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We report two studies, the first allows the generation of a high power laser operating in continuous wave, and the second generates pulses with high average power. Unlike methods using large mode area fibers, we propose a 10 W double-clad Er:Yb doped fiber amplifier pumped at 980 nm with several laser diodes and spliced to pieces of standard single-mode fibers. In continuous wave laser the output power of about 8 W for 40 W pumping power is obtained. The experimental configuration giving a soliton crystal is based on the nonlinear polarization rotation. The soliton crystal is a particular regime; it is characterized by hundreds of pulses homogeneously distributed in unique condensate structure.

INTRODUCTION

Fiber lasers find currently numerous applications spanning from industry, to health and research. The limitations connected to the low output power were overtaken thanks to the breakthrough technology of the double-clad structures and, more recently, of the large mode area fibers. The increase of output power has allowed the achievement of fiber lasers operating either in high power continuous wave (cw) regime, or in Q-switch or mode-locked regimes with even increasing pulse energies. In cw regime, the ytterbium-doped fiber laser current power performances are above 10 kW with excellent spatial beam quality [START_REF] Tunnërmann | Fiber lasers and amplifiers: An ultrafast performance evolution[END_REF]. In the mode-locking regime Yb-doped fibers hold again the record of average output power. Some hundreds of watts can be achieved in the CPA (Chirped Pulse Amplification) architecture [START_REF] Eidam | Femtosecond fiber CPA system emitting 830 W average output power[END_REF] while only few ten watts are obtained with a single oscillator with photonic crystal fiber with very large mode area [START_REF] Baumgartl | 66 W average power from a microjoule-class sub-100 fs fiber oscillator[END_REF]. In the 1.5 µm eye-safe window, erbium has been less studied in double-clad or large mode area (LMA) fibers combined with high pumping powers. In the cw regime it has been reported output powers of few watts using double-clad fibers with standard core dimension [START_REF] Salhi | High power tunable all fiber double-clad Er:Yb:silicate fiber laser[END_REF]. Passively mode-locked erbium-doped fiber lasers have been extensively investigated with conventional fibers (single clad) but narrowly with double-clad fibers. In the former case, the soliton fiber laser has been realized in several optical configurations using different mode-locking mechanisms [START_REF] Fermann | Fiber-lasers for ultrafast optics[END_REF]. We were pioneering in the latter case where we demonstrated passive mode-locking in the anomalous dispersion regime with a 1 W double-clad Er:Yb codoped amplifier [START_REF] Haboucha | Analysis of soliton pattern formation in mode-locked fiber laser[END_REF].

The aim of this paper is to characterize a 10 W Er:Yb codoped double-clad fiber amplifier in different laser configurations. In Section 2 we consider the continuous wave operation in an all-fibered experimental configuration. It is demonstrated that the output power is about 8 W which is currently a record for non LMA double-clad fibers. The 10 W amplifier is then used in a passively mode-locked optical configuration. Experimental results are presented in Section 3. It is shown that in the anomalous dispersion regime the laser emits a large soliton crystal [START_REF] Haboucha | Analysis of soliton pattern formation in mode-locked fiber laser[END_REF] which undergoes an instability when the pumping power is increased.

CONTINUOUS WAVE REGIME

The experimental setup is shown in Fig. 1. It is an all-fibered unidirectional ring cavity with a 10 W Er:Yb codoped amplifier manufactured by KEOPSYS and specially designed for our applications. The amplifier consists in 5 m long double-clad Er:Yb codoped fiber. The geometry of the inner clad has an octagonal shape which allows a high coupling efficiency of the multimode pump wave into the fiber. The diameter of the inner clad is 130 µm and the fiber core diameter is 12 µm. It is pumped at 980 nm with several laser diodes injected with the v-groove technique. The maximum available pumping power is up to 40 W which ensures a total output power of the ASE (Amplified Spontaneous Emission) up to 10 W. This value coincides with the maximum achievable output power in continuous lasing operation. The two fiber ends of the double-clad fiber are spliced to pieces of standard single-mode fibers (SMF 28). The cavity is then realized by connecting the output port of the amplifier with its input. The cavity contains also an optical isolator ensuring a unidirectional oscillation in order to avoid Brillouin backscattering which could damage the fiber. The output fiber coupler is placed just at the output of the amplifier. The output coupling coefficient will be varied to optimize the output power. Because of internal electronic security to avoid irreversible damages of the 10 W amplifier in the absence of input signal, an auxiliary laser must be used to start up the amplifier. The external light is launched with a 50/50 coupler to the principal cavity with a signal power of 17 dBm. After the principal laser is operating, we turn-off the starting laser to avoid any slave -master coupling between the two lasers. The cavity is totally fibered thus avoiding any thermal effects at the fiber ends. In the first series of experiments the output coupling is 10%. Because the amplifier does not support an external modulation, the lasing effect cannot be evidenced with the simplest way which consists to modulate the pumping power with a square signal thus leading to the observation of the classical relaxation oscillations. The observation of the temporal trace does not allow distinguishing between the amplified spontaneous emission (below the lasing threshold) and the laser signal (above threshold). A clear signature is however delivered by the low frequency spectrum (Fourier transform of the output intensity). Indeed, below the lasing threshold the low frequency spectrum does not exhibit a characteristic frequency while one frequency appears above threshold. It is the one associated to the relaxation oscillations and it can be observed without external modulation since the noise is sufficient to excite it. It is has been established that the square of the relaxation oscillation frequency is a linear function of the pumping power. The evolution of 2 r ω is shown in Fig. 2 and, as expected, it exhibits a linear evolution versus the pumping. The points are the experimental data while the solid line is a linear fit. The intersection of the straight line with the x-axis gives the value of the pumping power at laser threshold. In our case, the threshold is W 3 . 2 P th ≈ . Let us now consider the output coupling optimization. For that we have tested two output coupling values T = 50% and T = 70%. The 10% output has not been used since the optimization in fiber lasers occurs for high output coupling. Results are summarized in Fig. 3 which gives the evolution of the output power as a function of the pump power. The laser characteristics are linear and the threshold is about 2.5 W in both cases. The fact that the threshold is not very sensitive to the output coupling coefficient means that the losses due to this coupling are low in comparison to other losses of the cavity (distributed and localized). The highest efficiency η is obtained for T = 70 % for which % 20 = η while % 14 = η for T = 50%. These results are in good agreement with what is usually observed in fiber lasers. In fact the optimum output coupling is certainly above 90% but such high value will lead to a reinjected signal at the input port of the amplifier below the required value and this is why we did not use a 90% output coupling.

