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Complex Ginzburg-Landau (CGL) models of laser media (with cubic-quintic nonlinearity) do not contain
an effective diffusion term, which makes all vortex solitons unstable in these models. Recently, it has been
demonstrated that the addition of a two-dimensional periodic potential, which may be induced by a transverse
grating in the laser cavity, to the CGL equation stabilizes compound (four-peak) vortices, but the most fundamental
“crater-shaped” vortices (CSVs), alias vortex rings, which are essentially squeezed into a single cell of the
potential, have not been found before in a stable form. In this work we report on families of stable compact
CSVs with vorticity S = 1 in the CGL model with the external potential of two different types: an axisymmetric
parabolic trap and the periodic potential. In both cases, we identify a stability region for the CSVs and for the
fundamental solitons (S = 0). Those CSVs which are unstable in the axisymmetric potential break up into robust
dipoles. All the vortices with S = 2 are unstable, splitting into tripoles. Stability regions for the dipoles and
tripoles are identified, too. The periodic potential cannot stabilize CSVs with S � 2 either; instead, families of
stable compact square-shaped quadrupoles are found.

DOI: 10.1103/PhysRevA.82.023813 PACS number(s): 42.65.Tg, 42.65.Sf, 47.20.Ky

I. INTRODUCTION

A broad class of pattern-formation models in one-
dimensional and multidimensional geometries is based on
the complex Ginzburg-Landau (CGL) equations with cubic-
quintic (CQ) nonlinearity [1,2]. Arguably, these models find
the most important realization is lasing media, where the
CQ terms account for the combination of nonlinear gain and
loss (the CGL equation also includes the linear loss) [3]. In
terms of actual laser systems, the CQ nonlinearity represents
configurations incorporating the usual linear amplifiers and
saturable nonlinear absorbers. In the one-dimensional (1D) set-
ting, the CQ CGL equation readily gives rise to stable solitary
pulses (dissipative solitons). These solutions and their physical
implications have been studied in numerous works [4].

A well-known problem is the search for stable dissipative
solitons in the two-dimensional (2D) version of CGL equa-
tions. In that case, the challenging factors are the possibility of
the critical collapse induced by the cubic self-focusing term,
and the vulnerability of vortex solitons, which are shaped as
vortex rings, to azimuthal perturbations that tend to split them
[5–7]. Actually, Petviashvili and Sergeev [8] had originally
introduced the CGL equation with the CQ nonlinearity with
the purpose of developing a model admitting stable localized
2D patterns. Stable 2D solitary vortices (alias spiral solitons),
with topological charge (vorticity) S = 1 and 2, were reported
in Ref. [9]. Stable vortex solitons were reported in the three-
dimensional (3D) version of the CQ CGL equation, too [10].

The general form of the CQ CGL equation for the amplitude
of the electromagnetic field, E(x,y,z), which propagates along
axis z in a uniform bulk medium with transverse coordinates
(x,y), is [10]

iEz + (
1
2 − iβ

)
(Exx + Eyy) + iδE

+ (1 − iε)|E|2E + (ν + iµ)|E|4E = 0, (1)

where δ is the linear-loss coefficient, the Laplacian with coeffi-
cient 1/2 represents, as usual, the transverse diffraction in the
paraxial approximation, β is an effective diffusion coefficient,
ε is the cubic gain, the Kerr coefficient is normalized to be 1,
and quintic coefficients −ν and µ account for the saturation
of the cubic nonlinearity (ν > 0 corresponds to the quintic
self-focusing, which does not lead to the supercritical collapse,
being balanced by the quintic loss [11]).

