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Propagation of few-cycles optical pulses in a centrosymmetric nonlinear optical Kerr (cubic) type material
described by a general Hamiltonian of multilevel atoms is considered. Assuming that all transition frequen-
cies of the nonlinear medium are well above the typical wave frequency, we use a long-wave approximation
to derive an approximate evolution model of modified Korteweg–de Vries type. The model derived by rigor-
ous application of the reductive perturbation formalism allows one the adequate description of propagation
of ultrashort (few-cycles long) solitons.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Since 1999, few-optical cycle pulses [1–4] with durations of only a
few periods of the optical radiation have become the primary compo-
nents in many important problems of dynamics of nonlinear optical
waves. In particular, these ultrashort (femtosecond) pulses [5,6]
find applications in a wide variety of research areas, such as light–
matter interactions at high field intensities, high-order harmonic
generation, extreme nonlinear optics [7], and attosecond physics
[8,9]. Notably, the theoretical modeling used to correctly describe
the dynamics of such pulses in nonlinear optical media has also
been developed in parallel to these incentive experimental studies.
It should be said that, the search for new ideas or even new mathe-
matical concepts is of great interest as it is helpful to better under-
stand the ultrashort pulse propagation in nonlinear optical media
and the formation of robust few-optical-cycle solitons.

The continuing experimental progress in the study of wave dy-
namics of few-cycle pulses (FCPs) in nonlinear optical media has
paved the way for the development of new theoretical approaches
to model their propagation in a lot of physical settings. Three classes
of main dynamical models for FCPs have been put forward in the past
years: (i) the quantum approach [10–14], (ii) the refinements within
the framework of slowly varying envelope approximation (SVEA) of
the nonlinear Schrödinger-type envelope equations [15–24], and
: +33 2 41 73 52 16.
blond).

rights reserved.
(iii) the non-SVEA models [25–43]. The propagation of FCPs in Kerr
media can be described beyond the SVEA by using the modified
Korteweg–de Vries (mKdV) [31–33], sine-Gordon (sG) [34–36], or
mKdV–sG equations [37–41]. The mKdV and sG equations are
completely integrable by means of the inverse scattering transform
method [44,45], whereas the mKdV–sG equation is completely inte-
grable only if some condition between its coefficients is satisfied
[46,47].

Other relevant works on few-cycle pulses deal with propagation
and interaction of extremely short electromagnetic pulses in quadratic
nonlinear media [48–51], the study of few-cycle light bullets created by
femtosecond filaments [52], the investigation of ultrashort spatiotem-
poral optical solitons in quadratic nonlinear media [53], the ultrashort
spatiotemporal optical pulse propagation in cubic (Kerr-like) media
without the use of the slowly varying envelope approximation
[54,55], the possibility of generating few-cycle dissipative optical
solitons [56,57], generation of unipolar pulses from nonunipolar optical
pulses in a quadratic nonlinear medium [58], and the existence of
guided optical solitons of femtosecond duration and nanoscopic
mode area, that is, femtosecond nanometer-sized optical solitons [59].

We also mention recent studies of ultrafast pulse propagation in
mode-locked laser cavities in the few femtosecond pulse regime
and the derivation of a master mode-locking equation for ultrashort
pulses [60]. A relevant recent theoretical work presents a class of
few-cycle elliptically polarized solitary waves in isotropic Kerr
media, propose a method of producing multisolitons with different
polarization states, and study their binary-collision dynamics [61].
Robust circularly polarized few-optical-cycle solitons in Kerr media

http://dx.doi.org/10.1016/j.optcom.2012.02.045
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in both long-wave and short-wave approximation regimes were also
studied in recent works [62–64].

So far, most of theoretical investigations concern only FCPs
propagating in a nonlinear optical medium which is described by a
Hamiltonian related to two-level atoms. However, to the best of our
knowledge, studies based on very general Hamiltonians describing
the wave dynamics of such ultrashort pulses have not yet been
reported. It is, nevertheless, an interesting and potentially useful de-
scription if FCPs can form and can be robust when we consider this
more general physical setting. The aim of this paper is to investigate
such a multilevel system in the framework of the reductive perturba-
tion method (multiscale analysis). This fact allows one to extend the
existing studies to a more general physical situation. Thus in this
work we give a detailed mathematical derivation of the modified
Korteweg–de Vries equation for a general Hamiltonian. We assume
that the absorption spectrum of the nonlinear medium does not ex-
tend below some cutoff frequency, and that the typical frequency of
the FCP is much less than the latter. In other words, we assume that
the transparency range of the medium is very large, and consider
only the frequencies located in the ultraviolet spectral domain and
further. The effect of the infrared transitions, which yield a sine-
Gordon model in the case of two-level atoms, will be considered in
a further study.

The present study can be considered from two different points of
view: (i) a nonlinear cubic medium which has no transition in the
infrared is actually described, and (ii) the most general medium con-
taining two kinds of transitions, both in the infrared and in the ultra-
violet domains, is expected to be described by a more general
modified Korteweg–de Vries–sine-Gordon equation. However, we
give here the detailed mathematical derivation for the modified Kor-
teweg–de Vries part of the most general model.

