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Abstract. We overview some recent theoretical studies of dynamical models
beyond the framework of slowly varying envelope approximation, which adequately
describe ultrashort-soliton propagation in nonlinear optical media. A general quantum
model involving an arbitrary number of energy levels is considered. Model equations
derived by rigorous application of the reductive perturbation formalism are presented,
assuming that all transition frequencies of the nonlinear medium are either well above
or well below the typical wave frequency. We briefly overview (a) the derivation of
a modified Korteweg-de Vries equation describing the dynamics of few-cycle solitons
in a centrosymmetric nonlinear optical Kerr (cubic) type material, (b) the analysis of
a coupled system of Korteweg-de Vries equations describing ultrashort-soliton propa-
gation in quadratic media, and (c) the derivation of a generalized double-sine-Gordon
equation describing the dynamics of few-cycle solitons in a generic optical medium.
The significance of the obtained results is discussed in detail.
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1. INTRODUCTION

Over the past three decades, the field of optical solitons (temporal, spatial and
spatiotemporal ones) and related nonlinear optical phenomena has been substantially
advanced; see, for example, two comprehensive historical overviews [1, 2] and a list
of several relevant works in this extremely broad research area [3]-[56]. As is well
known, a temporal optical soliton is a pulse that propagates in a dispersive medium
in such a way that a nonlinear optical effect (self-phase modulation) exactly compen-
sates the group-velocity dispersion; this exact balance of two counteracting physical
phenomena implies that the pulse remains unchanged during propagation. A spatial
optical soliton is a self-trapped light beam; the spreading of the optical beam due to
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diffraction is compensated by a self-induced lensing effect due to intensity-dependent
refractive index change associated with the optical Kerr effect. A spatiotemporal op-
tical soliton (alias a nonlinear ”light bullet”) is a spatially confined light pulse, i.e., an
optical wave packet that is self-trapped in both space and time physical dimensions.
We only would like to point out the continuous theoretical and experimental activity
in the area of nonlinear ”light bullets”; see the early seminal works [57]-[62] and a
few recent review papers [2, 6, 40]. The formation of fully three-dimensional spa-
tiotemporal optical solitons in two-dimensional photonic lattices was reported in re-
cent quite complex experiments [63]-[65]. It is believed that such three-dimensional
spatiotemporal optical solitons could be used as information carriers (in fact they are
ideal information units) in future high-speed all-optical information processing sys-
tems for both serial and parallel data processing and transmission, see e.g., recent
works [66]-[67]. Actually, such nonlinear light bullets offer potential for ultrafast
digital optical logic devices with switching rates of several 1012 Hz, i.e., with tera-
hertz switching speeds.

The nonlinear self-trapped spatiotemporal wave packets, in both conservative
and dissipative media, have been extensively studied during the past few decades in
diverse areas of research such as nonlinear optics and photonics, plasmas, condensed
matter physics, fluid mechanics, physics of elementary particles, astro-particle phy-
sics, atomic or molecular Bose-Einstein condensate, and biology and medicine [68]-
[69]. With the rapid advances in the creation of ultrashort optical pulses (only a few
cycles long), the study of propagation of such pulses become a matter of intensive
research over the past decade. It is worth noting that several pioneering papers on
experimental generation and characterization of ultrashort optical pulses (two-cycle
or even sub-two-cycle pulses) from Kerr-lens mode-locked Ti:sapphire lasers were
published in 1999 by a few groups from USA, Europe, and Japan [70]-[73]. Since
then the interest in intense ultrashort light pulses containing only a few optical cycles
has steadily grown. Such ultrashort optical pulses possess extensive applications to
the field of light-matter interactions, high-order harmonic generation, extreme [74]
and single-cycle [75] nonlinear optics, materials science and processing (e.g., fem-
tosecond laser ablation) [76], and attosecond physics [77, 78]; see Ref. [79] for a
review of earlier works in this exciting field. The shortest pulses that can be directly
generated with modern lasers by using Kerr-lens mode-locking techniques can have
a duration of about 5 fs, thus they have a spatial length of about 1500 nm in air (va-
cuum). Such ultrashort pulses have a large spectral bandwidth; a pulse with duration
of 10 fs has a spectral bandwidth of the order of 30 THz, i.e., the product between
pulse duration and spectral bandwidth (the time-bandwidth product) is about 0.3. In
order to obtain shorter pulses, the process of high harmonic generation is currently
used; this technique allows the formation of either single (isolated) attosecond pulses
or attosecond pulse trains. During the past few years, attosecond pulses with du-
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rations below 100 as (of the order of one atomic unit of time) were generated by
different research groups [75, 80, 81]. Note that one atomic unit of time (the time
scale of electron motion in atoms), is about 24 as.

