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We consider the propagation of few-cycle pulses (FCPs) in cubic nonlinear media exhibiting a “crystal-like”
structure, beyond the slowly varying envelope approximation, taking into account the wave polarization.
By using the reductive perturbation method we derive from the Maxwell–Bloch–Heisenberg equations, in
the long-wave-approximation regime, a non-integrable complex modified Korteweg-de Vries equation
describing the propagation of circularly polarized (CP) FCPs. By direct numerical simulations of the governing
nonlinear partial differential equation we get robust CP FCPs and we show that the unstable ones decays
into linearly polarized half-cycle pulses, whose polarization direction slowly rotates around the propagation axis.
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1. Introduction

Interest in intense ultrashort light pulses containing a few optical
cycles has grown steadily in recent years since their first experimental
realization in 1999 [1–4]. This mature research area has considerable
potential for ultrafast optics applications in metrology of ultrafast
phenomena, in systems performing laser ablation (micromachining,
etching, microsurgery), etc. It still presents many exciting open
problems fromboth a fundamental and applied point of view. Notably,
the ultrashort pulses possess extensive applications to the field of
light-matter interactions, high-order harmonic generation, extreme
[5] and single-cycle [6] nonlinear optics, and attosecond physics [7];
for a review of earlier works in this area see Ref. [8].

Recent progress in the study of the wave dynamics of few-cycle
pulses (FCPs) in nonlinear optical media has paved the way for the
development of new theoretical approaches tomodel their propagation
in physical systems. Three classes of main dynamical models for FCPs
have been put forward: (i) the quantum approach [9–12], (ii) the
refinements within the framework of the slowly varying envelope
approximation (SVEA) of the nonlinear Schrödinger-type envelope
equations [13–16], and the non-SVEA models [17–25]. Other recent
works on FCPs deals with few-cycle light bullets created by
femtosecond filaments [26], the study of ultrashort spatiotemporal
optical solitons in quadratic nonlinear media [27], the ultrashort
spatiotemporal optical pulse propagation in cubic (Kerr-like)
media without the use of the SVEA [28], single-cycle gap solitons
generated in resonant two-level dense media with a subwavelength
structure [29], observation of few-cycle propagating surface plasmon
polariton wavepackets [30], the possibility of generating few-cycle
dissipative optical solitons [31,32], and the existence of guided optical
solitons of femtosecond duration and nanoscopic mode area, that is,
femtosecond nanometer-sized optical solitons [33].

We also mention recent studies of ultrafast pulse propagation in
mode-locked laser cavities in the few femtosecond pulse regime and
the derivation of a master mode-locking equation for ultrashort pulses
[34]. Another relevant recent work presents a class of few-cycle
elliptically polarized solitary waves in isotropic Kerr media, proposes
a method of producing multisolitons with different polarization
states, and study their binary-collision dynamics [35].

The propagation of FCPs in Kerr media can be described beyond
the SVEA by using the modified Korteweg-de Vries (mKdV) [19],
sine-Gordon (sG) [20,21], or mKdV-sG equations [22,23]. The mKdV
and sG equations are completely integrable by means of the inverse
scattering transform (IST) method [36,37], whereas the mKdV-sG
equation is completely integrable only if some condition between
its coefficients is satisfied [38].

The aim of this work is to give a comprehensive study of the
propagation of circularly polarized (CP) few-optical-cycle pulses in
cubic (Kerr-like) nonlinearmedia beyond SVEA andwhen the frequency
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of the transition is far above the characteristic wave frequency (the
so-called long-wave approximation regime). The present work
completes our previous brief study [39] and it gives all necessary
physical and mathematical details of the governing model, together
with an alternative derivation of it, in the relevant physical situation
of a “crystal-like” system. Notice that CP FCPs have been recently
considered in Ref. [40] in the so-called short-wave approximation
regime, i.e., when the frequency of the transition is far below the
characteristic wave frequency. We therefore focus on the vectorial
feature of the electric field by taking into account the wave polariza-
tion effects. We show, by using the reductive perturbation method
(multiscale analysis), that the evolution of the two wave amplitudes
describing the vectorial character of ultrashort optical pulse propa-
gation in a system of two-level atoms in cubic nonlinear media is
well described by two coupled complex mKdV equations at the
third-order limit of perturbation approach. This result is of great
interest since it shows that vector solitons in cubic (Kerr-like)
media beyond the SVEA behave as those in a nonlinear medium that
is modeled by the KdV-type equationwhen the order ε3 of perturbation
limit is applied to the Maxwell–Bloch–Heisenberg equations.

