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We consider the propagation of circularly polarized few-cycle pulses (FCPs) in Kerr media beyond the slowly
varying envelope approximation. Assuming that the frequency of the transition is far above the characteristic wave
frequency (long-wave-approximation regime), we show that propagation of FCPs, taking into account the wave
polarization, is described by the nonintegrable complex modified Korteweg–de Vries (cmKdV) equation. By
direct numerical simulations, we get robust localized solutions to the cmKdV equation, which describe circularly
polarized few-cycle-optical solitons and strongly differ from the breather soliton of the modified Korteweg–de
Vries equation, which represents linearly polarized FCP solitons. The circularly polarized FCP soliton becomes
unstable when the angular frequency is less than 1.5 times the inverse of the pulse length. The unstable subcycle
pulses decay into linearly polarized half-cycle pulses, the polarization direction of which slowly rotates around
the propagation axis.
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I. INTRODUCTION

Interest in intense ultrashort light pulses containing a
few optical cycles has grown steadily in recent years since
their first experimental realization in 1999. This mature
research area has considerable potential for ultrafast optics
applications in metrology of ultrafast phenomena and in
systems performing laser ablation (micromachining, etching,
microsurgery), among others. It still presents many exciting
open problems from both a fundamental and an applied
point of view. Notably, the ultrashort pulses possess extensive
applications to the field of light-matter interactions, high-
order harmonic generation, single-cycle nonlinear optics, and
attosecond physics [1,2]; for a comprehensive review of earlier
works in this area, see Ref. [3]. Recent progress in the study of
the wave dynamics of few-cycle pulses (FCPs) in nonlinear
optical media has paved the way for the development of
new theoretical approaches to model their propagation in
physical systems. Three classes of main dynamical models
for FCPs have been put forward: (i) the quantum approach
[4–6], (ii) the refinements within the framework of the slowly
varying envelope approximation (SVEA) of the nonlinear
Schrödinger-type envelope equations [7], and the non-SVEA
models [8–12].

Other recent works on FCPs deal with few-cycle light
bullets created by femtosecond filaments [13], the study
of ultrashort spatiotemporal optical solitons in quadratic
nonlinear media [14], the ultrashort spatiotemporal optical
pulse propagation in cubic (Kerr-type) media without the
use of the SVEA [15], and the possibility of generating
few-cycle dissipative optical solitons [16]. The propagation
of linearly polarized (LP) or scalar FCPs in Kerr media can be
described beyond the SVEA by using the modified Korteweg–
de Vries (mKdV) [9], sine-Gordon (sG) [10], or mKdV-sG

equations [11]. The mKdV and sG equations are completely
integrable by means of the inverse scattering transform (IST)
method [17], whereas the mKdV-sG equation is completely
integrable only if some condition between its coefficients is
satisfied [18].

Previous studies of FCPs beyond the SVEA were restricted
to linear polarization; therefore, the investigation of other kinds
of wave polarization effects are of great importance from both
fundamental and applied points of view. For instance, the
circular polarization is important, from both a fundamental
point of view, since it is related to the spin of the photon,
and for applications, e.g., the circular dichroism of biological
molecules such as DNA, circularly polarizing liquid crystals,
etc.

We therefore focus on the vectorial nature of the electric
field by applying the reductive perturbation method (multiscale
analysis) to the Maxwell-Bloch equations. We mention that
other vectorial non-SVEA models have been also proposed
[19,20], however, they were not carefully justified from a
physical point of view, but only built from an analogy with
common SVEA models.