Ultrashort laser pulses with duration of only a few optical cycles are currently
used to study chemical reactions, molecular vibrations, electron motion in atoms and
molecules, etc. The availability of ultrashort and ultraintense laser pulses generated
by the powerful technique of chirped pulse amplification [82] along with the deve-
lopment of high-fluence laser materials has opened up the field of relativistic optics
[83]. Recent activity in the area of realization of future large laser facilities, namely
exawatt-class lasers was overviewed by Mourou and Tajima [84]. Note that such
huge power levels will be obtained by releasing a few kilojoules of energy into an
ultrashort pulse with a duration of only 10 fs. It is worth noting that the possibility
to increase the laser peak powers relies on three revolutionary experimental achieve-
ments. First, an efficient laser amplification technique, namely the chirped pulse
amplification which had a great influence on a variety of laser applications, was in-
troduced in 1985 by Strickland and Mourou [82]. A second important advance in
this area has been the optical parametric chirped pulse amplification introduced in
1992 by Dubietis et al., see Ref. [85]. It is conceptually similar to the chirped pulsed
amplification, however, it relies on the parametric amplification of light. A third im-
portant amplification technique, which was introduced in 1999 by Malkin et al. [86],
is a new compression technique based on backwards Raman scattering and has the
advantage of avoiding diffraction gratings. Mourou et al. [87] recently put forward a
new amplification technique, the so-called cascaded conversion compression, which
has the capability to compress with good efficiency nanosecond laser pulses with
energy of about 10 kJ into femtosecond pulses having the same energy. Thus it is
hoped that exawatt-zettawatt peak powers might be reachable within the next period
of time. The possibility of generating zeptosecond and even yoctosecond electro-
magnetic pulses that may allow one to operate on nuclear as well as quark-gluon
plasma time scales has been recently investigated by Kaplan [88]. We also men-
tion a recent brief overview of different types of experiments in nuclear photonics
and related areas by using the planned Extreme Light Infrastructure-Nuclear Physics
(ELI-NP) facility [89]. These many theoretical and experimental developments in
the fast developing area of ultrashort and ultraintense laser pulses are very promising
both from the fundamental and the application points of view.