The paper is organized as follows. In the next section we derive the
dynamical equations governing the propagation of vector femtosecond
optical solitons by developing multiple scaling approach to the
Maxwell–Bloch–Heisenberg equations up to the third order in the
small parameter ε. The basic model used in the present work is a
systemof two-level atoms in the relevant case of a “crystal-like” system,
where the excited level is twice degenerated, with the induced dipole
oriented either in the x or in the y direction. In Section 3 we analyze
the main features of the obtained complex mKdV equation. Then in
Section 4 we obtain some analytical approximate solutions for CP
few-optical-cycle solitons which are valid for long pulses. We also
get by direct numerical simulations, robust CP FCPs and we describe
the transition of unstable CP few-optical-cycle solitons to stable linearly
polarized (LP) single-humped (half-cycle) pulses. We also show that
the wave profile of this half-cycle pulse accurately coincides with that
of the fundamental soliton of the real mKdV equation and that this
single pulse performs a slow rotation around the propagation
axis. Finally, in Section 5 we summarize the results of our analysis
and we indicate some possible extensions of this work.

2. Derivation of a model

2.1. Basic equations: a crystal

A system of two coupled mKdV equations was derived in [39]
from a model of a glass, or an amorphous medium. This model
involved two-level atoms with Hamiltonian

H0 ¼ h� ωa 0
0 ωb

� �
; ð1Þ

and some induced dipolar electric momentum →μ , oriented ran-
domly in the transverse plane (x, y), as

→μ ¼ μ cosθ→ex þ sinθ→ey
� �

; ð2Þ

where →ex and →ey are the unitary vectors along the x axis and y
axis, respectively, and

μ ¼ 0 μ
μ4 0

� �
: ð3Þ

The polarization density was given by

→P ¼ N Tr ρ→μ
� �� 	

; ð4Þ
whereN is the number of atoms per unit volume, ρ is the densitymatrix,
and 〈⋅〉 denotes the averaging over all directions in the x–y plane.

We will show below that the same governing equations can be
derived from another model, which would rather correspond to a
crystalline structure.

This alternative approach involves a two-level medium, in which
the excited level is twice degenerated, with the induced dipole oriented
either in the x or in the y direction. Precisely, the Hamiltonian is

H0 ¼ h�
ωa 0 0
0 ωb 0
0 0 ωb

0
@

1
A; ð5Þ

still with Ω=ωb−ωaN0. The dipolar momentum becomes

→μ ¼ μx
→ex þ μy

→ey; ð6Þ

where

μx ¼
0 μ 0
μ4 0 0
0 0 0

0
@

1
A; ð7Þ

μy ¼
0 0 μ
0 0 0
μ4 0 0

0
@

1
A: ð8Þ

The evolution of the electric field →E is governed by the Maxwell
equations which, in the absence of magnetic effects, and assuming a
plane wave propagating along the z axis, reduce to

∂2z
→E ¼ 1

c2
∂2t

→E þ 4π→P
� �

; ð9Þ

where →
P is the polarization density. It is given by

→P ¼ NTr ρ→μ
� �

; ð10Þ

where N is the number of atoms per unit volume and ρ is the density
matrix.

The evolution of the density-matrix is governed by the Heisenberg
equation

ih�∂tρ ¼ H;ρ½ �; ð11Þ

where

H ¼ H0−→μ ⋅→E ð12Þ

describes the coupling between the atoms and the electric field. The
relaxation effects can be neglected here as in the scalar approximation,
see [20]. Notice that the physical values of the relaxation times are
indeed in the picosecond range, or even slower (nanoseconds),
thus very large with regard to the pulse duration, which allows us
to neglect them.

2.2. Evolution equations in the long-wave approximation

Since transparency is required for soliton propagation, the typical
frequency ωw of the wave must be far away from the resonance
frequency Ω. Far away means either much lower or much higher.
In the present paper, we restrict to the first situation, ωw≪Ω. If
ωw is in the visible range, it assumes that the transition frequency
is in the ultraviolet. The typical length of the wave, say tw=1/ωw,
is very large with respect to the characteristic time tr=1/Ω associated
to the transition. It is thus a long wave approximation, as defined in
the framework of the reductive perturbation method [41,42].



358 H. Leblond et al. / Optics Communications 285 (2012) 356–363
It may seem strange that we use a long-wave approximation to
describe ultrashort pulses. Recall however that the word ‘long’ is
here relative to some reference value of the wavelength. The latter
is the characteristic wavelength λr=ctr=2πc/Ω of the transition,
which belongs to the ultraviolet spectral range, i.e. much smaller
than the characteristic wavelength λw of the ultrashort pulse belonging
to the visible spectral range,which can therefore be considered as being
comparatively ‘long’ (λr≪λw). The main application of the long-wave
approximation is the hydrodynamic KdV soliton, which is a solitary
wave in the sense that it contains only a single oscillation.More generally,
such a formalism is suited to the investigation of the exact wave profile,
when the wave packet contains few oscillations and the use of wave
envelope is not adequate. This is the case we study here.

