much smaller than the carrier frequency of the FCP. Contrary 
to that, the FCP propagation might also lead to the true wave collapse or nonlinear diffraction, depending on the 
sign of nonlinearity and dispersion. 
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