The continuing experimental progress in the study of the wave dynamics of
few-cycle pulses (FCPs) in different kinds of nonlinear optical media has paved the
way for the development of new theoretical approaches to model their propagation
in a series of physical settings. It is worth noting that three main classes of dy-
namical models for FCPs have been put forward in the literature: (i) the quantum
approach [90]-[91], (ii) the refinements within the framework of slowly varying en-
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velope approximation (SVEA) of the nonlinear Schrödinger-type envelope equations
[92]-[94], and (iii) the non-SVEA dynamical models [95]-[102]. Extremely short
pulses can be described by solving directly the Maxwell-Bloch equations for a two-
level system; soliton (sech-type) solutions have been derived in Ref. [103]. The
propagation of FCPs in Kerr media can be described beyond the SVEA by using
the modified Korteweg-de Vries (mKdV) [97]-[98], sine-Gordon (sG) [99]-[100], or
mKdV-sG equations [101]. The nonlinear propagation of FCPs in quadratic optical
media can be described by means of a Korteweg-de Vries (KdV) model, which can
be rigorously derived by means of the reductive perturbation method [104]. Recent
relevant works on FCPs deal with few-cycle light bullets created by femtosecond
filaments [105], the study of ultrashort spatiotemporal optical solitons in quadratic
nonlinear media [106,107], the ultrashort spatiotemporal optical pulse propagation in
cubic (Kerr-like) media without the use of SVEA [108,109], single-cycle gap solitons
generated in resonant two-level dense media with a subwavelength structure [110],
and the possibility of generating few-cycle dissipative optical solitons [111–113].
A comprehensive theoretical study of the generation of single-cycle pulses from a
passively mode-locked laser with inhomogeneously broadened active medium was
reported by Kozlov and Rosanov [114]. In a recent work [115] it was demonstrated
the compression of 35 fs pulses down to a duration of 3.8 fs in a single femtosecond
filament; this ultrashort pulse corresponds to sub-1.5 optical cycles of the electric
field. Half-optical-cycle damped solitons in quadratic nonlinear media have been
also investigated [116]. By using a classical model of the radiation-matter interac-
tion, it was shown in Ref. [116] that the propagation of (1+1)-dimensional few-
optical-cycle pulses in quadratic nonlinear media, taking moderate absorption into
account, can be adequately described, in the long-wave approximation regime, by a
generic Korteweg-de Vries-Burgers equation without using the SVEA. An efficient
approach to obtain soliton compression to few-cycle pulses with a high quality factor
by engineering cascaded quadratic nonlinearities was advanced in Ref. [117]. Nu-
merical results reported in Ref. [117] show that compressed pulses with less than
three-cycle duration can be achieved. It is worth noting that in contrast to standard
soliton compression, these compressed pulses have minimal pedestal and high qual-
ity factor, see Ref. [117] for more details. Propagation of subcycle pulses (containing
less than a single period of oscilations of electric field) in a two-level medium, be-
yond both SVEA and rotating-wave approximation, was investigated in Ref. [118].
It was shown that for such ultrashort pulses, a breakdown of the area theorem occurs
for pulses of large enough area. Such deviations from the area theorem appear to be
strongly dependent on the pulse shape and cannot be observed for longer few-cycle
pulses, see Ref. [118] for a detailed study of these important issues. The phenomenon
of self-focusing of femtosecond surface plasmon polaritons was investigated numeri-
cally by Pusch et al. [119] by using the finite-difference time-domain method. It was
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put forward the effect of self-focusing of plasmon pulses in the case of defocusing
Kerr-like nonlinearity of the dielectric medium due to normal group-velocity disper-
sion [119]; the self-focusing effect is similar to the corresponding one that occurs in
optical fibers [3].

The propagation of few-cycle optical solitons in nonlinear dispersive media
with anomalous dispersion and cubic nonlinearity was described by Amiranashvili
et al. in a recent work [55]. The nonenvelope ultrashort solitons were obtained nu-
merically using the so-called spectral renormalization method originally developed
for envelope solitons; for details about this powerful numerical method, see [55]. In
a recent work, Drozdov et al. [120] performed a comprehensive study of self-phase
modulation and frequency generation with few-cycle optical pulses in nonlinear dis-
persive media. A detailed study of ultrashort pulses and short-pulse equations in
(2+1) dimensions was also performed by Shen et al. [121]. Kolesik et al. [122]
quantified the limits of unidirectional ultrashort optical pulse propagation, explored
the limits of unidirectional pulse propagation equation in general nonlinear media,
and investigated under which physical conditions two-way propagation becomes sig-
nificant, and leads to a breakdown of unidirectional approximation. Whalen et al.
[123] studied optical shock and blow-up of ultrashort pulses in transparent media
and examined various ultrashort pulse propagation models and their relative effec-
tiveness in explaining these phenomena. The propagation of few-cycle pulses inside
nonlinear Kerr media and the generation of odd-order harmonics in these media with
cubic (Kerr) nonlinearity have been investigated in a recent work [124]. The forma-
tion of robust ultrashort (only two-cycles long) spatiotemporal optical solitons in car-
bon nanotube arrays has also been considered in a recent paper [47]. A short-wave
approximation was used in order to derive a generic two-dimensional sine-Gordon
equation, describing ultrashort-soliton evolution in such nanomaterials. The govern-
ing model was derived by using a rigorous application of the multiscale analysis for
the Maxwell equations and for the corresponding Boltzmann kinetic equation for the
distribution function of electrons in arrays of carbon nanotubes. Diffractionless and
dispersionless robust propagation over a few millimeters (thus the propagation dis-
tance is very long with respect to the wavelength) of two-cycle spatiotemporal optical
solitons in the form of two-dimensional breathers was reported in Ref. [47].