MODE LOCKING REGIME

In this section we consider the passive mode-locking of the laser. Mode locking is achieved through nonlinear polarization rotation technique. The experimental setup is shown in Fig. 4. We use the Er:Yb 10 W fiber amplifier operating at λ = 1.55 µm presented in the previous section. 
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) is added to control the total cavity dispersion. To favor multiple-pulse mode locking, the total dispersion is set in the anomalous regime with m / ps 12 . 0
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, with a total cavity length of 30.5 m corresponding to a round trip time of T = 152.9 ns. A polarizing isolator is set between two polarization controllers. Mode locking is obtained through the adjustment of the polarization controllers. The output intensity is detected with a high-speed photodetector (TIA-1200) and visualized with a fast oscilloscope (Tektronix TDS 6124C, 12 GHz, 40 GSa). The spectral properties are analyzed with an optical spectrum analyzer (Anritsu MS 9710C) and the pulse duration is measured with an optical autocorrelator with a scanning range of ±100 ps (Femtochrome FR-103 XL). At moderate pumping power (10 W) and adjusting the polarization controllers, a condensate state is formed: it consists in a large number of regularly spaced identical solitons with constant relative phase differences from one round trip to the next. It is a soliton crystal of several hundreds of solitons [START_REF] Haboucha | Analysis of soliton pattern formation in mode-locked fiber laser[END_REF]. The soliton train spans over 6.6 ns, as indicated by the temporal intensity recorded in Fig. 5. Note that the resolution of the oscilloscope does not allow separating the pulses and only the temporal envelope is visible. The corresponding optical spectrum given in Fig. 6 is modulated with a contrast exceeding 90% thus proving the strong coherence between pulses. The spectral period is 0.83 nm, which corresponds to a temporal separation of about 10 ps between solitons, in good agreement with the autocorrelation trace shown in the inset of Fig. 5. The latter also proves that the solitons are identical and equidistant. If we increase the pumping power from 10 W to 15 W, the extent of the soliton crystal increases from 6.6 ns to 9.3 ns. The autocorrelation measurement gives a delay of 10 ps between solitons. The number of pulses in the soliton crystal is therefore estimated to be about 930.

CONCLUSIONS

In summary, we have used a specially designed 10 W Er:Yb fiber amplifier in two optical configurations. The doped fiber is a double-clad fiber with a single-mode core with standard dimensions in contrast with large mode area fibers. We have first realized a continuous operating laser. The laser delivers about 8 W with an efficiency of about 20% which is currently a record. Better performances are expected with higher output coupling coefficients. The laser is compact, all-fibered and exhibits a diffraction-limited beam quality. On the other hand, we have built a passively mode-locked laser based on the nonlinear polarization rotation technique. Again, the laser is all-fibered in order to avoid thermal effects especially at the silica / air interfaces. The total cavity dispersion has been set in the anomalous dispersion regime in order to favour multiple pulsing. At moderate pumping power and with a suitable orientation of the polarization controllers we have obtained a soliton crystal. A soliton crystal is a particular soliton distribution involving identical and equidistant pulses which have a strong mutual coherence.
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 1 Figure 1. Experimental setup for the cw laser.
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 2 Figure 2. Evolution of the square of the eigenfrequency versus the pumping power.
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 3 Figure 3. Evolution of the output power versus the pumping power for two output couplings.
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 45 Figure 4. Experimental setup for the mode-locking operation of the fiber laser.

Figure 6 .

 6 Figure 6. Optical spectrum of a soliton crystal of Fig. 5.
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