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Using a combination of the variation approximation and direct simulations, we consider the model of

the light transmission in nonlinearly amplified bulk media, taking into account the localization of the gain,

i.e., the linear loss shaped as a parabolic function of the transverse radius, with a minimum at the center.

The balance of the transverse diffraction, self-focusing, gain, and the inhomogeneous loss provides for

the hitherto elusive stabilization of vortex solitons, in a large zone of the parameter space. Adjacent to

it, stability domains are found for several novel kinds of localized vortices, including spinning elliptically

shaped ones, eccentric elliptic vortices which feature double rotation, spinning crescents, and breathing

vortices.

DOI: 10.1103/PhysRevLett.105.213901 PACS numbers: 42.65.Tg, 42.65.Sf, 47.20.Ky

Introduction and the model.—Self-collimated and self-
guided light beams, organized as spatial solitons in bulk
media, are subjects of great interest [1]. In addition to
their significance for fundamental studies, spatial solitons
can find applications to the design of all-optical data-
processing schemes. In particular, laser systems may run
on dissipative optical solitons, which are described by the
complex Ginzburg-Landau equations (CGLEs), typically
with the cubic-quintic (CQ) nonlinearity, taking into ac-
count the saturable nonlinear gain [2]. Crucially important
to the applications is the stability of dissipative solitons.
Families of stable spatial solitons in two transverse dimen-
sions (2D) exist in materials characterized by a saturable
nonlinearity that compensates the diffraction [1,3]. The
additional condition of the balance between losses and
gain reduces the family to isolated solutions, one of which
may be stable as an attractor [4,5].

The complexity of the CGLEs does not admit exact
solutions, even in an implicit form, with rare exceptions
[5–7]. Nevertheless, an analytical approximation, which
provides clues to finding dissipative solitons in the numeri-
cal form, has been developed in the form of the variational
approach (VA) adopted for dissipative systems [8].
Parameter domains where 2D and 3D solitons are stable
in the CQ-CGLE and related models have been outlined by
means of this method [8,9].

Objects of fundamental significance which remained
elusive in the studies of dissipative solitons are solitary
vortices. In previous works, such vortices were found to be
stable only in the presence of the diffusion, which occurs in
other physical media, but does not appear in laser systems
[9,10], nor in dissipative models of Bose-Einstein conden-
sates (BECs) [11]. The stabilization of multipeak patterns
carrying vortical phase patterns was demonstrated by

periodic potentials that may be created in the laser cavity
[9]. Nevertheless, the most fundamental circular (‘‘crater-
shaped’’) localized vortices were not found yet as stable
objects in models of optical media. In this Letter, we report
(for the first time, to our knowledge) stable fundamental
vortical modes in a physically relevant model where the
stabilization is provided by an axisymmetric modulation
of the linear loss, with a minimum at the center. In the
experiment, the loss modulation may be induced by a
localized gain which partly compensates the uniform loss
(an ‘‘iceberg of gain’’ submerged into the ‘‘sea of loss’’). In
fact, the gain applied to a laser cavity is always localized,
due to the finite width of the pumping beam. Besides the
optical media, similar modulated loss profiles can be
engineered in BEC, where they help to support various
matter-wave modes [11].
We also demonstrate that, when the axisymmetric vor-

tices lose their stability, they give rise to other novel types
of vorticity-carrying modes. These are spinning elliptically
deformed vortices, eccentric elliptic vortices which feature
spinning and precessing, revolving crescents, and breath-
ing vortices. Thus, the use of the 2D ‘‘iceberg-shaped’’
gain profile opens the way to the previously inaccessible
class of stable vortical modes in dissipative optical media.
We adopt the ð2þ 1ÞD form of the CQ-CGLE governing

the evolution of the optical field in the bulk medium,
Eðz; x; yÞ, along axis z, and the diffraction in the transverse
plane [2,4]:

iEz þð1=2ÞðExx þEyyÞþ ð1� i"ÞjEj2E�ð�� i�ÞjEj4

�E¼�igðrÞE; r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; (1)

where positive coefficients �, ", and � account for the
saturation of the Kerr nonlinearity, cubic gain, and quintic
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loss, respectively, and the linear-loss coefficient is modu-
lated along the radial coordinate, gðrÞ ¼ �þ Vr2, with �,
V > 0. Note that the limit form of a similar 1D model,
with the linear gain concentrated at a single ‘‘hot spot’’
(approximated by the delta function) and cubic nonlinear-
ity, admits exact stable solutions for pinned solitons [6].

