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On the basis of numerical simulation, it is found that powerful long-distance soliton wings can be formed
by dispersive waves which are emitted by solitons because of lumped elements in a laser cavity. We analyze
peculiarities of the interaction of two solitons through such wings in lasers with lumped saturable absorbers.
Various sets of bound steady states of a two-soliton molecule are demonstrated. The relation between the spectral
sidebands and the dispersive-wave wings of a soliton is found. The periodic changes in a soliton’s profile during
its pass through the laser cavity are studied.
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I. INTRODUCTION

Passive mode-locked fiber lasers are widely used in many
areas of science, technology, and engineering. The important
advantage of these lasers is the great diversity of their
generation regimes. A special place among lasing regimes
is occupied by multiple-pulse passive mode locking. A large
number of publications is devoted to this area of research.
The authors of [1] experimentally demonstrated that ultrashort
pulses in a laser cavity are created and annihilated one by
one and that a large hysteresis occurs in the number of
pulses with varying pump power. All intracavity pulses have
identical parameters (peak intensity, pulse duration, chirp,
and so on). This phenomenon has been named the effect of
quantization of the intracavity radiation into identical solitons.
A theory of these phenomena was presented in [2]. For passive
mode-locked fiber lasers with nonlinear polarization rotation,
the corresponding theory was developed in [3].

The type of intersoliton interaction plays a crucial role in
the established type of multiple-pulse operation. Depending
on the properties of the interaction, the ultrashort pulses can
either space themselves equally along a laser cavity, group into
a tight bunch, or be randomly distributed. In the experimental
paper [4] it was demonstrated that a set of lasing solitons
(about several hundreds) can form complexes analogous to
various aggregate states of matter: a soliton gas, a liquid, a
glass, a soliton crystal, a polycrystal. The elementary unit
of any complex is a pair of interacting solitons. Bound steady
states of two solitons were investigated in [5–10]. Steady states
with phase differences for the peak amplitudes of the solitons
equal to π , π/2, and 0 were predicted. The phase differences
π/2 and π were experimentally observed [8,10]. Stable bound
states of vibrating two-soliton molecules are also possible [11].
Hysteresis in the dependence of such states on pumping was
predicted in [12].

The possibility of realization of strong bonds between
interacting solitons (∼10% of an individual soliton’s energy)
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was numerically found in [13] for an erbium fiber laser with
lumped nonlinear losses by use of a nonlinear polarization
rotation technique. In this case a pair of interacting solitons
forms a highly stable two-soliton molecule with a set of
quantum bound energy levels corresponding to various stable
steady states. For odd steady states the phase difference of the
interacting solitons equals approximately π . For even ones it is
about 0. The spectrum of a single pulse has powerful sidebands
which indicates a possible role of dispersive waves emitted by
solitons in the formation of strong intersoliton bonds. The
generation of spectral sidebands is a well-known phenomenon
[14]. The soliton circulating in the laser cavity periodically
experiences perturbations caused by lumped nonlinear losses
and various intracavity components. After each perturbation
the soliton emits a dispersive wave. A constructive interference
between these waves forms powerful spectral sidebands and
powerful long-distance soliton wings. Such wings result in
a long-distance interaction and thus allow the formation of
bound steady states of interacting solitons. Previous theoret-
ical and experimental investigations demonstrated that the
interaction of solitons through such sidebands results in a
quantization of intersoliton separations for the soliton pair in a
fiber laser [15]. Nonlinear losses in fiber lasers with nonlinear
polarization rotation are essentially lumped. This complicates
the analysis of the role of the dispersive waves in the interaction
of pulses: any change of the lumped nonlinear losses with the
purpose of changing the intensity of dispersive waves results
simultaneously in a change of parameters of the pulse.

Great attention has actually been given to the study of
passive mode locking of fiber lasers with saturable absorbers
based on various nanomaterials (media with quantum wells,
nanotubes, graphene, etc.) [16–19]. These lasers are described
by simpler physical models than fiber lasers based on nonlinear
polarization rotation. To understand the role of dispersive
waves in the formation of soliton wings, we have used
the following methodology. It is well known that spatially
uniformly distributed nonlinear losses do not result in dis-
persive waves. In our analysis we use a laser model with a
mixture of distributed and lumped saturable absorbers. By
varying the lumped and distributed nonlinear losses so that
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the total nonlinear losses remain unchanged, we considerably
change the intensity of dispersive waves with a conservation
of parameters of the central part of the soliton. This simple
model provides an effective way to elucidate the nature
of the formation of powerful soliton wings by dispersive
waves. In this paper we study the interaction of solitons
through dispersive waves due to a lumped saturable absorber
and investigate the lasing regimes realized under such an
interaction. In Sec. II we present a laser model for the study
of the dispersive-wave mechanism of formation of powerful
soliton wings. Numerical simulations and discussion of the
obtained results are given in Sec. III. The basic conclusions
are made in Sec. IV.