This paper is organized as follows. In the next section we present
in detail a derivation of the modified-Korteweg–de Vries equation
as a rigorous formal asymptotics of the Maxwell–Bloch equations
for the most general Hamiltonian for multilevel atoms. This
evolution equation describes the propagation of ultrashort (a few
femtosecond long) optical solitons in the so-called long-wave regime.
In Section 3 we analyze both analytically and numerically the modi-
fied Korteweg–de Vries breather, which is the prototype of few-
optical-cycle solitons in such cubic nonlinear optical media. Finally,
in Section 4 we present our conclusions.

2. The derivation of a modified Korteweg–de Vries model from a
general Hamiltonian

We consider a set of multilevel atoms described by a very general
Hamiltonian:

H0 ¼ ℏ

ω1 0 ⋯ 0
0 ω2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯
0 ⋯ ⋯ ωN

0
BB@

1
CCA: ð1Þ

The evolution of the densitymatrix ρ is governed by the Schrödinger–
von Neumann equation

iℏ∂tρ ¼ H;ρ½ �; ð2Þ

in which the total Hamiltonian

H ¼ H0− μ
→ ⋅ E

→ ð3Þ

includes a term accounting for the coupling between the electric field E
→

and the atoms through a dipolar momentum operator μ
→
.

The evolution of the electric field is governed byMaxwell–Helmholtz
wave equation

∂2z E
→¼ 1

c2
∂2t E

→ þ 1
ε0

P
→

� �
; ð4Þ

in which the polarization density P
→

expresses as

P
→¼ NTr ρ μ

→
� �

: ð5Þ

We consider a cubic (Kerr) nonlinearity, i.e. we assume that the
material is centrosymmetric, so that the second order susceptibility
χ(2) vanishes. For the sake of simplicity, we will assume a linearly po-
larized wave. Then, only the component of E

→
along the direction of

polarization, and the corresponding component of μ
→

will be involved.
Hence, we suppose that the operator μ

→¼ μ e
→

x, where e
→

x is the unitary
vector along the x-axis. Also, we have E

→¼ Ee
→

x, and P
→¼ P e

→
x. Note that

E
→
and μ

→
in Eq. (3) are replaced with scalar quantities E and μ, in which

the matrix

μ ¼ μnmð Þ n;mð Þ∈ 1;N½ �; ð6Þ

is Hermitian, i.e. μmn=μnm∗ , where the star denotes the complex con-
jugate. Due to centrosymmetry, since μmn are the matrix elements of
an odd operator, the matrix μ is off-diagonal.

We assume that the characteristic pulse frequency ωw has the
same order of magnitude as the inverse of the pulse duration 1/tw,
and is very small with respect to any resonance frequency

Ωnm ¼ ωn−ωm ð7Þ

in the atomic spectrum, i.e.

1=tw ˜
ωωbbΩnm for all n; m: ð8Þ

This motivates the use of the long-wave approximation [65]. We
thus introduce the slow variables

τ ¼ ε t− z
V

� �
; ð9Þ

ζ ¼ ε3z; ð10Þ

so that we obtain

∂t ¼ ε∂τ ; ð11Þ

∂z ¼ − ε
V
∂τ þ ε3∂ζ : ð12Þ

The scaling (Eqs. (9)–(10)) clearly assumes unidirectional propa-
gation. Accurate studies [56,58] proved that this assumption may
lead to erroneous results in non-homogeneous media, since some
reflections which are negligible for long pulses are not for few-cycle
pulses. This must be taken into account in the interpretation of our re-
sults, the input wave should indeed be the pulse after it has entered
the homogeneous nonlinear medium, which may appreciably differ
from the incident pulse.

The field E, the polarization density P and the density matrix ρ are
expanded in a power series of some small parameter ε as

E ¼ ∑
p≥1

εpEp; ð13Þ

P ¼ ∑
p≥1

εpPp; ð14Þ
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ρ ¼ ∑
p≥0

εpρ pð Þ
: ð15Þ

As t→−∞, ρ(0) is assumed to be the density matrix at thermal
equilibrium, while Ep, Pp, and ρ(p) vanish, for any p≥1.

2.1. Order 0

The Schrödinger–von Neumann equation (2) at order ε0 is

0 ¼ H0;ρ
0ð Þh i

; ð16Þ

and

H0;ρ½ �ð Þnm ¼ ℏΩnmρnm: ð17Þ

We assume that each level is non-degenerated, and hence Ωnm≠0 if
n≠m. Then Eq. (16) yields ρnm(0)=0 for n≠m (i, j=1, 2,.., N).