Next we draw the reader’s attention to some earlier theoretical studies per-
formed beyond the SVEA. Thus to the best of our knowledge, the necessity of us-
ing the non-SVEA approach for the adequate description of FCPs was put forward
in a paper by Akhmediev, Mel’nikov and Nazarkin published in 1989 [125]. In a
subsequent work, Belenov and Nazarkin [95] obtained exact solutions of nonlinear
Maxwell-Bloch equations, outside the approximation of slowly varying amplitudes
and phases, which describe ultrashort light pulses (only a few wavelengths long) for
very large power densities. We also mention that Farnum and Nathan Kutz [126], in

(c) RRP 65(No. 3) 925–942 2013



930 H. Leblond, H. Triki, D. Mihalache 6

a comprehensive study of ultrafast pulse propagation in mode-locked laser cavities,
clearly stated that the standard approach based on nonlinear Schrödinger-type enve-
lope equations should be abandoned in the study of few femtosecond pulses/solitons.
However, to the best of our knowledge, the necessity of using models beyond the
traditional SVEA in describing the phenomenon of self-induced transparency for
ultrashort pulses propagating in optical media was advanced in 1987 by Kujawski
[127]; see also the subsequent works by Andreev [128] and by Parkhomenko and
Sazonov [129].

Most of the past research interest in the study of propagation of FCPs was
confined to a generic two-level atomic system, which is a very simple and a rather
academic model. However, a more realistic description should take into account an
arbitrary number of atomic levels. Basically, the study of FCPs dynamics in a mul-
tilevel system, which might be, in our opinion, the most relevant correction to the
two-level model is an exciting and important task. In this situation, we expect to
get rather complicated evolution equations for FCPs when more than two levels are
involved. Accordingly, a general Hamiltonian, with an arbitrary number of energy
levels is used to describe the dynamics of atoms in the considered optical medium.
In a recent work [56] we have reviewed several models of few-cycle optical solitons
beyond the SVEA. We systematically used the powerful reductive expansion method
in order to derive rather simple either integrable or nonintegrable evolution models
describing both nonlinear wave propagation and interaction of ultrashort optical soli-
tons. We concentrated in Ref. [56] on the adequate description of a collection of
two-level atoms and we performed the multiple-scale analysis on the Maxwell-Bloch
equations and the corresponding Schrödinger-von Neumann equation for the corres-
ponding density matrix. However, in a series of recent papers [48]-[50] some of the
main results concerning the systematic use of the reductive expansion method beyond
the SVEA in the simplest case of two-level atoms were relatively easily extended to
few-cycle optical solitons in media described by a generic atomic Hamiltonian, i.e.,
we considered a general quantum model involving an arbitrary number of energy
levels.

In the present work we intend to briefly overview those recent results concern-
ing the derivation and the analysis of different non-SVEA models, which adequately
describe ultrashort-soliton propagation in nonlinear optical media by using a general
atomic Hamiltonian, with an arbitrary number of energy levels. In the presentation
of both theoretical models and numerical results, we chiefly focus on those models
which are closest to current experiments, i.e., the ones with χ(2) and χ(3) nonline-
arities. More precisely, we consider both centrosymmetric nonlinear optical Kerr
(cubic) media and noncentrosymmetric quadratically nonlinear optical media, see
[48]-[50]. It is also relevant to mention that the governing dynamical equations are
derived using the reductive perturbation method which is a very powerful way of
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Fig. 1 – Propagation of a FCP according to the mKdV equation. Blue dotted line: the input with
Gaussian envelope. Green thick solid line: the FCP soliton observed after some propagation distance

(Z = 79.72). Dashed red line: fit of the output soliton by the analytic mKdV breather (after [48]).