II. MODEL

The investigated laser is schematically represented in
Fig. 1. It consists in a unidirectional ring cavity including
a gain fiber medium and a saturable absorber. The equation
describing the evolution of a field in the fiber has the following
form [13,20]:

∂E

∂ζ
= (Dr + iDi)

∂2E

∂τ 2
+ (G + iq|E|2 − σ0 − σd )E, (1)

where E(ζ,τ ) is the electric field amplitude, τ is the time
coordinate expressed in units of δt = √|β2|L/2 (here β2 is the
second-order group-velocity dispersion for the fiber and L is
the fiber length), ζ is the normalized propagation distance (the
number of passes of radiation through the laser cavity), Dr and
Di are the frequency dispersions for the gain or loss and for the
refractive index, respectively, σ0 is the linearly distributed loss
coefficient, σd is the nonlinear distributed loss, and q is the Kerr
nonlinearity. The term G describes the saturable amplification
determined by the total energy of the intracavity radiation:
G = a/(1 + b

∫
Idτ ), where the integration is carried out over

the whole round-trip period, a is the pumping parameter, b is
the saturation parameter, and I = |E|2. The evolution of a field
in the lumped saturable absorber with the nonlinear losses σl

is described by the equation

∂E

∂ζ
= −σlE. (2)

The distributed and lumped nonlinear losses are described with
the use of a model of two-level absorber atoms [21]:

σl = ησnl

1 + pI
, (3)

σd = (1 − η)σnl

1 + pI
, (4)

FIG. 1. Schematic representation of the studied passive mode-
locked fiber laser.

where p is the saturation parameter for nonlinear losses, η is the
fraction of two-level atoms which forms the lumped nonlinear
losses, (1 − η) is the fraction of two-level atoms which forms
the distributed nonlinear losses in the fiber, and σnl is the
total unsaturated nonlinear losses. Varying the parameter η

from 1 to 0 changes the fraction of the lumped nonlinear
losses from 1 to 0 and correspondingly the fraction of the
distributed ones from 0 to 1. As this takes place, the total
nonlinear losses remain unchanged and, as a result, the central
part of an individual soliton does not change significantly.
However, its wings change drastically. In the frame of this
model only the nonlinear losses can be lumped. All other
characteristics of the intracavity components are uniformly
distributed along the laser cavity. Numerical simulations have
been performed for typical parameters of an Er-doped fiber
laser with the anomalous dispersion of group velocity β2 [4].

III. NUMERICAL SIMULATIONS AND DISCUSSION

Figure 2 shows the distances between two interacting
solitons in stable steady states. These distances have been
obtained by numerical simulations of transient processes and
established states of a laser operation with various initial
conditions. By varying the initial conditions we obtained
various established states of interacting solitons forming a
two-soliton molecule. The location of the first soliton on
the time axis in a stable steady state of such a molecule
is denoted by the white circle. The obtained locations of
the second soliton are denoted by black squares for odd
steady states of the two-soliton molecule and by gray circles
for even ones. Here the nonlinear losses are totally lumped
(η = 1). Figure 2(a) demonstrates the intersoliton separations
for sets of bound steady states with alternation of the parity.
Greater separation corresponds to smaller bound energy. Such
a set of steady states of a two-soliton molecule was obtained
by numerical simulation of a fiber laser using a nonlinear
polarization rotation technique [13]. The odd and even steady
states are described correspondingly by odd and even field
functions E(τ ) = ∓E(−τ ). The phase difference for the peak
amplitudes of the solitons equals approximately π for odd
states and 0 for even states. With varying laser parameters

