
HAL Id: hal-03204236
https://univ-angers.hal.science/hal-03204236

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Competition and coexistence of ultrashort pulses in
passive mode-locked lasers under

dissipative-soliton-resonance conditions
Andrey Komarov, Foued Amrani, Alexander Dmitriev, Konstantin Komarov,

François Sanchez

To cite this version:
Andrey Komarov, Foued Amrani, Alexander Dmitriev, Konstantin Komarov, François Sanchez. Com-
petition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-
resonance conditions. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2013,
87 (2), pp.023838. �10.1103/PhysRevA.87.023838�. �hal-03204236�

https://univ-angers.hal.science/hal-03204236
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 87, 023838 (2013)

Competition and coexistence of ultrashort pulses in passive mode-locked lasers under
dissipative-soliton-resonance conditions

Andrey Komarov,1,2,* Foued Amrani,3 Alexander Dmitriev,2 Konstantin Komarov,1 and François Sanchez3

1Institute of Automation and Electrometry, Russian Academy of Sciences, Acad. Koptyug Pr. 1, 630090 Novosibirsk, Russia
2Novosibirsk State Technical University, K. Marx Pr. 20, 630092 Novosibirsk, Russia

3Laboratoire de Photonique d’Angers EA 4644, Université d’Angers, 2 Bd. Lavoisier, 49000 Angers, France
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It has been shown by numerical simulation that the dissipative soliton resonance suppresses the appearance
of new ultrashort pulses in the laser cavity that usually arise with increasing pumping. As a consequence, the
energy of the pulses can reach an arbitrarily large value, which is determined by the corresponding pump power.
The mechanism of the suppression is due to interaction between pulses through a saturable gain medium. The
generation remains multistable: the number of pulses in steady-state operation depends on the initial conditions.
In the case of multipulse generation, all pulses have identical durations, shapes, peak intensities, and chirps. The
effect of maintaining single pulse operation with increasing pump power can be used to generate high-energy
pulses.
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I. INTRODUCTION

Passive mode-locked fiber lasers are widely used in various
areas of science, technology, and engineering. These lasers
have unique capabilities. They are reliable, compact, and
flexible and can be conveniently pumped with commercially
available semiconductor lasers. The nonlinear losses produc-
ing ultrashort pulses in such generators can be obtained using
the nonlinear polarization rotation technique. These losses
are fast, practically inertia free, and suitable for producing
femtosecond pulses. A great variety of operating regimes
is an important advantage of this type of laser. They can
operate with a single pulse in a laser cavity or with various
multipulse structures [1,2]. The properties of these structures
are determined by the nature of interpulse interaction. Mul-
tipulse operation is due to the effect of quantization of the
intracavity lasing radiation into individual identical solitons
[3]. Multipulse structures can be generated in the form of a
two-soliton molecule with different phase differences for the
peak amplitudes of the solitons [4–7], multisoliton information
sequences [8], and multisoliton complexes analogous to the
different states of aggregation of matter: a soliton gas, a
liquid, a glass, a soliton crystal [9], and so on. The long-range
repulsion of ultrashort pulses in a laser cavity leads to harmonic
passive mode locking [10–12] (a multipulse generation regime
in which the distances between all neighboring pulses are
identical). Harmonic passive mode-locked fiber lasers are of
great interest as sources of ultrashort optical pulses with a
high repetition rate, which are employed in high-speed optical
communications and various femtosecond technologies. In this
case, the multipulse generation due to the quantization of the
intracavity lasing radiation into individual identical solitons
is a very useful effect: the greater the number of pulses in a
laser cavity, the higher the pulse repetition rate in the output
radiation.