obtaining simplified models describing nonlinear wave propagation and interaction.
This paper is organized as follows. In the next Section we briefly discuss the

derivation of a mKdV model for ultrashort-soliton propagation (few-cycles long)
from a general Hamiltonian, see Ref. [48]. In Sect. 3 we briefly consider a cou-
pled system of KdV equations describing ultrashort soliton propagation in quadratic
media by using a general Hamiltonian [49] and the reduction of that cumbersome sys-
tem to a single KdV equation for linear polarizations in the degenerate case (when
the two possible linear polarizations have the same refraction index n). Then, in
Sect. 4 we obtain and analyze a generalized double-sine-Gordon equation describing
ultrashort-soliton propagation in a generic optical medium [50]. Finally, in Sec. 5
we present our conclusions and we give a brief discussion of a few open problems in
this research area.

2. MODIFIED KORTEWEG-DE VRIES MODEL FOR DESCRIBING
ULTRASHORT-SOLITON PROPAGATION BY USING A GENERAL HAMILTONIAN:

CUBIC (KERR) NONLINEAR OPTICAL MEDIA

We consider the electromagnetic wave equation for a set of identical atoms.
The evolution of the electric field ~E is governed by the equation

∆ ~E−∇
(
∇· ~E

)
=

1

c2
∂2

∂t2

(
~E+

1

ε0
~P

)
, (1)

where c is the light velocity in vacuum, ∆ is the Laplacian operator, ε0 is the di-
electric permittivity of vacuum, and ~P is the polarization density. The considered
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medium consists of an assembly of identical atoms with Hamiltonian H0, and the
density matrix will be denoted by ρ. The atomic Hamiltonian H0 in the general case
is given in diagonal form

H0 = ~diag(ω1,ω2, . . . ,ωN ). (2)

In order to simplify notations, we assume a finite number N of non-degenerated
energy levels. The light-matter coupling is described by

~P =NTr(ρ~µ) , (3)

where ~µ is the dipolar momentum operator and N is the atomic density. The evolu-
tion of the density matrix ρ is determined by

i~
∂ρ

∂t
= [H,ρ], (4)

so that the total Hamiltonian is

H =H0−~µ · ~E. (5)

We consider a cubic (Kerr) nonlinear optical medium, i.e., we assume that
the material is centrosymmetric, so that the second order susceptibility χ(2) vani-
shes. For the sake of simplicity, we will assume a linearly polarized wave. Thus
~E and ~µ in Eq. (5) are replaced by scalar quantities E and µ, in which the ma-
trix µ = (µnm)(n,m)∈[1,N ] is Hermitian, i.e., µmn = µ∗nm, where the star denotes
the complex conjugate. Due to centrosymmetry of the medium, since µmn are the
matrix elements of an odd operator, the matrix µ is off-diagonal. Next we assume
that the characteristic pulse frequency ωw has the same order of magnitude as the
inverse of the pulse duration 1/tw, and is very small with respect to any resonance
frequency Ωnm = ωn−ωm in the atomic spectrum, i.e., 1/tw ∼ ωw � Ωnm, for all
n and m. This motivates the use of the long-wave approximation [56] and the in-
troduction of the slow variables τ = ε(t−z/V ), and ζ = ε3z, where ε� 1 is the
small perturbation parameter used in the multiscale analysis [130]. By performing
a multiscale analysis up to the third-order in the small parameter ε we derived in
Ref. [48] a modified Korteweg-de Vries equation as a rigorous formal asymptotics
of the Maxwell-Bloch equations for the most general Hamiltonian. This generic evo-
lution equation describes the propagation of ultrashort (only a few femtosecond long)
optical solitons in the so-called long-wave regime. It is well known that the generic
mKdV equation is completely integrable by means of the inverse scattering transform
[131]. The most general N -soliton solution has been obtained by Hirota [132]. It is
worth noting that the breather solution of the mKdV equation, which is a particular
case of the general two-soliton solution, is a prototype exact solution of a few-cycle
soliton.
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The mKdV equation can be written in its dimensionless form as [48]

∂Zu+2∂Tu
3+σ∂3Tu= 0, (6)

where σ = ±1, u is a dimensionless electric field, and Z and T are dimensionless
space and time variables

u=
E

E0
, Z =

z

L
, T =

t−z/V
tw

. (7)