The physical interpretation of all terms in Eq. (2) is
straightforward, except for the diffusion. This term arises
in some models of large-aspect-ratio laser cavities, close to
the lasing threshold. Actually, such models are based on the
complex Swift-Hohenberg equation [12], which reduces to the
CGL equation for long-wavelength excitations. In the usual
situation, the diffusion term is artificial in the application to
optics. Nevertheless, β > 0 is a necessary condition for the
stability of dissipative vortex solitons, while the fundamental
(S = 0) solitons may be stable at β = 0 [9,10]. Therefore,
a challenging problem is to develop a physically relevant
modification of the the 2D CGL model, without the diffusivity
(β = 0), that can support stable localized vortices. Recently,
it has been demonstrated that this problem can be resolved by
adding a transverse periodic potential to Eq. (1), which casts
the CGL equation into the following form [11]:

iEz + 1
2 (Exx + Eyy) + iδE + (1 − iε)|E|2E

+ (ν + iµ)|E|4E − V (x,y)E = 0. (2)

The periodic potential can be induced by a grating [i.e.,
periodic modulation of the local refractive index in the plane
of (x,y)]:

V (x,y) = p[cos(2x) + cos(2y)], p > 0, (3)
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where p is proportional to the strength of the underlying
grating, and the scaling invariance of Eq. (2) was employed to
fix the period of potential (3) to be π .

The laser-writing technology makes it possible to fabricate
permanent gratings in bulk media [13]. In addition, in photore-
fractive crystals virtual photonic lattices may be induced by
pairs of laser beams illuminating the sample in the directions
of x and y in the ordinary polarization, while the probe beam
is launched along axis z in the extraordinary polarization [14].

As concerns the physical interpretation of the model, it is
relevant to notice that the equations of the CGL type describe
laser cavities, where the mode-locked optical signal performs
periodic circulations, as a result of averaging [15]. Therefore,
the transverse grating (or a different structure inducing the
effective transverse potential) is not required to fill the entire
cavity; a layer localized within a certain segment, �z, rather
than uniformly distributed along z, may be sufficient to induce
the effective potential in Eq. (2) [11].

Stationary solutions to Eq. (2) are sought for as E(x,y,z) =
eikzU (x,y), with real propagation constant k and complex
function U (x,y) satisfying the stationary equation,

[−k + iδ − V (x,y)]U + 1
2 (Uxx + Uyy)

+ (1 − iε)|U |2U + (ν + iµ)|U |4U = 0.

Stable vortices, supported by periodic potential (3), were
constructed in Ref. [11] as compound objects, built of four
separate peaks of the local power, which are set in four cells of
the lattice. Two basic types of such vortices are “rhombuses,”
alias on-site vortices, with a nearly empty cell surrounded
by the four filled cells [16], and “squares,” alias off-site
vortices, which feature a densely packed set of four filled
cells [17]. The vorticity (topological charge) of these patterns
is provided by phase shifts of π/2 between adjacent peaks,
which corresponds to the total phase circulation of 2π around
the pattern, as it should be in the case of vorticity S = 1. In
the experiment, stable compound vortices with S = 1 were
created in a conservative medium, viz., the above-mentioned
photorefractive crystals with the photoinduced lattice [18]. In
Ref. [11], a stability region was identified for rhombus-shaped
compound vortices, with S = 1, in the framework of the
CGL equation (2) with potential (3), and examples of their
stable square-shaped counterparts (which are essentially less
stable than the rhombuses) were produced, too. In addition,
Ref. [11] reported examples of stable rhombic quadrupoles
[i.e., four-peak patterns with alternating signs of the peaks
(and zero vorticity)].

A challenging issue remains to find conditions providing
for the stability of compact “crater-shaped” vortices (CSVs,
alias vortex rings) which, unlike the compound vortical
structures, are squeezed into a single cell of the periodic
potential (typical examples of stable “craters” supported by 2D
periodic potentials can be seen below in Fig. 13). These nearly
axisymmetric vortices are most similar to their counterparts
found in the free space [9]. As mentioned, in the absence
of the potential the vortices may only be stabilized by the
diffusion term in Eq. (1), with β > 0; otherwise, azimuthal
perturbations break them into sets of fragments. A natural
expectation is that the trapping potential may stabilize craters

in the model with β = 0. Nevertheless, no examples of stable
CSVs were reported in Ref. [11].