There has been considerable research activity in developing
fiber generators of high-energy pulses [13–15]. The key
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obstacle for the generation of such pulses is the above-
mentioned multipulse operation due to the quantization of
radiation into individual solitons. Indeed, due to this phe-
nomenon, increasing the pumping results in an increase in the
number of intracavity pulses, so that the energy of an individual
pulse remains almost unchanged. In this case, the radiation
quantization effect is a very harmful phenomenon that prevents
an increase in the energy of an individual pulse with increasing
pumping. Suppression of multipulse operation for obtaining a
lasing regime with a single pulse in the laser resonator provides
new opportunities for increasing the pulse energy.

In one study [16], conditions for single pulse operation are
analyzed for a simple model of laser passive mode locking.
This model assumes that the dispersions of the gain, losses,
and refractive index are quadratic and the nonlinear losses
and the nonlinear refractive index are proportional to the
radiation intensity. It is shown that, in this case, passive mode
locking occurs only in the form of single pulse operation.
There is also a large area of nonlinear-dispersion parameters
for which passive mode locking is not achieved. In this case,
the radiation completely fills the laser resonator. Furthermore,
there are solutions with an infinite increase in field intensity
over time. However, these solutions are physically incorrect
and are related to the imperfection of the model for the
nonlinear losses proportional to radiation intensity. Indeed,
in real experimental systems, decreases in losses cannot be
greater than linear losses. Models that take into account this
factor lead to multipulse operation at high pumping levels [3].

The authors of [17–20] used a model of nonlinear losses
described by an additional term with a quadratic dependence
on intensity. In this case, an infinite increase in intensity
is suppressed due to this dependence. It was found that
within the framework of this model with certain nonlinear-
dispersion parameters the pulse shape became rectangular and
its energy was arbitrarily high. This phenomenon was termed a
dissipative soliton resonance, and it is of interest for designing
high-energy pulse lasers [19]. Conditions for the occurrence
of a single pulse and multipulse operation were not studied.
Interaction of pulses through a common gain medium was
ignored.
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In this paper we investigate the multipulse operation,
competition, and coexistence of ultrashort laser pulses under
dissipative soliton resonance conditions. These processes are
due to the interaction of the pulses through their common gain
medium. They determine the type of the steady-state passive
mode-locking regime. In Sec. II we present a laser model
for the study of the competition and coexistence of pulses
under dissipative soliton resonance conditions. Numerical
simulations and the results are discussed in Sec. III. The main
conclusions are given in Sec. IV.

II. MODEL

For our analysis we use the following master equation
describing the field evolution in a unidirectional ring laser
based on the model of a distributed intracavity medium with a
quadratic complex dispersion and a nonlinear refractive index
and nonlinear losses [21,22]:

∂E

∂ζ
= (Dr + iDi)

∂2E

∂τ 2
+ [g + (p + iq)I − (p2 + iq2)I 2]E,

(1)

where E(ζ,τ ) is the electric-field amplitude; τ is the time
coordinate in units δt = √|β2|L/2 (here β2 is the second-order
group-velocity dispersion for the intracavity medium and L is
the cavity length); ζ is the normalized propagation distance
(the number of passes of the radiation through the laser
cavity); Dr and Di are the frequency dispersions of the gain
losses and the refractive index, respectively; q and q2 are
the Kerr nonlinearities; and I = |E|2 is the field intensity.
The term g is the total amplification including the linear
losses σ0:

g = a

1 + b
∫

Idτ
− σ0, (2)

where the integration is carried out over the whole round-trip
period, a is the pumping parameter, and b is the saturation
parameter. The term pI describes nonlinear losses that
decrease with increasing intensity I . The term p2I

2 is due to
nonlinear losses that increase with increasing I . In the case of
such nonlinear losses, the growth in the peak intensity of pulses
is limited by the value Imax ∼ p/p2. A similar limitation of the
peak intensity occurs in passive mode-locked fiber lasers with
nonlinear losses due to the nonlinear polarization rotation tech-
nique [2]. Equation (1) takes into account the gain saturation
through the dependence of the parameter g on the energy of the
intracavity radiation [see Eq. (2)]. This differentiates Eq. (1)
from the equation used in [5,18–21], where the parameter g is a
constant.