2.2. Order 1

The Schrödinger–von Neumann equation (2) at order ε1 is

iℏ∂τρ
0ð Þ ¼ H0;ρ1½ �−E1 μ;ρ 0ð Þh i

: ð18Þ

Since

μ;ρ½ �ð Þnm ¼
XN
ν¼1

μnνρνm−ρnνμνmð Þ; ð19Þ

and using Eq. (17), we obtain the equation

iℏ∂τρ
0ð Þ
nm ¼ ℏΩnmρ

1ð Þ
nm−E1

XN
ν¼1

μnνρ
0ð Þ
νm−ρ 0ð Þ

nν μνm

� �
; ð20Þ

(recall that Ωnm=ωn−ωm).
Since ρ(0) is diagonal, Eq. (20) reduces to

ρ 1ð Þ
nm ¼

μnmE1 ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
ℏΩnm

ð21Þ

for n≠m, while the diagonal components ρnn0 are constant.
The polarization density is given by Eq. (5), i.e., at order ε1, by

P1 ¼ N∑
nm

ρ 1ð Þ
nmμmn: ð22Þ

Since μ is off-diagonal, the sum in Eq. (22) extends over n≠m only.
Reporting Eq. (21) into Eq. (22), and using the fact that μ is
Hermitian, we get

P1 ¼ NE1 ∑
n≠m

μnm

�� ��2 ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
ℏΩnm

: ð23Þ

The Maxwell–Helmholtz wave equation (4) at leading order ε3 is

1
V2 ∂

2
τE1 ¼ 1

c2
∂2τ E1 þ

P1

ε0

� �
: ð24Þ

Reporting Eq. (23) into Eq. (24) yields

1
V2 ∂

2
τE1 ¼ 1

c2
∂2τ E1 þ

NE1
ε0ℏ

∑
n≠m

μnm

�� ��2 ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ωnm

2
4

3
5: ð25Þ
Eq. (25) admits a nonzero solution if V=c/n0, in which the refractive
index n0 is

n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

ε0ℏ
∑
n≠m

μnm

�� ��2 ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ωnm

vuut
: ð26Þ

From Eq. (26), we can deduce the linear susceptibility χ(1), which is
related to the refractive index through n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ 1ð Þ

p
, as

χ 1ð Þ ¼ N
ε0ℏ

∑
n≠m

μnm

�� ��2 ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ωnm

: ð27Þ

Eq. (27) is worth being compared to the known expression of the lin-
ear susceptibility, which is given in Ref. [66] (Eq. 3.5.15, p. 163):

χ 1ð Þ
nm ωp

� �
¼ N

ε0ℏ
∑
nm

ρ 0ð Þ
mm−ρ 0ð Þ

nn

� � μ i
mnμ

j
nm

Ωnm−ωp−iγnm
: ð28Þ

Here we restrict to a linear polarization, hence χ(1)=χxx
(1) and

μmn=μmn
x . We neglect the damping, i.e. γnm=0, and due to the

long-wave approximation, the susceptibility must be evaluated as
ωp tends to zero. Then Eq. (27) coincides with Eq. (28).

2.3. Order 2

The Schrödinger–von Neumann equation (2) at order ε2 is

iℏ∂τρ
1ð Þ ¼ H0;ρ

2ð Þh i
−E2 μ;ρ 0ð Þh i

−E1 μ;ρ 1ð Þh i
: ð29Þ

Inserting Eq. (17) into Eq. (29), we get the equation

iℏ∂τρ
1ð Þ
nm ¼ ℏΩnmρ

2ð Þ
nm−E2

XN
ν¼1

μnνρ
0ð Þ
νm−ρ 0ð Þ

nν μνm

� �
−E1

XN
ν¼1

μnνρ
1ð Þ
νm−ρ 1ð Þ

nν μνm

� �
:

ð30Þ

Since ρ(0) is diagonal, Eq. (30) reduces to

iℏ∂τρ
1ð Þ
nm ¼ ℏΩnmρ

2ð Þ
nm−E2μnm ρ 0ð Þ

mm−ρ 0ð Þ
nn

� �
−E1

XN
ν¼1

μnνρ
1ð Þ
νm−ρ 1ð Þ

nν μνm

� �
:

ð31Þ

For n=m, by using Eq. (21), Eq. (31) becomes

iℏ∂τρ
1ð Þ
nn ¼ −E21 ∑

ν≠n

μnνμνn ρ 0ð Þ
nn−ρ 0ð Þ

νν

� �
ℏΩνn

−
μνnμnν ρ 0ð Þ

νν−ρ 0ð Þ
nn

� �
ℏΩnν

2
4

3
5: ð32Þ

The right-hand-side of Eq. (32) is zero, and hence ρnn(1)=0 for all n.
Consequently, taking into account the fact that μ is off-diagonal, we
get from Eq. (31)

ρ 2ð Þ
nm ¼ i

Ωnm
∂τρ

1ð Þ
nm þ E2

ℏΩnm
μnm ρ 0ð Þ

mm−ρ 0ð Þ
nn

� �

þ E1
ℏΩnm

∑
ν≠n;m

μnνρ
1ð Þ
νm−ρ 1ð Þ

nν μνm

� �
;

ð33Þ
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for n≠m, i.e., inserting Eq. (21) into Eq. (33) we get,

ρ 2ð Þ
nm ¼

iμnm ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
ℏΩ2

nm
∂τE1 þ

E2μnm ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
ℏΩnm

− E21
ℏ2Ωnm

∑
ν≠n;m

μnνμνm

ρ 0ð Þ
νν−ρ 0ð Þ

nn

� �
Ωnν

−
ρ 0ð Þ
mm−ρ 0ð Þ

νν

� �
Ωνm

2
4

3
5:

ð34Þ

The polarization density at order ε2 is thus

P2 ¼ iN
ℏ
∂τE1 ∑

n;m;n≠m

μnmμmn ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ω2

nm

þ NE2
ℏ

∑
n;m;n≠m

μnmμmn ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ωnm

þNE21
ℏ2 ∑

m;n;ν
m≠n≠ν

½ ρ 0ð Þ
mm−ρ 0ð Þ

νν

� � μmnμnνμνm
ΩnmΩνm

− ρ 0ð Þ
νν−ρ 0ð Þ

nn

� � μmnμνmμnν
ΩnmΩnν �:

ð35Þ

The second order nonlinear polarization is thus given by

PNL
2 ¼ ε0χ

2ð Þ E1ð Þ2; ð36Þ

where the second order susceptibility χ(2) is given by

χ 2ð Þ ¼ N
ε0ℏ

2 ∑
m;n;ν

m≠n≠ν

ρ 0ð Þ
mm−ρ 0ð Þ

νν

� � μmnμnνμνm

ΩnmΩνm
− ρ 0ð Þ

νν−ρ 0ð Þ
nn

� � μmnμνmμnν

ΩnmΩnν

� 	
:

ð37Þ

The expression of χ(2) can be found in Ref. [66] (Eq. 3.6.14 p. 173), as

χ 2ð Þ
ijk ωp þωq;ωq;ωp

� �
¼ N

2�0ℏ
2

� ∑
mnνf ρ 0ð Þ

mm−ρ 0ð Þ
νν

� �½ μ i
mnμ

j
nνμ

k
νm

Ωnm−ωp−ωq−iγnm

� �
Ωνm−ωp−iγνm

� �

þ μ i
mnμ

k
nνμ

j
νm

Ωnm−ωp−ωq−iγnm

� �
Ωνm−ωq−iγνm

� ��
− ρ 0ð Þ

νν−ρ 0ð Þ
nn

� �½ μ i
mnμ

j
νmμ

k
nν

Ωnm−ωp−ωq−iγnm

� �
Ωnν−ωp−iγnν

� �

þ μ i
mnμ

k
νmμ

j
nν

Ωnm−ωp−ωq−iγnm

� �
Ωnν−ωq−iγnν

� ��g:

ð38Þ

According to the chosen polarization, we should have

χ 2ð Þ ¼ χ 2ð Þ
xxx 2ω;ω;ωð Þ; ð39Þ

evaluated asω tends to zero, and neglecting the damping (γnm=0). It
is seen that Eqs. (36) and (38) coincide under these conditions, taking
into account the fact that μ is off-diagonal. In the present study, we
assume a centrosymmetric medium, and hence χ(2)=0. The coeffi-
cient of ∂τE1 in Eq. (35) is

A ¼ iN∑
nm

μnmμmn ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
ℏΩ2

nm
: ð40Þ

Permuting the dummy subscripts m and n changes the sign of the
term in the latter sum, hence A=0.

The Maxwell–Helmholtz wave equation (4) at order ε4 is

1
V2 ∂

2
τE2 ¼ 1

c2
∂2τ E2 þ

P2

ε0

� �
; ð41Þ

which is automatically satisfied if the expression (Eq. (26)) of the re-
fractive index is taken into account.

2.4. Order 3

The Schrödinger–von Neumann equation (2) at order ε3 is

iℏ∂τρ
2ð Þ ¼ H0;ρ

3ð Þh i
−E3 μ;ρ 0ð Þh i

−E2 μ;ρ 1ð Þh i
−E1 μ;ρ 2ð Þh i

: ð42Þ

Using Eqs. (17) and (19) into Eq. (42), we obtain the equation

iℏ∂τρ 2ð Þ
nm ¼ ℏΩnmρ

3ð Þ
nm−E3

XN
ν¼1

μnνρ
0ð Þ
νm−ρ 0ð Þ

nν μνm

� �

−E2
XN
ν¼1

μnνρ
1ð Þ
νm−ρ 1ð Þ

nν μνm

� �
−E1

XN
ν¼1

μnνρ
2ð Þ
νm−ρ 2ð Þ

nν μνm

� �
:

ð43Þ

A first step is to compute the diagonal terms ρnn(2). For m=n,
Eq. (43) becomes

iℏ∂τρ
2ð Þ
nn ¼ −S1nE2−S2nE1; ð44Þ

where we have set

Sjn ¼ ∑
ν≠n

μnνρ
jð Þ
νn−ρ jð Þ

nνμνn

� �
; ð45Þ

for j=1, 2. S1n contains the same expression as the right-hand-side
term of Eq. (32) above, and consequently S1n=0. Using the expres-
sion (34) of ρnν(2) for n≠ν, S2n can be expanded as