The search for stable CSVs is also a challenging problem in
the studies of 2D conservative models with lattice potentials.
In particular, only unstable vortices of this type were reported
in the 2D nonlinear Schrödinger (NLS) equation with the CQ
nonlinearity and a checkerboard potential [19,20] (see also
Ref. [21]). On the other hand, stable supervortices, (i.e., chains
formed by compact craters with S = +1) and an independent
global vorticity, S ′ = ±1, imprinted onto the chain, were found
as stable objects in 2D NLS equations with periodic potentials
and the cubic or CQ nonlinearities [20,22]. Eventually, a
stability region for CSVs was recently identified in the cubic
NLS equation, provided that the periodic potential is strong
enough [23].

The main objective of the present work is to demonstrate
that crater-shaped dissipative vortex solitons may be stabilized,
in the framework of the CQ CGL equation (2), by external
potentials. To this end, we consider two potentials: the periodic
one, taken as per Eq. (3), and also the axisymmetric trapping
potential,

V (x,y) = (�2/2)r2, (4)

where r2 ≡ x2 + y2. Consideration of potential (4) is sug-
gested by known results for the 2D NLS equation (in that
context, it is introduced as the Gross-Pitaevskii equation
for the Bose-Einstein condensate) which demonstrate that
potential (4) can stabilize localized vortices with S = 1 against
the splitting [24]. Actually, potential (4) can be realized
in the laser cavity merely by inserting a lens with focal
length f ′ = k/(L�2), where k is the wavenumber and L the
cavity length. Then, averaging over the cyclic optical path
yields potential (4), within the framework of the paraxial
approximation. It is possible to check that the generic situation
for vortices and other types of dissipative solitons generated
by Eq. (2) may be adequately represented by fixing δ = 1/2,
µ = 1, and ν = −0.1, which is assumed below. Two remaining
parameters, which will be varied in this work, play a crucially
important role in the model: cubic gain ε and the strengths, �2

or p, of the trapping potentials.
The rest of the paper is organized as follows. In Secs. II and

III we consider the stabilization of the CSVs in axisymmetric
potential (4). First, we apply the generalized variational
approximation (VA), which was developed in Ref. [25] for a
class of CGL equations, as an extension of the well-known VA
for conservative nonlinear-wave systems [26]. In Sec. III we
continue the consideration of the CSVs in the same potential
by means of numerical methods. Both the VA and direct
simulations reveal the existence of a broad stability region
for these vortices with S = 1. Unstable CSVs split into stable
patterns in the form of dipoles. Vortices with S = 2 can also be
constructed, but they all are unstable (similar to the situation in
the NLS equation [24]), splitting into tripole patterns. Dipoles
and tripoles are studied in Sec. IV, where their stability regions
are identified.

A stability region for CSVs with S = 1 in periodic potential
(3) is reported in Sec. V. This is a unique result, as stable
CSVs have never before been reported in CGL models without
the diffusion term. Stable CSVs with vorticities S > 1 are
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not found; instead, families of robust compact square-shaped
quadrupoles are found to exist at different values of the strength
of the periodic potential. The paper is concluded by Sec. VI.

II. THE VARIATIONAL APPROXIMATION FOR
VORTICES IN THE AXISYMMETRIC POTENTIAL

The VA for dissipative systems, elaborated in Ref. [25],
is applied here to look for axisymmetric vortex solutions to
Eq. (2) with potential (4), using the following ansatz, written
in polar coordinates r and θ :

E = A0A

(
r

R0R

)S

× exp

[
R−2

0

(
− r2

2R2
+ iCr2

)
+ iSθ + iψ

]
. (5)

Here, S is the integer vorticity, and real variational pa-
rameters are amplitude A, width R, wave-front curva-
ture (spatial chirp) C, and phase ψ , which all may
be functions of z. The ansatz includes normalization
factors, A0 = 3 × 2−(S+1)

√
[33S(2S)!]/[2(3S)!] and R0 =

2S+1/2A−1
0

√
(S + 1)!/(2S)!. A natural characteristic of the

soliton is its total power,

P = 2π

∫ ∞

0
|E(r)|2 rdr, (6)

which takes value P = A2R2 for ansatz (5) (in fact, normal-
ization factors A0 and R0 were introduced so as to secure this
simple expression for P ).