The scalar model described by Eq. (1) gives temporal
and spectral profiles of a stationary single pulse that are
qualitatively similar to the corresponding results obtained
using a vector model of passive mode locking for fiber lasers
[2] (see Sec. III). At the same time, this simpler model provides
a better understanding of the various features of passive mode
locking. These factors determine the use of the model Eq. (1)
for the analysis of the investigated regimes of passive mode
locking of fiber lasers.

III. NUMERICAL SIMULATIONS AND DISCUSSION

In the case of the cubic nonlinearity alone (p2 = 0, q2 = 0)
Eq. (1) has the following analytical solution for the temporal
profile of a stationary pulse [22]:

Es = E0
exp(iδkζ )

cosh1+iα βτ
. (3)

Here the peak amplitude of the pulse E0, the inverse of
the pulse duration β, the pulse frequency chirp α, and the
parameter δk are determined from a system of algebraic
equations (see the Appendix). The chirp is given by the
equation

α

2 − α2
= ξ − θ

3(1 + ξθ )
, (4)

where ξ = q/p and θ = Di/Dr . Figure 1(a) shows the change
in the chirp α on the plane of the nonlinear-dispersion
parameters ξ and θ . The spectral profile of the stationary pulse
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FIG. 1. Changes in the spectrum of a stationary ultrashort pulse
described by Eq. (1) with the complex cubic nonlinearity (p2 = 0,
q2 = 0). (a) Variation of the chirp α in the plane of the nonlinear-
dispersion parameters ξ = q/p,θ = Di/Dr . For the dotted line (ξ =
θ ), the stationary pulse is spectrally limited (α = 0); for the dotted
curves (ξ = −1/θ ) α = ±√

2, the arrows point the directions of the
maximum increase in the chirp α where the the spectral profiles take a
rectangular shape. For the gray areas, passive mode locking does not
occur. The boundary solid curves are determined from the condition
g(ξ,θ ) = 0. (b) The spectral profiles of steady-state solitons with
different chirps: (1) α = 0, (2) α = 1, (3) α = 3, and (4) α = 5.
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Eq. (3) is given by the following analytical expression [22]:

Iν = π2|E0|2
β2

sinh πα

α
(

cosh πα + cosh πν
β

) , (5)

where ν is the frequency detuning from the center carrier
frequency of the soliton. With increasing chirp α, the spectral
profile changes from a bell-shaped to a rectangular form [see
Fig. 1(b)].

The right upper quadrant in Fig. 1(a) corresponds to the
focusing nonlinearity (q > 0) and the anomalous dispersion
(Di > 0) of the refractive index. The left upper quadrant
corresponds to the focusing nonlinearity and the normal
dispersion (Di < 0) of the refractive index. For the nonlinear-
dispersion parameters from the white area, steady-state passive
mode locking occurs only with a single pulse in the laser
cavity. The quantity g describes the total amplification for the
weak field outside the volume of the stationary pulse. For the
white area, it is negative: g < 0. For the nonlinear-dispersion
parameters from the gray area, g > 0 and the regime of the
stationary single pulse is unstable. In this case, a lasing regime
is established for which the laser cavity is completely filled
with radiation. The condition g = 0 is typical for a change in
the lasing regime established after a transient process.

Using Eqs. (1) and (2) with p2 �= 0, we studied the features
of the passive mode locking observed with a limitation of a
decrease of nonlinear losses with increasing intensity. Numeri-
cal simulation was performed with the focusing nonlinearity q

and various values of the normal dispersion Di [the left upper
quadrant in Fig. 1(a), where a frequency chirp α can reach
the greatest magnitude]. Plots of the number of intracavity
pulses in steady-state operation N versus pump power a are
presented in Fig. 2. The procedure used to construct the
dependence N = N (a) is as follows. The initial field was
chosen in the form of several pulses of different amplitudes.
This was done to model initial noise pulses. A steady state was
established after a transient process. The number of pulses in
the steady state was plotted in Fig. 2. Then pump power a