S2n ¼ F1nE2 þ F2n∂τE1 þ F3nE
2
1; ð46Þ

where

F1n ¼ μνnμnν
ℏ

ρ 0ð Þ
nn−ρ 0ð Þ

νν

� �
Ωνn

þ
ρ 0ð Þ
νν−ρ 0ð Þ

nn

� �
Ωνn

2
4

3
5 ¼ 0; ð47Þ

as S1n=0 above, and

F2n ¼ ∑
ν≠n

2iμnνμνn

ℏΩ2
vn

ρ 0ð Þ
nn−ρ 0ð Þ

vv

� �
; ð48Þ
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F3n ¼ ∑
N

ν≠nf μnν

ℏΩνn
∑
N

l≠n;ν
μ lnμνl

ρ 0ð Þ
nn−ρ 0ð Þ

ll

� �
ℏΩln

−
ρ 0ð Þ
ll −ρ 0ð Þ

νν

� �
ℏΩνl

2
4

3
5

− μνn
ℏΩnν

∑
N

l¼1
μ lνμnl

ρ 0ð Þ
νν−ρ 0ð Þ

ll

� �
ℏΩlν

−
ρ 0ð Þ
ll −ρ 0ð Þ

nn

� �
ℏΩnl

2
4

3
5g:

ð49Þ

Then we get

ρ 2ð Þ
nn ¼ iF2n

2ℏ
E21 þ

iF3n
ℏ

∫
τ

−∞E
3
1dτ: ð50Þ

The off-diagonal terms of ρ(3) can also be computed. Since ρ(0) is a
diagonal matrix, and μ and ρ(1) are off-diagonal matrices, Eq. (43)
yields, for n≠m,

ρ 3ð Þ
nm ¼ i

Ωnm
∂τρ

2ð Þ
nm þ E3μnm

ℏΩnm
ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
þ E2
ℏΩnm

∑
ν≠m;n

μnνρ
1ð Þ
νm−ρ 1ð Þ

nν μνm

� �

þ E1
ℏΩnm

∑
ν≠m;n

μnνρ
2ð Þ
νm−ρ 2ð Þ

nν μνm

� �
þ E1μnm

ℏΩnm
ρ 2ð Þ
mm−ρ 2ð Þ

nn

� �
:

ð51Þ

Reporting Eqs. (21), (34) and (51) into Eq. (52), we compute the po-
larization density as

P3 ¼ ε0χ
1ð ÞE3 þ 2ε0χ

2ð ÞE1E2 þ ε0χ
3ð Þ E1ð Þ3

þA∂τE2 þ B∂2τE1 þ CE1∂τE1 þ DE1∫
τ

−∞E
3
1dτ;

ð52Þ

in which χ(1) is given by Eq. (27), and χ(2) is given by Eq. (38). Here
χ(3)=χR

(3)+χS
(3), with

χ 3ð Þ
R ¼ N

ε0ℏ
3 ∑
nmνl½ μmnμnνμ lmμνl ρ 0ð Þ

mm−ρ 0ð Þ
ll

� �
ΩnmΩνmΩlm

−
μmnμnνμ lmμνl ρ 0ð Þ

ll −ρ 0ð Þ
νν

� �
ΩnmΩνmΩνl

−
μmnμνmμ lνμnl ρ 0ð Þ

νν−ρ 0ð Þ
ll

� �
ΩnmΩnνΩlν

þ
μmnμνmμ lνμnl ρ 0ð Þ

ll −ρ 0ð Þ
nn

� �
ΩnmΩnνΩnl

�;
ð53Þ

the sum being extended on all terms for which the denominators do
not vanish (the ‘regular’ terms, motivating the subscript ‘R’), and

χ 3ð Þ
S ¼ N

ε0ℏ
∑

n;m;n≠m

μmnμnm

Ωnm

iF2m
2ℏ

− iF2n
2ℏ

� �
; ð54Þ

where F2n is given by Eq. (48). The coefficient A is given by Eq. (40),

B ¼ −N
ℏ

∑
nm

μnmμmn ρ 0ð Þ
mm−ρ 0ð Þ

nn

� �
Ω3

nm
; ð55Þ

C ¼ − iN
ℏ2 ∑nmν

μmnμnνμνm ρ 0ð Þ
mm−ρ 0ð Þ

νν

� �
ΩnmΩ

2
νm

−
μmnμnνμνm ρ 0ð Þ

νν−ρ 0ð Þ
nn

� �
ΩnmΩ

2
nν

2
4

3
5

þ2iN
ℏ2 ∑

nmν

μmnμνmμnν ρ 0ð Þ
νν−ρ 0ð Þ

nn

� �
Ω2

nmΩnν
−

μmnμνmμnν ρ 0ð Þ
mm−ρ 0ð Þ

νν

� �
Ω2

nmΩνm

2
4

3
5;
ð56Þ

and

D ¼ N
ℏ

∑
n;m;n≠m

μmnμnm

Ωnm

iF3m
2ℏ

− iF3n
2ℏ

� �
; ð57Þ

where F3n is given by Eq. (49).
Due to the centrosymmetry, the coefficient C is zero. Consider
indeed the second order susceptibility χxxx

(2)(ωp+ωq; ωq, ωp) given
by Eq. (38), for ωp=ωq=ω, i.e.