Skipping technical details, the application of the general-
ized VA technique, along the lines of Ref. [25], leads to the
following system of the first-order evolution equations for the
parameters of ansatz (5):

dA

dz
= A

R2
0

(
3 + 2S

2
εA2 − 5 + 3S

4
µA4 − R2

0δ − 2C

)
, (7)

dR

dz
= R

2R2
0

(4C − εA2 + µA4), (8)

dC

dz
= 1

2R2
0

(
1

R4
− A2

R2
− ν

A4

R2
− 4C2 − �2R4

0

)
, (9)

dψ

dz
= (S + 1)

R2
0

(
3

2
A2 + 5

4
νA4 − 1

R2

)
. (10)

The VA predicts steady states as fixed-point solutions to
Eqs. (7)–(9). A straightforward analysis yields two such
solutions,

A2 = 2

3µ

[
ε ±

√
ε2 − 3µR2

0δ (S + 1)−1
] ≡ (A±)2,

R2 = 2
{
A2(1 + νA2)

(11)
+

√
A4[(1 + νA2)2 + (ε − µA2)2] + 4�2R4

0

}−1
,

C = (A2/4)(ε − µA2).

In particular, the nonzero value of C (the wave’s front curva-
ture) in the stationary solution is an essential difference from
stationary solitary vortices in conservative models described
by the NLS equations.

FIG. 1. (Color online) The stability domain for fundamental
solitons (S = 0), which is situated on the left-hand side of the plotted
curve (the shaded area), in the parameter plane of (ε, �) as predicted
by the variational approximation, which pertains to the CGL equation
with the axisymmetric trapping potential (4). Other parameters are
fixed as indicated (i.e., δ = 1/2, µ = 1, and ν = −0.1).

Further, the calculation of eigenvalues of small perturba-
tions around the fixed points demonstrates that solution A+ is
stable, while A− is not, cf. Ref. [25]. Finally, the VA predicts
stability domains for the fundamental (S = 0) solitons and
vortices with S = 1 in the plane of the free parameters, ε and
�. The domains are displayed, respectively, in Figs. 1 and 2,
cf. Ref. [27]. In these plots, the vertical borders of the stability
regions on the left-hand side correspond to the existence condi-
tion of solution (11), i.e., ε >

√
3µR2

0δ(S + 1)−1. In particular,
for S = 0 it is ε > 2

√
2/3 ≈ 1.63, and for S = 1, the existence

region is ε > 8/(3
√

3) ≈ 1.54. These existence limits are
found to be in excellent agreement with the corresponding
values obtained from direct numerical simulations reported
later in Fig. 4.

The accuracy of the solutions for dissipative solitons and
vortices predicted by the VA was checked by running direct
simulations of the full CGL equation (2) using the respective
wave forms, given by Eqs. (5) and (11), as initial conditions.
Typical results of such simulations over 1000 diffraction
lengths are displayed in Fig. 3 for the solitons with S = 0
and S = 1. It is seen that the input wave forms predicted by
the VA quickly relax into the finally established soliton shapes,
which are shown in Fig. 3.

III. NUMERICAL RESULTS FOR VORTICES IN THE
AXISYMMETRIC TRAPPING POTENTIAL

Looking for axisymmetric solutions to Eq. (2) with potential
(4) in the numerical form, we substitute E(z,x,y) = U (z,r)
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FIG. 2. (Color online) The same as in Fig. 1, but for vortex
solitons with S = 1.

exp(iSθ ), which yields the evolution equation for complex
amplitude U (z,r):

iUz + 1

2

(
Urr + 1

r
Ur − S2

r2
U

)
− 1

2
�2r2U

+ (1 − iε)|U |2U + (ν + iµ)|U |4U + iδU = 0. (12)

We note that stationary solutions to Eq. (12) must decay
exponentially at r → ∞, and as r |S| at r → 0.