The variation approximation.—First, we aim to obtain
approximate analytical results, using the VA technique [8].
We adopt the ansatz for the vortex soliton with topological
charge 1,

E ¼ A�Ar
R�R

exp

�
� r2

2R2�R2
þ i

Cr2

R2�
þ i�þ i�

�
; (2)

where � is the angular coordinate, normalizing factors are

A� ¼ 3=ð2 ffiffiffi
2

p Þ and R� ¼ 16=9, while variation parameters
are amplitude A, radius R, radial chirp C, and phase �.
The total power corresponding to ansatz (2) is P �
2�

R1
0 jEðrÞj2rdr ¼ P�A2R2, with P� � �A2�R2�. After

straightforward calculations, the VA leads to the system
of evolution equations:

dA

dz
¼ A

R2�

�
5

2
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�
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Steady-state solutions are obtained as fixed points (FPs) of
Eqs. (3)–(5), in the shaded area displayed in Fig. 1 (outside
of this area, there is only solution A ¼ 0). For small chirp,
it follows from Eq. (5) that the width of the stationary state
depends only on its amplitude, R2 ¼ ðA2 � �A4Þ�1, as in

conservative systems. In the first approximation, the small
chirp, which makes the dissipative solitons different from
their conservative counterparts, is obtained from Eq. (4):
C ¼ A2ð"��A2Þ=4þ R4�V=½2A2ð1� �A2Þ�.
Further analytical consideration of the FP solutions

reveals that they give rise to two different amplitudes A,
as shown in the inset to Fig. 1. As per general principles of
the analysis of dissipative systems, the solution with larger
A may be stable, while its counterpart with smaller A
corresponds to an unstable separatrix between the two
attractors [5]—the stable vortex and trivial state, E ¼ 0.
The solution with larger A is characterized by C< 0,
which also is a necessary stability condition for the steady
state [8]. The stability of the FPs corresponding to the
larger root for A was verified through the computation of
eigenvalues for small perturbations.
Numerical results.—The full stability area for the

vortex solitons (marked ‘‘stable’’ in Fig. 1) was identified
by means of direct simulations of Eq. (1), using the VA-
produced ansatz as the input. The VA predicts the qualita-
tive shape of the area correctly, although overestimating its
size. A typical example of the fast formation of a stable
vortex (which completes by z ¼ 20, i.e., after passing & 4
diffraction lengths) is displayed in Fig. 2.
In the ‘‘filamentation’’ region in Fig. 1, the modulation

instability breaks the vortex into two segments, at z� 1000
(closer to the stability border, this distance increases to
z� 3000). This outcome of the evolution is explained by
the fact that, in this region, the total power of the vortex (P)
falls below the breakup threshold; cf. similar instability
scenarios reported in Refs. [9–12].
In region E separating the stability and breakup domains

in Fig. 1,P exceeds the breakup threshold, hence the vortex
does not split. However, in this region the evolution leads to
squeezing the circular vortex into an elliptic rotating one,
which remains stable. For instance, in Fig. 3, the circular
vortex persists until z ¼ 3700. The further evolution,

FIG. 1 (color online). Stability regions of vortex solitons in
plane (", V) of the loss-modulation parameters. In this figure
and below, other coefficients in Eq. (1) are � ¼ 0:29, � ¼ 1:4,
� ¼ 0:4. The VA predicts the stability in the shaded area, and the
corresponding amplitude displayed in the inset.