χ 2ð Þ 2ω;ω;ωð Þ ¼ N
�0ℏ

2 ∑
mnν½ ρ 0ð Þ

mm−ρ 0ð Þ
νν

� � μmnμnνμνm
Ωnm−2ωð Þ Ωνm−ωð Þ

− ρ 0ð Þ
νν−ρ 0ð Þ

nn

� � μmnμνmμnν
Ωnm−2ωð Þ Ωnν−ωð Þ �:

ð58Þ

Taking the derivative with respect to ω, and then the limit as ω tends
to zero yields

d
dω

χ 2ð Þ 2ω;ω;ωð Þj
ω¼0

¼ N
�0ℏ

2 ∑
mnν½ ρ 0ð Þ

mm−ρ 0ð Þ
νν

� � μmnμnνμνm

ΩnmΩ
2
νm

− ρ 0ð Þ
νν−ρ 0ð Þ

nn

� � μmnμνmμnν

ΩnmΩ
2
nν �

þ 2N
�0ℏ

2 ∑
mnν½ ρ 0ð Þ

mm−ρ 0ð Þ
νν

� � μmnμnνμνm

Ω2
nmΩνm

− ρ 0ð Þ
νν−ρ 0ð Þ

nn

� � μmnμνmμnν

Ω2
nmΩnν �:

ð59Þ

It is seen that

d
dω

χ 2ð Þ 2ω;ω;ωð Þj
ω¼0

¼ −iC
ε0

: ð60Þ

Themedium being centrosymmetric,χ(2)(2ω;ω,ω)≡0, and hence
C=0. It has also been seen that A=0 and χ(2)=0. The coefficient D is
a nonlinear term of the 4th order. Since the order is even, it must be
zero due to centrosymmetry. Notice that this feature cannot be justi-
fied for the expression of the coefficient itself, as it was the case for
the χ(2) coefficient. Hence D=0 and finally the polarization density
reduces to

P3 ¼ ε0χ
1ð ÞE3 þ ε0χ

3ð Þ E1ð Þ3 þ B∂2τE1: ð61Þ

Consider now the Maxwell–Helmholtz wave equation (4) at order
ε5. It is

1
V2 ∂

2
τE3−

2
V
∂ζ∂τE1 ¼ 1

c2
∂2τ E3 þ

P3

ε0

� �
: ð62Þ

Reporting Eq. (51), and using the expression (26) of the velocity V,
the terms involving E3 vanish, and Eq. (62) reduces to

∂ζE1 þ γ∂τ E1ð Þ3 þ β∂3τE1 ¼ 0; ð63Þ

which is exactly the mKdV equation.
The nonlinear coefficient is

γ ¼ 1
2n0c

χ 3ð Þ
; ð64Þ

with χ(3) given by Eqs. (53)–(54). An expression of χ(3) can be found
in Ref. [66] (Eq. (3.7.10), p. 182), as

χ 3ð Þ
kjih ωp þωq þωr;ωr ;ωq;ωp

� �
¼ PI ~χ 3ð Þ

kjih ωp þωq þωr ;ωr;ωq;ωp

� �� �
;

ð65Þ
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in which PI represents an averaging over all permutations of ωr, ωq

and ωp, and

~χ 3ð Þ
kjih ωp þωq þωr ;ωr ;ωq;ωp

� �
¼ N

ε:ℏ
3 ∑
nmνl

½ ρ 0ð Þ
mm−ρ 0ð Þ

ll

� �
μk
mnμ

j
nνμ

i
νlμ

h
lm

Ωnm−ωp−ωq−ωr

� �
Ωνm−ωp−ωq

� �
Ωlm−ωp

� �

−
ρ 0ð Þ
ll −ρ 0ð Þ

νν

� �
μk
mnμ

j
nνμ

i
lmμ

h
νl

Ωnm−ωp−ωq−ωr

� �
Ωνm−ωp−ωq

� �
Ωνl−ωp

� �

−
ρ 0ð Þ
νν−ρ 0ð Þ

ll

� �
μk
mnμ

j
νmμ

i
nlμ

h
lν

Ωnm−ωp−ωq−ωr

� �
Ωnν−ωp−ωq

� �
Ωlν−ωp

� �

þ
ρ 0ð Þ
ll −ρ 0ð Þ

nn

� �
μk
mnμ

j
νmμ

i
lνμ

h
nl

Ωnm−ωp−ωq−ωr

� �
Ωnν−ωp−ωq

� �
Ωnl−ωp

� ��;
ð66Þ

in which we set the relaxation rates γnm to zero.
The present χ(3) should coincide with χxxxx

(3) (0; 0, 0, 0), however
several terms in the sum (66) are singular as (ωr, ωq, ωp)→(0, 0, 0).
It is straightforwardly seen that the sum of the regular terms exactly
coincides with χR

(3) as given by Eq. (53). Taking into account the fact
that μ is off-diagonal, the singular terms in the sum (66) are:

• The 1st term for ν=m:

Amnl ¼
−Kmnl

Ωnm−ωp−ωq−ωr

� �
ωp þωq

� �
Ωlm−ωp

� � ; ð67Þ

with

Kmnl ¼ ρ 0ð Þ
mm−ρ 0ð Þ

ll

� �
μmnμnmμmlμ lm: ð68Þ

• The 2nd term for ν=m:

Bmnl ¼
Kmnl

Ωnm−ωp−ωq−ωr

� �
ωp þωq

� �
Ωlm þωp

� � : ð69Þ

• The 3rd term for ν=n:

Cmnl ¼
Knml

Ωnm−ωp−ωq−ωr

� �
ωp þωq

� �
Ωln−ωp

� � : ð70Þ

• The 4th term for ν=n:

Dmnl ¼
−Knml

Ωnm−ωp−ωq−ωr

� �
ωp þωq

� �
Ωln þωp

� � : ð71Þ

Let us set (ωr, ωq, ωp)=(−ω+δωr, ω+δωq, ω+δωp), in which δωr,
δωq and δωp are infinitesimal quantities. After some calculations, the
infinitesimal quantities simplify and we get

PI Amnl þ Bmnlð Þ ¼ −Kmnl

3 Ωnm−ωð Þ
1

Ωlm þωð Þ2 þ
1

Ωlm−ωð Þ2 þ
1

Ω2
lm−ω2

" #
:

ð72Þ
It is comparable to the expression of χ(3) found in Ref. [67], but with a
slight sign change. As ω→0, it yields

PI Amnl þ Bmnlð Þ ¼
− ρ 0ð Þ

mm−ρ 0ð Þ
ll

� �
μmnμnmμmlμ lm

ΩnmΩ
2
lm

: ð73Þ

PI Cmnl þ Dmnlð Þ yields the same expression as Eq. (73) with permuted
n and m. On the other hand, Eqs. (54) and (48) yield

χ 3ð Þ
S ¼ −2N

ε0ℏ
3 ∑

n;m;ν;
n≠m;ν≠m

μmnμnmμνmμmν

ΩnmΩ
2
νm

ρ 0ð Þ
mm−ρ 0ð Þ

νν

� �
; ð74Þ

and hence

χ 3ð Þ
S ¼ N

ε0ℏ
3 ∑

n;m;ν;
n≠m;ν≠m

PI Amnl þ Bmnl þ Cmnl þ Dmnlð Þ: ð75Þ

As a conclusion, taking into account both regular and singular terms,
we see that χ(3) exactly coincides with χxxxx

(3) (0; 0, 0, 0).
The expression (Eq. (64)) of the nonlinear coefficient slightly dif-

fers from the analogous expression found in Refs. [34,39]. A factor 4π
is due to the system of units (i.e., CGS units versus SI units). In fact,
the value of χ(3) given by Eq. (78) in Ref. [67] is smaller by a factor
of 1/3. The expression of the nonlinear coefficient in [34] was based
on this value of χ(3), and this initial error resulted in the erroneous
coefficient of 6 in Eq. (25) in [34] instead of 2 in Eq. (64) above.

The dispersion coefficient is

β ¼ 1
2ε0n0c

B; ð76Þ

where B is given by Eq. (55). Taking twice the derivative of Eq. (28)
with respect to ωp, then setting ωp=0, and comparing the result
with Eq. (55) shows that

B ¼ −ε0
2

d2χ 1ð Þ
xx ωð Þ

dω2 j
ω¼0

: ð77Þ

The wave vector is k(ω)=n0(ω)ω/c, and its third derivative for
ω=0 is

d3k
dω3 jω¼0

¼ 3
c
n′′0 ; ð78Þ

where we have set

n′′0 ¼ d2n0

dω2 jω¼0
: ð79Þ

Taking twice the derivative of n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ 1ð Þ

p
with respect to ω yields

d2n0

dω2 ¼ 1
2n0

d2χ 1ð Þ

dω2 − 1
2n2

0

dχ 1ð Þ

dω

 !2

; ð80Þ

however, dχ(1)/dω for ω=0 is proportional to the coefficient A given
by Eq. (40), hence is zero. Finally, it is found that the dispersion coef-
ficient β can be written as

β ¼ −1
6

d3k
dω3 ω¼0;j ð81Þ
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Fig. 2. Propagation of a FCP according to the mKdV equation: u against T and Z computed
with the analytic formula (Eq. (88)); parameters are the same as the fit in Fig. 1.
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which exactly coincides with the expression found in Ref. [34] and
generalizes the latter. The equivalent expression

β ¼ −n′′0
2c

; ð82Þ

evidences the fact that β is not a third-order dispersion as it could
been believed at first glance, but accounts in the present approxima-
tion for the group velocity dispersion. It also may account for higher
order dispersion terms, see Ref. [68].