Stationary dissipative solitons, both fundamental (S = 0)
and vortical ones, were generated as attractors by direct
simulations of Eq. (12). To this end, we simulated Eq. (12),
starting with the input field in the form of the Gaussian
corresponding to vorticity S,

U0(r) = A0r
S exp

[− (
r2/w2

0

)]
, (13)

with real constants A0 and w0, until the solution would
self-trap into a stable dissipative soliton. The found established
solutions can be eventually represented in the form of
U (z,r) = u(r) exp(ikz), where propagation constant k is, as
a matter of fact, an eigenvalue determined by parameters of
Eq. (12).

The simulations of Eq. (12) were run using a 2D Crank-
Nicolson finite-difference scheme, with transverse and longi-
tudinal step sizes �r = 0.05 and �z = 0.002. The resulting

FIG. 3. (Color online) Left and right panels display the self-trapping of stable fundamental (S = 0) and vortical (S = 1) solitons, respectively,
from inputs predicted by the variational approximation at parameter values � = 1.5, ε = 2.2 for S = 0, and � = 1.7, ε = 2.22 for S = 1. The
3D images are the established shapes of the solitons, while plots A(z/lD) and P (z/lD) show the evolution of the amplitude and total power,
see Eq. (6), with z measured in units of the respective diffraction lengths, lD .
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nonlinear finite-difference equations were solved using the
Picard iteration method, and the ensuing linear system was
then dealt with using the Gauss-Seidel elimination procedure.
To achieve reliable convergence, eight Picard and six Gauss-
Seidel iterations were sufficient. The wave number k was found
as the value of the z derivative of the phase of U (z,r). The
solution was considered as the established one if k ceased to
depend on z and r , up to five significant digits. After a particular
stationary solution was found by the direct integration of
Eq. (12), it was then used as the initial configuration for a
new run of simulations, with slightly modified values of the
parameters, aiming to generate the solution corresponding to
the new values.

When localized states could not self-trap in the course of the
evolution, or existed temporarily but eventually turned out to
be unstable, U (z,r) would eventually decay to zero or evolve
into an apparently random pattern filling the entire integration
domain. Naturally, the decay to zero was observed when the
cubic-gain coefficient, ε, was too small. In the opposite case,
with ε too large, the random pattern was generated.

If the simulations of Eq. (12) converged to stationary
localized modes, their full stability was then tested by adding
white-noise perturbations at the amplitude level of up to 10%,
and running direct simulations (in the Cartesian coordinates) of
the underlying equation (2). In the course of the stability tests,
the evolution of both the total norm, P (z), and the amplitude
of the solution was monitored. The solution was identified as
a stable one if its amplitude and shape had relaxed back to the
unperturbed configuration.

Results of the numerical analysis are summarized in Fig. 4,
which represents both stable (solid lines) and unstable (dotted
lines) soliton families with S = 0 and S = 1, in terms of the
dependence of total power P on nonlinear gain ε. The stability
of each family is limited to a particular interval, ε0 < ε < εcr

(as said above, at ε > εcr the solitons evolve into a random
pattern filling the entire transverse domain).

Both the VA and direct simulations predict that the stability
of the vortices requires relatively large values of trapping
frequency �. Note that the fundamental solitons (S = 0) have
a stability domain at � = 0 [see Fig. 4(a)], in accordance with
Ref. [9]. For some values of �, the stability intervals predicted
by the VA are in good agreement with those produced by

FIG. 4. (Color online) The total power P vs the cubic gain ε for
families of (a) fundamental solitons (S = 0) and (b) vortices with
S = 1 at different values of the trapping frequency in potential (4).
Solid lines: stable solutions; dotted lines: unstable ones.