was changed slightly (with a step of 0.1) and, after a transient
process, the number of pulses was plotted again, and so on.
The dependence N = N (a) was determined in this way. The
variance of the pulse amplitudes due to spontaneous noise
radiation was modeled by the addition of the initial multipulse
field reduced by a factor of 100 to the generated radiation at
the instant the pump power was changed. This perturbation
accelerated the transient process in the vicinity of bifurca-
tion points. To obtain steady-state multipulse operation in
the case of Fig. 2(c), we chose a sufficiently large value of the
pump power a and a sufficiently small amplitude difference
in the corresponding number of initial pulses. Thereafter
the pump power was changed with a small step. In the case
of steady-state multipulse operation, all pulses had identical
parameters (shape, peak amplitude, and frequency chirp). An
increase in the number of pulses is possible only in accordance
with the lower stepwise curve marked by arrows in Fig. 2.
The number of pulses decreases in accordance with the upper
stepwise curve.

Figure 3 demonstrates the dependence of the amplification
g on the pump power a. Here, as in Fig. 1(a), the condition
g = 0 determines the boundary separating different lasing
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FIG. 2. Number of pulses N vs pump power a. (a) Di = −20. (b)
Di = −25. (c) Di = −28. For all figures, Dr = 1, p = 1, q = 18,
σ0 = 1, p2 = 3, q2 = 0, and b = 0.01.

regimes (regimes with different numbers of pulses in the
laser cavity). The jumps in Fig. 3(a) are in one-to-one
correspondence with the jumps of the lower stepwise curve in
Fig. 2(a). Such jumps occur when the amplification g reaches
a zero value and, as a result, a new pulse appears in the laser
cavity. Increase in the amplification g with increasing pump
power a is due to a drop of the efficiency of interaction of
the pulse with the gain medium. This effect is related to the
finite width of the gain frequency band and an increase in the
spectral width of the pulse with increasing pulse peak intensity.
The mechanism of appearance of new pulses in generation
with increasing pump power and the physical nature of the
quantization of radiation into individual identical solitons in
passive mode-locked lasers were investigated and discussed
in detail in previous papers [2,3,16]. In the analysis of these
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FIG. 3. Dependence of the total amplification g on the pump
power a. (a) Usual passive mode locking. The arrows point to
jumplike transitions from steady states with g = 0 to the state with
g < 0 designated by large black circles. Di = −20. (b) Passive
mode locking under dissipative soliton resonance conditions. The
dependence g = g(a) corresponds to the lowest branch in Fig. 2(c).
Di = −28. Other parameters are the same as in Fig. 2.

phenomena, it is necessary to take into account the dependence
of the amplification g on the total energy of the intracavity
radiation [see Eq. (2)].

Increase in the number of pulses in a laser cavity with
increasing pump power a is common for models of nonlinear
losses taking into account that their decrease with increasing
intensity I is limited. However, as one can see from Fig. 2(c),
in the case of a high normal dispersion Di , this is not so.
The single pulse operation regime is retained with increasing
pumping. This regime is stable because the amplification g

outside the volume of the pulse remains negative as the pump
power a is increased [see Fig. 3(b)]. Figures 4 and 5 explain
the nature of this phenomenon.

Figure 4 shows that with increasing pump power a the peak
intensity of the steady-state pulse initially increases and then
remains constant while its bell-shaped form is transformed into
a rectangular one. Further increase in the pumping a results
in a monotonic increase in the duration of the rectangular
pulse. This transformation of the stationary pulse is associated
with the stabilizing quadratic nonlinearity of the losses p2

in Eq. (1). The corresponding change in the pulse spectrum
is shown in Fig. 5. As the pump power a is increased, a
bell-shaped top appears in the rectangular spectral profile
[see Fig. 5(a)]. Further increase in the pump power leads to
the growth of the bell-shaped part of the spectrum, and the
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FIG. 4. Dependence of the temporal profile of a steady-state pulse
on the pump power a. The pump power is changed with a step δa =
2.5. Laser parameters are the same as in Fig. 3(b).