The reference time is thus chosen to be the pulse length tw (in physical units). The
atomic resonance frequencies Ωnm have been chosen above as zero order quantities
in the perturbative scheme, while tw is assumed to be large, of order 1/ε, with res-
pect to the zero order times 1/Ωnm, see Ref. [48] for more details concerning the
characteristic electric field E0, the characteristic propagation distance L and their
dependence on the third-order susceptibility χ(3) and on n′′0 =

d2n0
dω2

∣∣∣
ω=0

.
A typical example of ultrashort-soliton propagation is shown in Fig. 1. It is

worth noting that the numerical simulation was run until Z = 80. We see that the
input two-cycle pulse evolves with very few changes in shape and width. We chosed
the propagation distance Z = 79.72 at which the carrier-envelope phase of the final
FCP is the same as the initial one, moved to the initial position and we plotted it in
Fig. 1 (green thick solid line) for comparison. A fit with the analytic mKdV breather,
i.e., with a special two-soliton solution of the mKdV equation [48] is also shown
(dashed red line); note that the fit is very close to the numerical result.

3. COUPLED SYSTEM OF KORTEWEG-DE VRIES EQUATIONS FOR DESCRIBING
ULTRASHORT-SOLITON PROPAGATION BY USING A GENERAL HAMILTONIAN:

QUADRATIC NONLINEAR OPTICAL MEDIA

In Ref. [49] we considered the propagation of ultrashort solitons in quadrat-
ically nonlinear optical media described by a general Hamiltonian. We derived a
coupled system of KdV equations describing ultrashort soliton evolution in such ma-
terials, by using a long-wave approximation and a rigorous application of the reduc-
tive perturbation formalism. We studied linear eigenpolarizations in the degenerate
case and the formation of ultrashort (half-cycle) solitons from few-cycle inputs. We
assumed in Ref. [49] that the absorption spectrum of the medium does not extend
below some cutoff frequency, and that the typical frequency of the FCP is much
less than that cutoff frequency. Thus we consider that the transparency range of the
medium is very large, and we take into account only the frequencies located in the
ultraviolet domain and further. It is worth noting that the effect of the infrared transi-
tions, which yield a sine-Gordon model in the simplest case of two-level atoms and
cubic nonlinearity, was considered in Ref. [50], see the next Section. Thus in Ref.
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Fig. 2 – (Color online) Wave profile showing the formation of three unipolar half-cycle solitons from a
FCP input. Dashed line is the FCP input (Z = 0), solid line is output (Z = 3). The dimensionless

parameters are: amplitude A= 3.5, angular frequency ω = 1.5, carrier-envelope phase ψ = 0, and
duration T0 = 5.33 (after [49]).
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Fig. 3 – (Color online) Evolution of a FCP input showing the formation of three unipolar half-cycle
solitons (after [49]).
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[49] we considered in detail the case of quadratic nonlinear optical media, i.e., we
assumed a non-centrosymmetric optical medium with a nonvanishing second-order
susceptibility χ(2). We worked in the so-called long-wave regime and we performed
the multiscale analysis [130] order by order. In this specific situation the natural slow
variables are as follows: τ = ε(t−z/V ), and ζ = ε3t. Let us fix some propagation
direction. If the two values of the refractive index corresponding to both possible po-
larization directions are distinct (we referred to this situation as the non-degenerate
case), then the propagation of ultrashort solitons in quadratic media, assuming a ge-
neral Hamiltonian with an arbitrary number of energy levels, is described by a KdV
equation [49].

Rather than specifying some particular quadratic nonlinear optical medium, we
considered in Ref. [49] the solution of the KdV equation in its standard dimension-
less form:

fZ +6f∂T f +∂
3
T f = 0, (8)

We recall that the well-known soliton of the KdV equation (8) is given by

f = 2p2sech2
(
pT −4p3Z

)
, (9)

where p is an arbitrary parameter.
The KdV equation can be solved by means of the inverse scattering transform;

it is well known that any input evolves into a finite number of solitons, plus some
dispersive wave, called ‘radiation’ in the terminology of the rigorous mathematical
theory of solitons. We have solved numerically the KdV equation (8) by means of
the modified Euler exponential time differencing scheme, starting from an input in
the form of a FCP, as

f =Acos(ωT +ψ)sech2 (T/T0) . (10)