The paper is organized as follows. In the following
section, we introduce a governing model for an amorphous
(glass) optical medium by considering a set of two-level
atoms. In Sec. III, we derive the evolution equations in
the long-wave approximation, describing the propagation of
vector femtosecond optical solitons. In Sec. IV, we get
robust circularly polarized (CP) few-cycle pulses and we
analyze in detail their unique features. Section V describes
the transition of unstable circularly polarized few-optical-cycle
solitons to stable linearly polarized single-humped (half-cycle)
pulses. Finally, in Sec. VI, we summarize the results of our
analysis and we indicate some possible extensions of this
work.
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II. GOVERNING MODEL FOR AN AMORPHOUS MEDIUM

As a simple model for a glass system, we consider a set of
two-level atoms with Hamiltonian H0,

H0 = h̄

(
ωa 0

0 ωb

)
, (1)

where � = ωb − ωa > 0 is the frequency of the transition. The
atoms may present some induced dipolar electric momentum
�µ, which is oriented randomly in space. By assuming a
propagation along the z axis, we can omit the component
of �µ along the propagation direction z, and, thus, �µ =
µ(cos θ �ex + sin θ �ey), with �ex and �ey being the unitary vectors
along the x and y axis, respectively, and

µ =
(

0 µ

µ∗ 0

)
. (2)

The evolution of the electric field �E is governed by the
Maxwell equations, which, in the absence of magnetic effects
and assuming a plane wave propagating along the z axis, reduce
to ∂2

z
�E = c−2∂2

t ( �E + 4π �P ), where �P is the polarization
density. It is given by �P = N〈Tr(ρ �µ)〉, where N is the number
of atoms per unit volume, ρ is the density matrix, and 〈·〉
denotes the averaging over all directions in the x-y plane.

The evolution of the density matrix is governed by the
Heisenberg equation ih̄∂tρ = [H,ρ], where H = H0 − �µ · �E
describes the coupling between the atoms and the electric field.
The relaxation effects can be neglected here as in the scalar
approximation (see [10]). The physical values of the relaxation
times are indeed in the picosecond range, or even slower, thus,
very large with regard to the pulse duration, which allows us
to neglect them.

III. EVOLUTION EQUATIONS FOR CP FCPs
IN THE LONG-WAVE APPROXIMATION

The typical frequency ωw of the wave must be far away
from the resonance frequency � because the transparency of
the medium is required for soliton propagation. In this paper,
we consider ωw � �. The typical duration of the wave, say,
tw = 1/ωw, is very large with respect to the characteristic
time tr = 1/� associated to the transition. Thus, we are
working in the long-wave approximation regime, as defined in
the framework of the reductive perturbation method [21,22].
Next, we introduce a small parameter ε = 1/(�tw), and the
slow variables τ = ε(t − z/V ), ζ = ε3z. The retarded time
variable τ describes the pulse shape, propagating at speed V in
a first approximation. Its order of magnitude ε gives an account
of the long-wave approximation tw � tr . The ζ variable of
order ε3 describes long-distance propagation according to the
general theory of the derivation of KdV-type equations [22].

The electric field �E, the polarization density �P , and the
density matrix ρ are expanded in power series of ε as �E =∑

n�1 εn(un,vn,0), �P = ∑
n�1 εn(Pn,Qn,0), ρ = ∑

n�0 εnρn,
in which the triplets of coordinates are given in the (x,y,z)
frame, and the profiles u1, v1, etc., are functions of the slow
variables τ and ζ . The components of ρ are denoted by

ρ =
(

ρa ρt

ρ∗
t ρb

)
. (3)

We assume that, in the absence of wave, all atoms are in the
fundamental state (a) and, hence, all elements of ρ0 are zero
except ρ0a = 1.

At lowest order ε1, the Heisenberg equation yields ρ1t =
µ/(h̄�)(u1 cos θ + v1 sin θ ). The polarization density is �P =
(P,Q) with P = N〈ρtµ

∗ cos θ + c.c.〉, Q = N〈ρtµ
∗ sin θ +

c.c.〉, where c.c. denotes the complex conjugate. As a result,
we get (P1,Q1) = N |µ|2/(h̄�)(u1,v1).