FIG. 2. Distances between two bound solitons in stable stationary
states. The white circle corresponds to the first soliton and the black
squares and gray circles to the second soliton with the intersoliton
phase differences π and 0, respectively. (a) The rigorous alternation
of parity (of 0 and π states). η = 1, a = 0.55, Dr = 0.02, Di = 0.1,
q = 1.5, p = 1, σ0 = 0.01, and σnl = 0.8. (b) Breakdown of parity
alternation (δτ ≈ 1–2) and occurrence of bands (δτ > 4). η = 1,
a = 0.5, and Dr = 0.01.
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we observed a breakdown of the parity alternation. This
breakdown is shown in Fig. 2(b) with δτ ≈ 1–2. This is due to
the fact that the first even state becomes unstable. We can see
also the transformation of fixed intersoliton separations into
bands (τ > 4). In this case the intersoliton interaction results
in a fixed phase relation but unfixed intersoliton separations.
We have checked the stability of the bound states by slightly
changing the separation of the two solitons and then looking at
the temporal evolution. With variation of the laser parameters
we observed various modifications of the breakdown of the
parity alternation. We also observed a simultaneous instability
for both types of steady state. In this case the interaction
between solitons results in their attraction or repulsion.

To find the established intersoliton distances we used the
following procedure. For some chosen initial intersoliton
distance equal to several pulse durations, the laser generation
created one of the stable steady states with a well-defined
interpulse interval. The time of the transient process was
equal to about 100 passes of the field through the resonator.
The stationary solitons obtained were used as initial pulses,
but with a different distance between them. The size of the
displacement of the pulses was varied with a small step. After
the transient process the system can either come back to the
initial stable steady state or switch to the next stable one with
another interpulse interval. Thus, by scanning the initial values
of the interpulse intervals, we obtained all the established
intersoliton distances shown in Fig. 2. During the transient
process and the realization of steady states we detected the
temporal and spectral profiles of the pulses and their phase
differences. The very large time slot of observation of the
obtained stationary states (105 passes of the field through
the resonator) permits us to say that these states are stable.
Instabilities of the even and odd stationary states that arise due
to a change of laser parameters are manifested by monotonic
change in the intersoliton intervals and phase differences, or
monotonically increasing oscillations of these values. During
the transient evolution such increasing oscillations transform
themselves into a monotonic change of the corresponding
values with a departure from the initial stationary state.

The large number of stable steady states and established
intersoliton separations shown in Fig. 2 arises from interactions
of the ultrashort pulses through their powerful long-distance
wings. The observed powerful sidebands in a single-soliton
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FIG. 3. Soliton wing intensity I (τ ) with varying lumped fractions
of the saturable absorber, η: (1) η = 1, (2) η = 0.75, (3) η = 0.50,
(4) η = 0.25, and (5) η = 0. The other parameters are the same as in
Fig. 2(a).
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FIG. 4. Spectrum of single soliton with varying value of the
lumped fraction of the saturable absorber η. The parameters are the
same as in Fig. 2(a).

spectrum point out the important role of dispersion waves in
the formation of the soliton wings. In the frame of the model
described by Eqs. (1)–(4), the dispersive waves are emitted
by solitons only because of the lumped saturable absorber.
Figure 3 demonstrates the change in a soliton wing formed
by dispersion waves with a variation of a fraction of the
lumped nonlinear losses η (the total nonlinear losses remain
unchanged). With decreasing lumped fraction η the soliton
wings quickly weaken. The parameters of the central part of the
soliton remain almost unchanged. Figure 4 demonstrates the
corresponding change in the spectral sideband structure of the
single soliton. This means that the narrow spectral sidebands
are related to the soliton wings.

Figure 5 shows the change in the binding energy δJ with
varying parameter η for the first six bound steady states shown
in Fig. 2(a):

δJn = (Jn − J∞)

Jp

, (5)

where Jn is the energy of two solitons in bound steady
states, J∞ is the energy of two far separated noninteracting
solitons, and Jp is the energy of one soliton. With decreasing
lumped part of the total saturable absorber, η, the intensity
of the dispersive waves decreases. This decrease results in a
decrease of the intensity of the long-distance soliton wings
which are formed by these waves. As a result, the binding
energy of the interacting solitons decreases also. Without
lumped losses, we have checked that neither strong interaction
between solitons nor a set of a large number of bound states
(see Fig. 2) becomes possible.
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FIG. 5. Binding energy δJ for first six steady states [see Fig. 2(a)]
with varying values of the lumped fraction of the saturable absorber, η.

013802-3



ANDREY KOMAROV et al. PHYSICAL REVIEW A 85, 013802 (2012)

I (a.u.)

-5

0

5 τ (a.u.)

300

301ζ

0

0

300.2
300.4

300.6
300.8

0.2

0.1

FIG. 6. Periodic change in a soliton pedestal during one pass
through the laser cavity. The parameters are the same as in Fig. 2(a).