FIG. 5. (Color online) Examples of stable dissipative solitons
with vorticities S = 0 and S = 1 for ε = 1.8 and potential (4) with
� = 2. Panels (a), (c) and (b), (d) display the amplitude and phase
distributions, respectively.

the direct simulations: compare, for example, the intervals for
the fundamental solitons at � = 1 in Figs. 1 and 4(a), and
for the vortices with S = 1 at � = 2 in Figs. 2 and 4(b).
However, the agreement is worse in some other cases. Indeed,
the VA gives only an approximate prediction for the stability
of the zero-vorticity solitons, because ansatz (5) does not
accommodate all possible modes of the instability.

Higher-order vortex solitons, with S � 2, are found to be
completely unstable. If vortices with S = 1 are unstable, they
spontaneously split into stable dipoles, whereas those with
S = 2 split into tripoles (see Sec. IV). Typical examples of
the amplitude and phase structure of stable dissipative solitons
with vorticities S = 0 and S = 1 are displayed in Fig. 5. For
the same case, the recovery of the vortex soliton perturbed by
the random noise at the 10% amplitude level is displayed in
Fig. 6.

IV. DIPOLES AND TRIPOLES IN THE
AXISYMMETRIC TRAP

As already mentioned, the evolution of those vortices with
S = 1 which are unstable, and of the vortices with S = 2 (recall
they all are unstable), leads to their breakup into other types of
robust modes, viz., dipoles and tripoles, which feature phase
shifts π and 2π/3, respectively, between their components.
Typical examples of the breakup are displayed in Figs. 7 and 8.

Both the dipole and tripole modes can also be readily
generated from initial clusters, formed, respectively, by two
Gaussians with the phase shift of π between them, or by
three Gaussians with phase differences 2π/3. An example of
the formation of a stable tripole from the cluster is shown in
Fig. 9. Notice the fast rotation of the tripole, which is clearly
seen from a comparison of panels 9(c) and 9(e). The rotation
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FIG. 6. (Color online) The recovery of a perturbed stable vortex
soliton with S = 1 at ε = 1.8 and � = 2 in the case of the
axisymmetric potential (4): (a) and (b) initially perturbed amplitude
and phase distributions; (c) and (d) self-cleaned amplitude and phase
distributions, at z = 200.

is possible thanks to the absence of the diffusion, as there is
no effective friction that would brake the motion of solitons,
cf. Ref. [28]. Nevertheless, the dipoles generated by the direct
numerical simulations do not feature the rotation.

FIG. 7. (Color online) The spontaneous breakup of an unstable
vortex with S = 1, which is shown in panels (a) and (b), into a stable
dipole soliton, displayed in (c) and (d) at z = 400. The parameters
are ε = 1.8 and � = 0.5 for the axisymmetric potential (4).

FIG. 8. (Color online) The breakup of an unstable vortex with
S = 2, which is shown in panels (a) and (b), into a stable tripole,
displayed in (c) and (d) at z = 340. The parameters are ε = 1.7 and
� = 0.5.

The stability of the dipoles and tripoles was verified by
means of systematic direct simulations of initially perturbed
patterns, similar to how it was done above for the fundamental
solitons and vortices with S = 1. The random perturbations
were imposed at the amplitude level of 10%. A typical example
of the relaxation of a perturbed stable tripole is displayed in
Fig. 10 (the self-cleaning of stable dipoles is quite similar).

Results of the systematic analysis of the stability of the
dipole and tripole modes are summarized in terms of the
respective P = P (ε) curves in Fig. 11, cf. Fig. 4 for
the fundamental and S = 1 solitons. The dipole and tripole
modes are stable in the intervals of ε in which curves P = P (ε)
are plotted.

V. STABILITY OF CRATER-SHAPED VORTICES
AND SQUARE-SHAPED QUADRUPOLES

IN THE PERIODIC GRATING

In this section we consider the model based on the CGL
equation (2) with the periodic potential taken as per Eq. (3).
Our first objective is to construct the CSVs with S = 1, which
are squeezed, essentially, into a single cell of the grating
potential, and identify their stability regions (if any). Note that
choosing p > 0 in Eq. (3) implies the presence of a potential
maximum at the center of the grating cell, x = y = 0. This
choice complies with the expected minimum of the local power
(the “hole”) at the center of the compact vortex.