The Maxwell equation at leading order ε3 gives the
value of the velocity V = c/n, with the refractive index
n =

√
1 + 4πN |µ|2/(h̄�). The expression of n coincides

with that obtained in the scalar model [10] if we take
into account the fact that, for a linear polarization in
the present framework, only one half of the dipoles would be
active, being roughly aligned with the electric field. At the
order ε2, the Heisenberg equation yields ρ1a = ρ1b = 0 and
ρ2t = µ/(h̄�)(u2 cos θ + v2 sin θ ) − iµ/(h̄�2)∂τ (u1 cos θ +
v1 sin θ ). Consequently, we get similar expressions for P2 and
Q2 as those for P1 and Q1, with the only difference that u1

and v1 are replaced by u2 and u2. The Maxwell equation at
order ε4 is automatically satisfied.

At order ε3, the Heisenberg equation gives rise to ρ2b −
ρ2a = 2|µ|2/(h̄2�2)(u1 cos θ + v1 sin θ )2, and a correspond-
ing much longer expression for ρ3t . By using 〈cos4 θ〉 = 3/8,
〈cos2 θ sin2 θ〉 = 1/8, etc., the expressions for the polarization
density components P3 are

P3 = N |µ|2
h̄�

u3 − N |µ|2
h̄�3

∂2
τ u1 − 3N |µ|4

2h̄3�3

(
u2

1 + v2
1

)
u1, (4)

and analogously for Q3. Next, the Maxwell equation at order
ε5 yields the following pair of coupled equations:

∂ζ u1 = A∂3
τ u1 + B∂τ

[(
u2

1 + v2
1

)
u1

]
, (5)

∂ζ v1 = A∂3
τ v1 + B∂τ

[(
u2

1 + v2
1

)
v1

]
, (6)

in which we have set A = 2πN |µ|2/(nch̄�3), B =
3πN |µ|4/(nch̄3�3). As in the scalar model [10], the dis-
persion and nonlinear coefficients A and B express as A =
n′′/2c, where n′′ is the second derivative of the refractive
index with respect to ω, and B = (−6π/nc)χ (3), in which
χ (3) = χ (3)

xxxx(ω; ω,ω, − ω) is the relevant nonlinear suscep-
tibility. n′′ and χ (3) should be evaluated for frequencies
far below the resonance line. The fact that the nonlinear
term involves the intensity (u2

1 + v2
1) directly reflects the

isotropy of the model. Recall that, in an isotropic medium
as a glass and, as in this paper, the other component
of χ (3) satisfies χ (3)

xxyy(ω; ω,ω, − ω) = χ (3)
xyxy(ω,ω,ω, − ω) =

χ (3)
xyyx(ω,ω,ω, − ω) = (1/3)χ (3)

xxxx(ω; ω,ω, − ω).
Equations (5) and (6) can be written in the normalized form

as

UZ = UT T T + [(U 2 + V 2)U ]T , (7)

VZ = VT T T + [(U 2 + V 2)V ]T , (8)

where the subscripts Z and T denote the derivatives, and the
functions and variables are defined as U = u1/E , V = v1/E ,
Z = z/L, T = (t − z/V )/tw, with L = 2ct3

w/n′′ and E =
(1/2tw)

√
nn′′/(−3πχ (3)). Equations (7) and (8) are a set of

coupled mKdV equations describing the propagation of optical
FCPs in an amorphous medium presenting cubic nonlinearity
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and dispersion. They can be also seen as describing the
interaction of two linearly polarized (LP) FCPs, U and V .

The above approach can be easily extended to the case of
two-level medium, in which the excited level is degenerated
twice, with the induced dipole oriented either in the x or
in the y direction. As a final result, we get the same set of
equations (5) and (6) as above, with very slightly modified
coefficients. In fact, in this case, the coefficients A and B have
exactly the same expressions as in the scalar model [10].