We have also investigated the dynamics of formation of
powerful wings through dispersive waves. The main features
of the formation are the following. In a medium with a focusing
Kerr nonlinearity and with an anomalous dispersion there
exist stable self-localized waves in the form of a stationary
pulse (conservative soliton). In a stationary state the nonlinear
mechanism shortening the pulse and the dispersive mechanism
lengthening it counterbalance each other. The stationary pulse
duration and shape are determined by an equilibrium of
these processes. If any perturbation changes the pulse then
the disturbed pulse transits into a stationary state through
relaxation oscillations with a loss of the excess energy through
the emission of dispersion waves. The oscillation frequency is
determined by the rate of chirp formation resulting from non-
linearity and dispersion of the refractive index. The frequency
dispersion of gains and losses results only in some additional
peculiarities of the described process. An ultrashort pulse
propagating in a ring laser cavity experiences periodically a
shock perturbation when it passes through a lumped saturable
absorber. Thus, the investigated system is analogous to a
damped oscillator submitted to an external periodic force.
In the established regime the structure of the radiation is
reproduced after each pass of the field through the laser cavity.
However, along a fiber the soliton parameters (peak intensity,
duration, chirp, etc.) oscillate. Figure 6 shows the periodic
change in the soliton pedestal during a single pass through
the laser cavity in the established operation. One can see the
oscillation in the duration of the central part of the soliton.

For the pump a ≈ 0.40 and a ≈ 0.55 [the others parameters
correspond to those used in Fig. 2(b)], the oscillation period
equals respectively 1 and 1/2 cavity round-trip period. Under
such resonance the single-soliton operation becomes unstable
and transforms into the regime of two and three bound solitons,
respectively. The pedestal structures differ essentially for the
pump above and below threshold values.

In Fig. 6 one can see the dispersive waves leaving from the
soliton. These waves form the powerful long-distance soliton
wings which result in spectral sidebands. In the case of normal
dispersion, conservative solitons and their oscillations are not
realized and consequently both powerful long-distance pulse
wings and powerful spectral sidebands are not realized.

Figure 7 shows the change in phase evolution along the
soliton in established operation after each round-trip period.
In the case of Fig. 7(a) the dispersive waves are emitted
only because of the lumped nonlinear losses. In the case of
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FIG. 7. Phase change ϕ(τ ) along the wings of the soliton with the
intensity distribution I (τ ). The upper right inset shows the changes of
the phase (the bottom curve) and intensity (the top curve) in a vicinity
of the center of the soliton in the increased scale. (a) The parameters
are the same as in Fig. 2(a). (b) The lumped linear losses are equal to
0.1. The other parameters are the same as in Fig. 2.

Fig. 7(b) there exist two mechanisms inducing dispersive
waves: nonlinear and linear losses. As a result, the phase
distribution in the second case appears more complex. In
established stationary operation the phase distribution is
reproducible at any point of the wing after each round-trip
period (to within the same constant for all points). In this
sense the pictures shown in Fig. 7 are stationary. However, at
any point of the pulse the phase is changed when the pulse
propagates along a fiber. In a round-trip period the total phase
change is a multiple of 2π (that is, δϕ = 2πn, where n is an
integer). Each fragment of the wing is determined by a fixed
n which in turn determines the distance between neighboring
in-phase points in the soliton wing. In the case of Fig. 7(b), for
the central part of the pulse (0 < τ < 1) the integer n equals
zero. For the near wing (1 < τ < 5) n = 1. For the far wing
(6 < τ < 15) n = 3.

In this paper we have studied the formation of dispersive
waves due to lumped nonlinear losses. There exist also other
mechanisms resulting in dispersive waves, for example, a
change of the fiber dispersion in lasers with several compound
fibers. The study of these mechanisms is left for further
research.

IV. CONCLUSION

On the basis of numerical simulation we have found
that the main mechanism of formation of powerful long-
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distance soliton wings in a laser with a lumped saturable
absorber is connected with dispersive waves emitted by
the soliton because of its interaction with lumped losses.
These wings result in a strong interaction between soli-
tons leading to formation of a soliton molecule with a
large set of energy levels and stable steady states. The
alternation of the parity for steady states of neighboring
energy levels can be broken by varying the laser parameters.
The powerful soliton wings due to the dispersive waves

result also in sidebands in the spectrum of an individual
soliton.
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