We introduce a small parameter ε, which can be here ε=1/
(Ωtw)≪1, and the slow variables

τ ¼ ε t− z
V

� �
; ζ ¼ ε3z: ð13Þ

The retarded time variable τ describes the pulse shape, propagating
at speed V in a first approximation. Its order of magnitude ε gives an
account of the long-wave approximation, so that the corresponding
values of retarded time have the same order of magnitude as tr/ε=
tw≫ tr if τ is of the order of unity. The propagation distance is
assumed to be very long with regard to the pulse length ctw;
therefore it will have the same order of magnitude as ctr/εn,
where n⩾2. The value of n is determined by the distance at
which dispersion effects occur. According to the general theory
of the derivation of KdV-type equations [42], it is n=3. The ζ
variable of order ε3 describes thus long-distance propagation.

The electric field→E, the polarization density→P, and the densitymatrix
ρ are expanded in power series of ε as

→
E ¼ ∑

n≥1
εn→En ¼ ∑

n≥1
εn un; vn;0ð Þ; ð14Þ

→
P ¼ ∑

n≥1
εn Pn;Qn;0ð Þ; ð15Þ

ρ ¼ ∑
n≥0

εnρn; ð16Þ

inwhich the triplets of coordinates are given in the (x,y,z) frame, and the
profiles u1, v1, etc., are functions of the slow variables τ and ζ. The
components of ρn are denoted by ρijn.

At lowest order ε1, the Heisenberg Eq. (11) yields

ρ112 ¼ μ
h�Ω

u1; ρ113 ¼ μ
h�Ω

v1; ð17Þ

and consequently

P1 ¼ 2N μj j2
h�Ω

u1; ð18Þ

Q1 ¼ 2N μj j2
h�Ω

v1; ð19Þ

which are the same expressions as in the glass model [39], except that
N is replaced with 2N.

At order ε3 in the Maxwell Eq. (9), we get an expression of the
refractive index with the same slight change:

n ¼ 1þ 8πN μj j2
h�Ω

 !1
2

: ð20Þ
At order ε2 in the Heisenberg Eq. (11), we first notice that ∂τρ231 =0
and consequently ρ231 =0. In the same way, ρ111 =ρ221 =ρ331 =0. Then
we get

ρ212 ¼ μ
h�Ω

u2−
iμ
h�Ω2 ∂τu1; ð21Þ

ρ213 ¼ μ
h�Ω

v2−
iμ
h�Ω2 ∂τv1; ð22Þ

which are the same expressions as in the case of the “glass”model [39],
with the orientation angle of the dipolar momentum θ=0 for ρ122 and
θ=π/2 for ρ132 . Consequently, we get

P2 ¼ 2N μj j2
h�Ω

u2; ð23Þ

Q2 ¼ 2N μj j2
h�Ω

v2; ð24Þ

and the Maxwell equation at order ε4 is automatically satisfied.
At order ε3 in theHeisenberg Eq. (11), the populations are computed

as

ρ211 ¼ − μj j2
h�2Ω2 u2

1 þ v21
� �

; ð25Þ

ρ222 ¼ μj j2
h�2Ω2 u

2
1; ð26Þ

ρ233 ¼ μj j2
h�2Ω2 v

2
1: ð27Þ

Notice that a nonzero coherence term between the two excited
states appears, it is

ρ223 ¼ μj j2
h�2Ω2 u1v1: ð28Þ

Consequently, the coherence between the fundamental state and
the state excited in the x direction at next order is

ρ312 ¼ μ
h�Ω

u3−
iμ
h�Ω2 ∂τu2

− μ
h�Ω3 ∂

2
τu1−

2μ μj j2
h�3Ω3 u2

1 þ v21
� �

u1:

ð29Þ

The analogous expression, permuting u1 and v1, is obtained for the
component ρ133 .

The expressions for the polarization density components P3 and Q3

are obtained, as

P3 ¼ 2N μj j2
h�Ω

u3−
2N μj j2
h�Ω3 ∂2τu1−

4N μj j4
h�3Ω3 u2

1 þ v21
� �

u1; ð30Þ

and analogously for Q3. Apart from the change from N to 2N already
noticed, the only discrepancy with respect to the corresponding
equations in the glass model [39] is a coefficient value 4 instead of 3
in the nonlinear term in Eq. (30).