FIG. 2 (color online). The self-trapping of a stable vortex from
the input predicted by the VA, at " ¼ 2:325 and V ¼ 0:03.
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lasting for �z � 200, ends up with the transition into a
stable elliptic soliton of a larger amplitude, which revolves
with a constant period, Z � 32. Its profile features a ‘‘vol-
canic’’ shape, with an undulate ‘‘crater’’ (see the bottom
row). This is a novel type of vorticity-carrying solitons
in dissipative media. Note that elliptically deformed
vortices were observed in a conservative nonlocal optical
medium [13], and they were studied theoretically
in diverse settings [14], but in those cases the ellipticity
was imposed by anisotropic boundaries, while here the
transition to the elliptic shape is generated intrinsically.
Rotating solitons of other types (‘‘dipole propellers’’)
were also predicted and demonstrated in conservative
media, but in those cases the rotation was imparted, rather
than spontaneous [15].

In the right-bottom (‘‘unstable’’) region of Fig. 1, the
vortices suffer destruction after the propagation distance
measured in hundreds of units (closer to the border of
region E, this distance extends to thousands). Four regions
D, C, B, and S, which separate the stable and unstable
regions in Fig. 1, feature other remarkable vortical pat-
terns. In region D, the stable elliptic vortex spontaneously
becomes eccentric. As shown in Fig. 4, it develops the
eccentricity after z ¼ 8500, and after z ¼ 14 000 it slips
out from the central position and starts precessing around
it, thus featuring double rotation (the precession and spin-
ning) in the same direction, with an apparently locked
period ratio, 216=54 ¼ 4, which may be caused by a non-
linear parametric resonance in the original spinning elliptic

vortex. The eccentric elliptic vortices remain stable in the
course of this complex motion.
Another variety of spontaneously deformed rotating

vortices occupies region C in Fig. 1. As shown in Fig. 5,
after z ¼ 660 the circular symmetry is broken by generat-
ing a crescent-shaped vortex, which fills a half of the
original circle. The crescent rotates around the center,
with period Z � 12 (see panels in Fig. 5 for z ¼ 25 988
and z ¼ 26 000). Stable crescent-shaped solitons were pre-
dicted in the conservative model of rotating BECs trapped
in anharmonic axisymmetric potentials [16].
The above species of the vortices feature stable shapes.

On the other hand, in region B of Fig. 1 they are subject to
an oscillatory instability, which immediately transforms
them into robust breathers, which keep the vorticity and
axial symmetry. Such stable breathers are similar to the one
shown in the first panel of Fig. 6 (the period of its oscil-
lations is Z � 5). Breathing vortices also appear in region
S; however, as shown in Fig. 6, they spontaneously develop

FIG. 3 (color online). The self-trapping of a stably rotating
elliptic vortex. The configurations displayed at z ¼ 29 968 and
z ¼ 30 000 correspond to the rotation of the ellipse by 180�.
Images in the bottom row display the established shape of the
elliptic vortex.

FIG. 4 (color online). A stable eccentric spinning vortex,
which orbits around the center.

FIG. 5 (color online). The evolution of a stable rotating
crescent-shaped vortex.
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the elliptic deformation and cease intrinsic oscillations at
z ’ 500. The resulting vortex develops into an elliptic
‘‘volcano’’ which rotates with period Z � 26. The differ-
ence from Fig. 3 is that this vortex species is characterized
by the crater which is not undulate but canted.

Conclusion.—Using the variational approximation and
numerical simulations, we have developed the analysis of
the general 2D model of optical media with the localized
linear gain compensated by losses, which models an active
part of laser systems. The localized gain provides the
stabilization of vortex solitons, which were unstable in
previously studied isotropic optical media without diffu-
sion. In addition, stability domains are found for several
novel species of vortical solitons, including elliptic spin-
ning ones, double-rotating eccentric vortices, revolving
crescents, and breathers. The stabilization mechanism is
provided, essentially, by the suppression of the wave field
by the growing loss at a large distance from the center,
restricting the dynamics to an effectively confined area,
where vortices with topological charge S ¼ 1 may be
stable against splitting [16,17]. This analogy also suggests
that all vortices with S 	 2 may be unstable, which re-
quires an additional investigation.
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