rectangular spectral profile is transformed in this way to a
bell-shaped one [see Fig. 5(b)]. An important point is that
the bell-shaped part of the spectrum is significantly narrower
than the rectangular part. The rectangular part is due to the
soliton wings, where high intensity gradients occur, resulting
in a great frequency chirp, that is, the broadband rectangular
portion of the spectrum. In contrast, in the central part of the
rectangle pulse, the intensity gradients are small and, as a
result, the frequency variation is also small. Accordingly, this
part of the pulse is responsible for the narrowband bell-shaped
portion of the spectrum. When the length of the central part of
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FIG. 5. Dependence of the spectral profile of a steady-state pulse
on the pump power a. (a) The pump power changed with a step
δa = 0.5. (b) a = 10. All other parameters are the same as in Fig. 4.
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the pulse becomes large in comparison with the length of the
wings, the spectrum of the pulse is considerably narrowed [see
Fig. 5(b)]. As a result, the detuning of the spectral components
of the pulse from the center of the spectral gain band becomes
considerably smaller, and the pulse interacts with the gain
medium much more effectively. Thus, the term dissipative
soliton resonance can be understood literally, that is, in the
sense of such effective resonance interaction. As a result of
this interaction, the inverse population in the gain medium
is effectively depleted. The amplification g outside the pulse
becomes negative, g < 0, which prevents the appearance of
new pulses in the laser cavity from spontaneous radiation with
increasing pump power. Accordingly, with increasing pump
power a, the energy of a single pulse can be arbitrarily large
at a corresponding level of pumping.

In the case of dissipative soliton resonance, passive mode-
locked lasers also show multistability [see Fig. 2(c)]: the
number of stationary pulses in steady-state operation depends
on the initial conditions. Operation with initial pulses differing
in duration becomes steady-state operation with identical
pulses. Single pulse operation is obtained only with a single
initial pulse or with small initial pump power a. With
increasing pump power, the single pulse operation is retained.

The phenomenon of dissipative soliton resonance is due to
the specific dependence of nonlinear losses on the intensity
δσ = −pI + p2I

2. At low intensity, these losses decrease
with increasing intensity. In contrast, at high intensity, they
increase as the intensity is increased. As a result, in the case of
dissipative soliton resonance, the peak intensity is stabilized at
a certain level Imax ∼ p/p2 and the pulse becomes rectangular.
A similar dependence is observed in passive mode-locked
fiber lasers with the nonlinear polarization rotation technique.
Correspondingly, the analysis of the generation dynamics of
these lasers based on the vector model also leads to rectangle
pulses and the specific spectral dependence presented in Figs. 4
and 5 (see Fig. 4 in [2]). Thus, dissipative soliton resonance
is a rather common phenomenon and can be observed in real
lasers with passive mode locking. For the case of anomalous
dispersion, this phenomenon was observed in [23]. The scalar
model Eq. (1) adequately describes the phenomenon studied.
It is significantly simpler than the vector model and provides
a better understanding of the main features of the passive
mode-locking process related to dissipative soliton resonance.

IV. CONCLUSION

In this paper we developed a theoretical model to describe
the competition and coexistence of ultrashort pulses in passive
mode-locked lasers with dissipative soliton resonance. The
model includes the quadratic dispersion of the gain, losses,
and refractive index for the intracavity distributed medium,
its Kerr nonlinearity, and the saturable gain dependent on
the radiation energy. The nonlinear losses are described
by a linear-quadratic dependence on the intensity. In the
case of dissipative soliton resonance, the lasing pulses have
a rectangular form. We have found that this form of the
pulses results in their narrower spectrum and, hence, in their
more effective interaction with the gain medium and more
considerable saturation of the gain. In this case, the total
amplification for the weak radiation outside the pulse volume