Here the reference time is T0 = 0.8fs, so that a dimensionless angular frequency
ω = 1.5 corresponds to a wavelength very close to 1 µm, see Ref. [49] for more
details of this numerical study. As expected from the general theory, the input FCP
evolves into a few solitons, plus a dispersive wave. The number of solitons depends
on the amplitude and duration of the initial pulse, and on the carrier envelope phase.
A typical example is shown in Figs. 2 and 3, which show the formation of three
solitons, a larger one and two smaller ones.

In Ref. [49] we also analyzed in detail the degenerate case, i.e., when we
consider that the two possible linear polarizations propagating in the chosen direction
have the same refractive index n. We derived a cumbersome coupled system of KdV
equations, which describes ultrashort-soliton propagation in quadratic media, when
both polarization components interact, still assuming a general N -level Hamiltonian
[49]. In the particular case when the propagation axis z is one of the eigenaxes of the
optical medium, the degeneracy conditions imply that the crystal is uniaxial and that
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Fig. 4 – (Color online) One period of a breather of the generalized double-sine-Gordon equation, for
λ=

√
3 and q = 0.4 (after [50]).

the optical axis is the propagation one. For the linear eigenpolarizations, the coupled
KdV system reduces to a single KdV equation as in the non-degenerate case, and a
set of half-cycle solitons will form from few-cycle inputs, too [49].

In conclusion, in Ref. [49] we have investigated two typical situations: (a)
if the difference between the two refractive indices of the quadratic nonlinear op-
tical medium in the considered propagation direction is large enough, so that the
two eigenpolarizations cannot interact, a generic KdV model was derived, which de-
scribes the decay of a FCP input into either one or a few unipolar half-cycle solitons,
and (b) if the difference between the two refractive indices can be neglected, a com-
plicated coupled system of KdV equations describing ultrashort-soliton evolution in
quadratic nonlinear optical media was derived by using a rigorous application of the
reductive perturbation formalism.

4. GENERALIZED DOUBLE-SINE-GORDON EQUATION FOR DESCRIBING
ULTRASHORT-SOLITON PROPAGATION IN MEDIA DESCRIBED BY A GENERIC

HAMILTONIAN

In Ref. [50] we derived a generalized double-sG equation for describing ultra-
short-soliton propagation in a medium decribed by a general Hamiltonian with an
arbitrary number of energy levels, assuming that all transition frequencies of the
medium are well below the typical wave frequency, i.e., only the contribution of in-
frared transitions are taken into account. Thus we used a short-wave approximation
and a rigorous application of the reductive perturbation formalism to derive a cum-
bersome coupled system of nonlinear partial differential equations describing soliton
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evolution in such atomic systems. In order to perform the multiscale analysis, order
by order, we introduced the scaled variables τ (a retarded time) and ζ: τ = t− z/V
and ζ = εz, where ε is the small parameter in the corresponding reductive pertur-
bation formalism. It is worth noting that the variable τ is not a slow one, whereas
the propagation variable ζ is. Thus the variable ζ gives account for long-distance
propagation. Note that the electric field E is expanded as E = E(0)+εE(1)+ . . ..

As we have shown in Ref. [50], this set of equations can be simplified when
a few additional assumptions are considered. First, if no coupling between the vari-
ous atomic transitions occurs, the FCP evolution is described by a sG-type equation
involving one sine term for each transition, as

∂ψ

∂Z
=

∑
j

qj sin

(
λj

∫ T

−∞
ψdT ′

)
, (11)

in dimensionless form, where j labels the atomic transitions. The dimensionless
electric field is ψ = E(0)/Er, where Er is some reference electric field, see Ref.
[50].