3. The breather solution of the modified-Korteweg–de Vries
equation

The mKdV equation (63) is completely integrable by means of the
inverse scattering transform [69]. The N-soliton solution has been
given by Hirota [70]. It is more convenient to write the mKdV equation
(63) into the dimensionless form

∂Zuþ 2∂Tu
3 þ σ∂3Tu ¼ 0; ð83Þ

where σ=±1, u is a dimensionless electric field, and Z and T dimen-
sionless space and time variables defined relative to the laboratory vari-
ables as

u ¼ E
E0

; Z ¼ z
L

; T ¼ t−z=V
tw

: ð84Þ

The reference time is thus chosen to be the pulse length tw (in phys-
ical units). Recall that the atomic resonance frequencies Ωnm have
been chosen above as zero order quantities in the perturbative
scheme, while tw is assumed to be formally large, of order 1/ε, with
respect to the zero order times 1/Ωnm. The characteristic electric
field and propagation distance are

E0 ¼ 1
tw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σn0n

′′
0

χ 3ð Þ

vuut
; ð85Þ

L ¼ 2ct3w

−σn′′0

� � : ð86Þ

If χ(3) and n′′0 have opposite sign, which is typically for χ(3)>0 and
anomalous dispersion, thenσ=+1, and themKdV equation (63) is a fo-
cusing one. Else, typically for χ(3)>0 and normal dispersion, σ=−1,
Fig. 1. Propagation of a FCP according to the mKdV equation. Blue dotted line: initial
input with Gaussian envelope. Green thick solid line: the FCP soliton observed after
some propagation distance (Z=79.72). Dashed red line: fit of the latter by the analytic
breather.
Eq. (63) is a defocusing one and describes nonlinear dispersion [39]. In
the focusing case, the mKdV equation admits real single-soliton
solutions, and N-soliton and breather solutions. Integrating the mKdV
equation (83)with respect to T, under the assumption thatu, i.e. the elec-
tricfield, and its derivatives, vanishes at infinity, it is seen that the conser-
vation law

∂Z∫
þ∞

−∞
udT ¼ 0 ð87Þ

is satisfied. This is the expression in our situation of the general lawof the
conservation of the electric pulse area, as derived in [56,58]. Due to the
Galilean transformation and the scaling (9-10), it is seen from Maxwell
equations that the magnetic field is B

→¼ uE0=V e
→

y; and that
∫þ∞
−∞Bαdz∝∫þ∞

−∞udT; hence the conservation law of the magnetic pulse
area is also satisfied by the mKdV Eq. (63), since it does not differ from
(87).

The two-soliton solution of the mKdV equation is [70]

u ¼
eη1 þ eη2 þ p1−p2

p1þp2

� �2 eη1
4p21

þ eη2
4p22

� �
eη1þη2

1þ e2η1
4p21

þ 2
p1þp2ð Þ2 eη1þη2 þ e2η2

4p22
þ p1−p2

p1þp2

� �4 e2η1þ2η2

16p21p
2
2

; ð88Þ

with

ηj ¼ pjT−p3j Z−γj; ð89Þ

for j=1 and 2. The parameters p1, p2, γ1, and γ2 are arbitrary. If
p2=p1

∗, where ∗ denotes the complex conjugate, and γ2=γ1
∗, the ex-

plicit solution (88) is an oscillating localized solution, called breather
soliton, which actually adequately describes a FCP soliton.

An example of FCP soliton propagation is shown on Fig. 1. The
mKdV equation (63) is solved using the exponential time differencing
4th order Runge–Kutta scheme [71], for an input data (blue dotted
line) of the form

u ¼ Ae−T2
=w2

sin ω0T þ ϕð Þ; ð90Þ

with the parameters w=2.5,A ¼ 1:5, ω0=0.6π, and ϕ=π. The com-
putation was run until Z≃80. The pulse evolves with very few changes
in shape and width, apart from periodic oscillations. We chose a prop-
agation distance (Z=79.72) at which the carrier-envelope phase of
the final FCP is the same as the initial one, moved to the initial posi-
tion and plotted it in Fig. 1 (green thick solid line) for comparison.
A fit with the breather (88) is also shown (dashed red line): it is
very close to the numerical result. The values of the parameters
which yield the best fit are p1=0.875+1.7i, γ1=0.24i (and a small
shift in position).
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The propagation of the breather, computed from the analytic for-
mula (Eq. (88)), is shown in Fig. 2. Note that the same picture can
be obtained numerically.

4. Conclusions

In conclusion, in this paper we have studied in detail the propaga-
tion of ultrashort pulses containing only few optical cycles, in a cen-
trosymmetric nonlinear cubic (Kerr) material described by a general
Hamiltonian of multilevel atoms. Assuming that all transition fre-
quencies of the material are well above the typical wave frequency,
we can use a long-wave approximation to derive an approximate
model for nonlinear ultrashort optical pulse propagation in such a
medium. The obtained equation is of modified Korteweg–de Vries
type and allows the adequate description of FCP soliton propagation
in a cubic nonlinear optical medium. However, in a real nonlinear opti-
cal medium, a broad transparency range is required, and hence all
atomic transitions must be far enough from the pulse central frequen-
cy. However in such materials not all transitions belong to the ultravi-
olet domain. The contribution of the infrared transitions, which are not
taken into account in the present work, should be considered in a
further study by means of a short-wave approximation applied to the
same general quantum model. Therefore a fully realistic model for
FCP propagation will be obtained by putting together the results
yielded by both long- and short-wave approximations.
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