Families of relevant solutions were generated by simulating
Eq. (2) with potential (3), starting with a Gaussian input
corresponding to vorticity S, in the form of

E0(x,y) = a0 exp
[−(r − r0)2/w2

0

]
exp(iSθ ) (14)
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FIG. 9. (Color online) The generation of a robust rotating tripole
in potential (4) from an input cluster formed by three Gaussians with
phase differences 2π/3 between them. Left panels: the input field
(a), and the established field amplitude |A(x,y)| at z = 300 (c) and
at z = 303 (e). Right panels: the phase of the input field (b), and
the phases of the established pattern at z = 300 (d) and at z = 303
(f). The parameters are ε = 1.7 and � = 0.5.

[cf. input (13) which created vortices in the axisymmetric
parabolic trap (4)], with real constants a0,r0, and w0, in
anticipation of a self-trapping of the input field distribution
into a ring-shaped pattern with a radius close to r0. The found
established dissipative solitons can be eventually represented,
as before, in the form of E(x,y,z) = u(x,y) exp (ikz), with
some propagation constant k. This propagation constant was
found as the value of the z derivative of the phase of E(z,x,y),
at the eventual stage of the evolution, when k ceased to depend
on x, y, and z, up to five significant digits. The stability
of the solitons was then tested, as before, against random
perturbations with the relative amplitude of up to 10%.

As in the preceding section, the Crank-Nicolson algorithm
was used for the numerical simulations, with transverse
and longitudinal step sizes �x = �y = 0.1 and �z = 0.005
for the grating strength p = 1. For larger values of p, it
was necessary to use smaller step sizes: �x = �y = 0.08,
�z = 0.004 for p = 2, and �x = �y = 0.06, �z = 0.003
for p = 5. Using the same algorithm as previously mentioned,
the nonlinear finite-difference equations were solved using the

FIG. 10. (Color online) The recovery of a perturbed stable tripole
at ε = 1.7 and � = 1 in the axisymmetric trapping potential (4):
(a) and (b) perturbed initial distributions of the amplitude and phase;
(c) and (d) self-cleaned amplitude and phase distributions at z = 200.

Picard iteration method, and the resulting linear system was
handled by means of the Gauss-Seidel iterative procedure. To
achieve good convergence, ten Picard and five Gauss-Seidel
iterations were needed.

In Fig. 12 we show an illustrative plot of the 2D periodic
potential (3) with strength p = 1. The numerical simulations
demonstrate that fully stable CSVs may be indeed supported
by the periodic potential (3), see Figs. 13 and 14. This result is
significant, as no example of stable compact vortices, squeezed
into a single cell of the supporting lattice, was earlier reported
in 2D CGL models. A set of typical examples of stable craters
is displayed in Fig. 13, and the stability of such vortices (in
the form of the self-cleaning against random perturbations)
is illustrated by Fig. 14. Further analysis (not shown here)
demonstrates that the shape of the craters and their self-
cleaning after the addition of random perturbations seem es-
sentially the same if the diffusion term with a small coefficient

FIG. 11. Power P vs cubic gain ε for stable dipole solitons (a)
and stable tripole solitons (b) trapped in the axisymmetric potential
(4) at different values of frequency �.
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FIG. 12. (Color online) The amplitude distribution of the periodic
potential, V (x,y) = p[cos(2x) + cos(2y)], for p = 1.

β is added (which means that the grating’s potential remains
a stronger stabilizing factor than the weak diffusion, if any).

In Fig. 15, the CSV families with S = 1 are represented, as
before, by the corresponding P (ε) curves, which are plotted
in intervals of values of the cubic gain ε where the CSVs
are stable. For the sake of comparison, in Fig. 16 we display
similar diagrams for the fundamental solitons (S = 0) in the
same model. In Figs. 15 and 16, we additionally display
the stability domains found at a small nonzero value of the
diffusion parameter, β = 0.1. The comparison demonstrates

FIG. 13. (Color online) The shapes of stable compact (crater-
shaped) vortices with S = 1 for β = 0 and ε = 1.8. The strength of
the periodic potential (3) is p = 1 (a), p = 2 (b), and p = 5 (c).