Setting f = U + iV , Eqs. (7) and (8) reduce to fZ =
fT T T + (|f |2f )T , which is known as the complex modified
Korteweg–de Vries (cmKdV) equation. Confusion must be
avoided between this equation and the other cmKdV equation
fZ = fT T T + (|f |2)fT . Indeed, the latter is completely inte-
grable [23], while the former is not. These two equations are
sometimes referred to as cmKdV I and cmKdV II equations,
respectively. The integrable equation has been extensively
studied (see, e.g., [23,24]), while fewer studies have been
devoted to the nonintegrable one [25]. In the frame of the
optics of FCPs, the field f must vanish at infinity. With this
condition, the cmKdV I equation does not admit any exact
analytical solution apart from those which exactly coincide
with the solutions of the real mKdV equation. Indeed, setting
f = ueiϕ , with u = u(Z,T ) and ϕ a constant, reduces the
cmKdV I equation to the real one. All LP FCP solitons are
retrieved in this way. Their stability to a random perturbation
of the polarization can be tested numerically. If we add to
the constant ϕ a random noise (we used an amplitude of
0.1 × 2π ), it is obtained that the pulse is not destroyed and its
polarization remains linear. However, the direction of the linear
polarization slowly rotates around the propagation direction.
A more interesting situation would be a CP soliton of the form
f = u(T − wZ)ei(ωT −kZ). A simple analysis shows that no
exact, even numerical, steady-state solution of this type exists.
However, solutions having approximately the above waveform
exist and are very robust.

IV. ROBUST CP FEW-OPTICAL-CYCLE SOLITONS

An approximate solution to the cmKdV I equation is

f = b
√

6 sech [b(T − 3ω2Z)]eiω[T −(ω2−3b2)Z], (9)

which is valid for long pulses (b � ω). The numerical resolu-
tion of the cmKdV equation is performed using the exponential
time differencing second-order Runge-Kutta method [26]. Due
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FIG. 1. (Color online) Propagation of a CP FCP. Left panel:
x-polarized component U . Right panel: Norm of the electric field
|f |. Initial data are given by Eq. (9) with b = 1 and ω = 2.

FIG. 2. (Color online) Initial (Z = 100) and final (Z = 10 000)
profiles of the FCP plotted on Fig. 1 for the input given by Eq. (9).
Blue (dotted line): initial |f |; light blue (thick gray line): initial U ;
red (thin solid line): final |f |; pink (dashed-dotted line): final U .

to the scale invariance of the cmKdV equation, only the
ratio b/ω may modify the stability properties of the solution.
Practically, we fix b = 1 and decrease the frequency ω.

Figures 1 and 2 show the evolution of a FCP of this
form, with b = 1 and ω = 2. The locations and phase have
been artificially reset to the initial value so that comparison
can be made easily. The robustness of the FCP is obvious,
and its width and maximum amplitude are conserved. The
effect of dispersion is investigated by numerical computation:
the pulse duration (full width at half maximum, FWHM)
increases linearly with propagation distance. The dispersion
length zD , defined as the distance at which the FWHM has
been mulitiplied by

√
2, is very small, less than 0.08 for the

data of Figs. 1 and 2. The propagation distance z = 10 000
thus corresponds to about 1.3 × 105 dispersion lengths.

However, its shape is somehow distorted after propagation.
The propagation speed is also quite different from the result

FIG. 3. (Color online) Initial (Z = 100) and final (Z = 10000)
profiles for an unstable CP FCP. Initial data are defined by the
breather of the real mKdV equation with both pulse width and
angular frequency equal to 1, for the component U , and the same
with a π/2 dephasing for V . Blue (dotted line): initial |f |; light
blue (thick gray line): initial U = Re(f ); red (thin solid line): final
|f |; pink (dashed-dotted line): final U ; green (short dashed line):
final V = Im(f ); black (long dashed line): fit of the final |f | by a
fundamental soliton of the real mKdV equation.
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FIG. 4. (Color online) Propagation of the slowly rotating LP
half-cycle pulse resulting from the instability of the CP FCP with
both angular frequency and pulse length 1. Left panel: Norm of the
electric field |f |. Right panel: x-polarized component U . The pulse
crosses the computation box several times due to periodic boundary
conditions.