becomes negative, which prevents the appearance of new
pulses in the laser cavity with increasing pumping, and the
number of generated pulses remains constant. As a result,
with increasing pump power, the energy of a single pulse
can be arbitrarily large at a corresponding level of pumping.
In multipulse operation, all pulses have identical parameters
(form, peak intensity, spectrum, and so on). The generation
is multistable. In the case of dissipative soliton resonance,
the number of pulses depends on the initial conditions, but
it does not change with increasing pump power. Smaller
nonlinearities of the refractive index and larger values of the
normal dispersion promote dissipative soliton resonance. This
phenomenon provides new opportunities for the design of
high-energy pulse lasers.
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APPENDIX: PULSE SOLUTION OF THE CUBIC
MASTER EQUATION

Substituting the expression for the stationary pulse Es

from Eq. (3) into Eq. (1) and separately equating the terms
proportional to Es and Es/ cosh2(βτ ), we obtain the following
algebraic equations for the parameters of the stationary pulse:

(Dr + iDi) (1 + iα)2 β2 − iδk + g = 0, (A1)

− (Dr + iDi) (1 + iα) (2 + iα) β2 + (p + iq) |E0|2 = 0.

(A2)

The complex algebraic equation (A2) corresponds to the two
real equations

Di(2 − α2)β2 + 3Drαβ2 = q|E0|2, (A3)

Dr (2 − α2)β2 − 3Diαβ2 = p|E0|2. (A4)

Division of Eq. (A3) by Eq. (A4) yields Eq. (4), which
defines the frequency chirp α through the nonlinear-dispersion
parameters ξ = q/p and θ = Di/Dr . As can be seen from this
equation, in the case of the parameters ξ and θ corresponding
to the line ξ = θ [the dotted line in Fig. 1(a)], the chirp is
equal to zero: α = 0. For the parameters ξ and θ lying above
(below) this straight line, the chirp is positive (negative). For
the values of ξ and θ lying on the dotted curve ξ = −1/θ , the
chirp is equal to

√
2 for the left upper quadrant in Fig. 1(a), and

it is equal to −√
2 for the lower right quadrant [for α = ±√

2
and ξ = −1/θ , the denominators of the right and left sides of
Eq. (4) are equal to zero].

From the complex equation (A1) we obtain the following
two real equations:

δk = 2Drαβ2 + Di(1 − α2)β2, (A5)

g = −Dr (2 − α2)β2 + 2Diαβ2. (A6)

For known values of α and β Eq. (A5) allows one to determine
the correction δk for the central wave vector of the pulse.
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The chirp α is determined from Eq. (4). The peak amplitude
E0, the amplification g, and the inverse of the duration β are
determined from the system of algebraic equations containing
Eqs. (A6) and (2) in the form

g = a

1 + 2b|E0|2/β − σ0 (A7)

and the system containing Eqs. (A3) and (A4).
A necessary condition for the stability of the stationary

pulse Eq. (3) is the condition g < 0. Otherwise, any perturba-
tions outside the stationary pulse will be built up with time.
Equation (A6) with g = 0 and Eq. (4) define the boundary
ξ = ξ (θ ) separating the regions Of stability and instability of

the stationary pulse Eq. (3) on the plane ξ , θ shown in Fig. 1(a):

ξ = ±3
√

1 + θ2 ∓ 2θ + 2θ2(
√

1 + θ2 ∓ θ )

1 ∓ θ (
√

1 + θ2 ∓ θ )
. (A8)

The upper sign corresponds to the upper solid curve in the
figure. The lower sign corresponds to the lower solid curve.
The perturbations outside the stationary pulse are suppressed
due to the negative value of g. The energy of the pulse is
stabilized due to the saturation of the amplification g, which
depends on the pulse energy. Outside the area bounded by the
solid curves in Fig. 1(a), the amplification is positive: g > 0.
As a result, the stationary pulse is unstable, and after a transient
process the laser cavity is completely filled with radiation.
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