FIG. 14. (Color online) Top: the amplitude (a) and phase (b) of
a perturbed compact vortex (crater) with S = 1, for β = 0, ε = 2,
and p = 2, in the axisymmetric potential (4). Bottom: the amplitude
(c) and phase (d) of the self-cleaned vortex soliton at z = 200.

FIG. 15. Power P vs cubic gain ε for families of stable compact
vortices (craters) with S = 1 at several values of strength p of the
periodic potential (3) for β = 0 (a) and β = 0.1 (b).

FIG. 16. The same as in Fig. 15, but for families of stable
fundamental (S = 0) solitons.
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FIG. 17. (Color online) A typical example of the generation of
a stable quadrupole from an input ringlike field distribution with
vorticity S = 2 [see Eq. (14)]. Here p = 2, ε = 1.8, and β = 0.
(a) input, z = 0; (b) z = 20; (c) z = 112.

that the stability regions for both the fundamental solitons and
compact vortices shift to larger values of ε at β > 0, which
is natural, as a larger value of the cubic gain is needed to
compensate the loss incurred by the diffusion term.

Stable CSVs with vorticities S = 2 have not been found
in direct simulations of Eq. (2) with the periodic po-
tential; instead, families of robust compact square-shaped

FIG. 18. Power P vs cubic gain ε for families of stable
quadrupoles at different values of the periodic-potential’s strength,
p, for β = 0 (a) and β = 0.1 (b).

FIG. 19. (Color online) The amplitude and phase structure of
stable square-shaped quadrupoles for β = 0 and ε = 2. The strength
of the periodic potential (3) is p = 1 [(a) and (b)], p = 2 [(c) and
(d)], and p = 5 [(e) and (f)].

quadrupoles, into which unstable vortices with S = 2 are
spontaneously transformed, were found at different values
of the periodic-potential’s strength, p. A typical example of
the transformation, for a0 = 1.2, r0 = 0.7, and w0 = 1, is
displayed in Fig. 17. The stability of the quadrupoles against
random perturbations was tested in the same way as done above
for the vortices with S = 1. The results are again summarized
by means of the respective P (ε) curves, which are displayed,
both for β = 0 and β = 0.1, in Fig. 18. Finally, in Fig. 19 we
show typical examples of the amplitude and phase structure
of compact square-shaped quadrupoles for β = 0, ε = 2, and
three different values of the strength of the periodic potential,
p = 1,2, and 5.

VI. CONCLUSIONS

The major objective of this work was to build stable
compact crater-shaped vortices with topological charge S = 1
in the complex Ginzburg-Landau model, which is relevant to
modeling laser cavities as it does not include the artificial
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diffusion term. Instead, the stabilization of the compact
vortices is provided by external potentials, which we took
in two different forms: as the axisymmetric parabolic trap (4)
and the periodic grating’s potential (3). In the experiment,
the effective axisymmetric potential can be realized by means
of a simple focusing lens inserted into the cavity. In both
cases, stability regions for the crater-shaped vortices have
been identified. Parallel to that, the stability regions of the
fundamental solitons (S = 0) were also found, for the sake
of the comparison. In the case of the axisymmetric potential,
those crater-shaped vortices which are unstable split into robust
dipoles. All the vortices with S = 2 are unstable, splitting into
stable tripoles, that may freely rotate. The stability regions for
the dipole and tripole modes were identified, too. As concerns
the periodic potential, it cannot stabilize crater-shaped vortices
with S > 1. Instead, families of stable compact square-shaped
quadrupoles were found to exist at different values of the
strength of the periodic potential.

A challenging extension suggested by the present work
is to find stable compact solitons with embedded vorticity in
the three-dimensional (spatiotemporal) version of the complex
Ginzburg-Landau equation with the periodic potential. This
possibility is especially interesting because this model does
not support stable compound vortices [29].
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