The derivation of the above sG-type equation was given in Ref. [50] in the
simplified situation of a four-level system, which may interact with the light wave
only through two independent transitions, i.e., only two matrix elements of the dipo-
lar momentum are nonzero, one connecting the energy level 1 with 2, the other one,
the energy level 3 with 4. In this situation, the sG-type equation (11) reduces to a
generalized double-sG equation of the form

∂ψ

∂Z
= sin

(∫ T

−∞
ψdT ′

)
− q sin

(
λ

∫ T

−∞
ψdT ′

)
. (12)

A second rather simple special situation of physical interest is the case of two
transitions coupled together in such a way that they have equal weights. Specifi-
cally, we considered a three-level atomic system [50], in which the two excited levels
are not coupled together, and we assumed that both transition dipolar momenta are
equal. Then, the complicated general system can be reduced to a standard double-sG
equation, which can be written in its dimensionless form as

∂ψ

∂Z
= sin

(∫ T

−∞
ψdT ′

)
+ q sin

(
2

∫ T

−∞
ψdT ′

)
. (13)

Here we only present the output of a typical numerical simulation showing the
formation of robust breather-type solutions of the generalized double-sG equation
from sinusoidal inputs with Gaussian envelopes. In Fig. 4 we show one period of a
breather of the generalized double-sG equation (12), for the following choice of the
parameters: λ =

√
3 and q = 0.4. In conclusion, the existence of robust breather-

type solutions was evidenced in the most general case of a generalized double-sG
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equation, see Ref. [50].

5. CONCLUSIONS

We have overviewed a few generic models beyond the slowly varying envelope
approximation of the nonlinear Schrödinger-type evolution equations, describing the
propagation of ultrashort solitons in either quadratic or cubic nonlinear optical media.
To this aim, we used the density matrix formalism for a general Hamiltonian, with
an arbitrary number of energy levels. Assuming that all transition frequencies of the
cubic nonlinear optical medium are well above the typical wave frequency, we used
a long-wave approximation to derive an approximate evolution model of modified
Korteweg-de Vries type. For non-centrosymmetric quadratically nonlinear optical
media described by a general Hamiltonian we derived in the long-wave approxima-
tion regime a rather cumbersome coupled system of Korteweg-de Vries equations
describing ultrashort soliton evolution in such media. Then the rigorous applica-
tion of the multiscale analysis in the short-wave approximation regime, allowed us
to obtain a cumbersome coupled system of nonlinear partial differential equations
describing ultrashort-soliton evolution in nonlinear optical media. If any coupling or
interaction between different atomic transitions is neglected, it simplifies to a rather
cumbersome sine-Gordon-type equation. In the specific case of only two indepen-
dent transitions, the general evolution system can be further reduced to a generalized
double-sine-Gordon equation. By introducing these generic dynamical models, we
performed an extensive study of soliton dynamics in nonlinear materials described
by a general Hamiltonian of multilevel atoms. This allow us a better understand-
ing of the physical phenomena and dynamical processes arising in nonlinear systems
modeled by the obtained equations.

These studies might be extended in two main directions. First, a fully realis-
tic model for ultrashort-soliton propagation might be obtained by putting together
the results yielded by both long- and short-wave approaches, i.e., by considering a
medium containing two kinds of transitions, both in the infrared and in the ultraviolet
spectral domains. In such a system, the prototype dynamical equation might be some
generalized mKdV-sG equation which can adequately describe the propagation of
few-cycle pulses beyond the SVEA. Second, some of the obtained results can be re-
latively easily extended to (2 + 1) dimensions by incorporating into the generic model
a transverse spatial coordinate; thus the formation of ultrashort spatiotemporal opti-
cal solitons (nonlinear light bullets) can be investigated in the more general physical
setting. Especially, the lumps described by the Kadomtsev-Petviashvili (KP) equa-
tion in quadratic media [107], and the collapse of FCPs in Kerr media, described
by a generalized KP equation [108], remain valid if an arbitrary number of energy
levels are taken into account. However, the contribution of infrared transitions [109]
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does not generalize straightforwardly to (2 + 1) dimensions, and therefore, this is-
sue deserves further investigation. Finally, generalizing the current models to the
case where the vectorial nature of the electric field is taken into account would also
constitute an interesting theme for future studies.
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8. V. Skarka, N.B. Aleksić, Phys. Rev. Lett. 96, 013903 (2006); V. Skarka, N.B. Aleksić, V.I.
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