of the above analytical approximate solution. In fact, since
no steady state with linear phase exists, the pulse is not a
true steady state and, consequently, its velocity is not constant
during the propagation. It seems to oscillate around the linear
group velocity during propagation, however, it can not be
evaluated from numerical data due to eventual stroboscopic
effect with respect to the discretization frequency. Neverthe-
less, the pulse is very robust. Notice that the approximate
solution (9) does not have a zero mean value, except at the
SVEA limit b � ω. However, the mean value of the field is
conserved. It is likely that the CP FCP soliton would have a
zero mean value and, hence, this would explain the discrepancy
between the approximate analytical solution (9) and the direct
numerical computation shown in Fig. 1. We actually checked
this interpretation by considering an input having zero mean
value. Such an alternative input can be built using the breather
(or two-soliton) solution of the real mKdV equation [27].

V. TRANSITION TO A HALF-CYCLE SOLITON

We have found that the value ω/b 	 1.5 is the lower
limit for the stability of the CP FCP soliton. For smaller
values of the ratio ω/b, the FCP becomes unstable and
decays into a LP single-humped (half-cycle) pulse in the form
of a fundamental soliton of the real mKdV. The transition
occurs at about Z 	 19 100, 9300, or 400, for for ω/b = 1.4,
1.3, and 1, respectively. Further, it occurs very abruptly and
involves a strong modification of the optical spectrum of the
unstable CP FCP. The result of the transition is a single
pulse, the profile of which accurately coincides with that of
the fundamental soliton solution to the real mKdV equation
U = √

2b sech (bT − b3Z), as shown in Fig. 3, but which
slowly rotates around the propagation axis. Figure 4 shows
the z dependence of |f | and the oscillations of the polarization

component U . The period of oscillation is close to the length of
the propagation distance interval presented in the figure, about
50, which yields an angular frequency ω 	 2π/50 	 0.13.
In some sense, ω has fallen about one order of magnitude.
However, this should not be considered as a frequency change
since ω no longer represents the central frequency of the pulse.
This rotation speed is not modified during the propagation from
Z = 2000 to 10 000, at least. However, it strongly depends on
the continuous pedestal. Indeed, if we removed this pedestal
by setting the field f to zero out of the main pulse and then
computed the evolution, the rotation does not appear any more.
As a final remark, we note that half-cycle optical solitons were
also put forward in quadratic nonlinear media [28].

VI. CONCLUSIONS

In conclusion, by using the multiscale perturbation anal-
ysis in the long-wave-approximation regime, we derived
approximate evolution equations governing the propagation of
femtosecond optical solitons in cubic nonlinear media beyond
the SVEA, taking into account the vectorial character of the
electric field. We found that the interacting waveforms are
adequately described by a coupled pair of mKdV equations or,
equivalently, by the nonintegrable complex mKdV equation.
Numerical and approximate analytical approaches show the
existence of soliton solutions, which are very different from
the breather of the real mKdV equation that accounts for
the linearly polarized FCP solitons, in the sense that their
amplitudes yield a single hump, even for a pulse containing
several optical cycles. Thus, found solitons describe circularly
polarized FCPs, which are shown to be very robust. How-
ever, the circularly polarized FCP solitons become unstable
for subcycle pulses. We show that the instability threshold
corresponds to a ratio ω/b 	 1.5 of the angular frequency
divided by the inverse of the pulse length. Below this threshold,
the unstable subcycle pulses decay into linearly polarized
half-cycle pulses, the polarization direction of which slowly
rotates around the propagation axis. Challenging extensions
suggested by this paper are to consider (i) the so-called
short-wave approximation in which the resonance frequency
of the atoms is below the optical frequencies, and (ii) the
case of two transitions, one below and one above the range
of propagated wavelengths. We finally mention that another
interesting issue is the generalization of this paper to one or
even to two spatial transverse dimensions, in addition to time
and spatial longitudinal coordinates.
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