The Maxwell Eq. (9) at order ε5 yields the following pair of
coupled equations:

∂ζu1 ¼ A∂3τu1 þ B∂τ u2
1 þ v21

� �
u1

h i
; ð31Þ

∂ζv1 ¼ A∂3τv1 þ B∂τ u2
1 þ v21

� �
v1

h i
; ð32Þ
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in which we have set

A ¼ 4πN μj j2
nch�Ω3 ; ð33Þ

B ¼ 8πN μj j4
nch�3Ω3 : ð34Þ

Notice that the structure of the set of Eqs. (31), (32) is the same as
in the “glass”model [39], with very slightly modified coefficients. The
expressions of the two dispersion coefficients coincide (the ratio
between the corresponding dispersion coefficients is therefore 1)
if we consider that only in the case of the “glass-like” model, one half
of the dipoles only are contributing, while all of them are involved in
the “crystal-like” model. The same feature is observed in the case of
the refractive index. Regarding the value (34) of the coefficient B, the
ratio between the corresponding nonlinear coefficients is a bit smaller,
3/8, which is nothing else but the average value 〈cos4θ〉 of cos4θ,
which is involved in the averaging of the nonlinear polarization density
over all orientations θ of →μ in the glass model [39]. In fact, the
coefficients A and B have here exactly the same expressions as
in the scalar model [20].

Eqs. (31, 32) can be written in the normalized form as

UZ ¼ UTTT þ U2 þ V2
� �

U
h i

T
; ð35Þ

VZ ¼ VTTT þ U2 þ V2
� �

V
h i

T
; ð36Þ

where the subscripts Z and T denote the derivatives, and the functions
and variables are defined as

U ¼ u1

E ; V ¼ v1
E ; Z ¼ z

L ; T ¼ t−z=V
tw

; ð37Þ

with

L ¼ nh�cΩ3t3w
2πN μj j2 ; ð38Þ

E ¼
ffiffiffi
2
3

r
h�

μj jtw
: ð39Þ

Eqs. (35,36) are a set of coupled mKdV equations describing the
propagation of optical FCPs in amedium presenting cubic nonlinearity
and dispersion [43]. They can be also seen as describing the interaction
of two linearly polarized FCPs, U and V.

3. The complex mKdV equation

Assuming thatU andV vanish at infinity, themKdV system(35)–(36)
has four conserved quantities [44]:

I1 ¼ ∫þ∞
−∞

UdT ; I2 ¼ ∫þ∞
−∞

VdT; ð40Þ

the momentum of the system

I3 ¼ ∫þ∞
−∞

U2 þ V2
� �

dT ; ð41Þ

and its Hamiltonian

I4 ¼ 1
2
∫þ∞
−∞

U2 þ V2
� �2−2 U2

T þ V2
T

� �� �
dT; ð42Þ

which remain constant with Z.
Setting

f ¼ U þ iV ; ð43Þ

Eqs. (35) and (36) reduce to

fZ ¼ fTTT þ fj j2f
� �

T
; ð44Þ

which is known as the complex modified Korteweg-de Vries (cmKdV)
equation. Confusion must be avoided between Eq. (44) and the other
cmKdV equation

fZ ¼ fTTT þ fj j2
� �

fT : ð45Þ

Indeed, Eq. (45) is completely integrable [45] while Eq. (44) is not.
Eqs. (44) and (45) are sometimes referred to as cmKdV I and cmKdV
II equations, respectively. The integrable Eq. (45) has been extensively
studied (see e.g. [45-48]), while less studies have been devoted to the
non-integrable Eq. (44)[49,50]. In Ref. [49], using the Painlevé
analysis, it is proved that Eq. (44) is not integrable, and an exhaustive
list of analytical solutions is given. In the frame of the optics of FCPs,
the field f must vanish at infinity. With this condition, there is no
exact analytical solution to Eq. (44) but the solutions of the real
mKdV equation. Indeed, setting f=ueiφ, with u=u(Z, T) and φ a
constant, reduces the complex mKdV Eq. (44) to the real one. All
linearly polarized FCP solitons are retrieved in this way.

Their stability to a random perturbation of the polarization can be
tested numerically. Ifwe add to the constantφ a randomnoise (we used
an amplitude of 0.1×2π), it is obtained that the pulse is not destroyed,
and that its polarization remains linear. However, the direction of
the linear polarization slowly rotates around the propagation
direction.

More interesting would be a CP soliton, of the form

f ¼ u T−wZð Þei ωT−kZð Þ
: ð46Þ

However no exact, even numerical, steady state solution of this
type do exist. To be ensured of this, just plug f given by the expression
(46) in Eq. (44); separating real and imaginary parts and integrating
once yields

3ω2−w
� �

u ¼ uTT þ u3
;

ω2− k
ω

� �
u ¼ 3uTT þ u3

;

ð47Þ

which are not compatible. However, solutions having approximately
the form (46) exist and are very robust. They are studied in detail in
the next section.

4. Circularly polarized few-optical-cycle solitons

4.1. Analytic approximate solution valid for long pulses

We will compute an approximate solution to the cmKdV Eq. (44),
valid for large pulses, i.e. in the SVEA. Next we introduce again a small
parameter � and the slow variables

ξ ¼ �
2Z; η ¼ � T−wZð Þ; ð48Þ

and expand f as

f ¼ � f0 η; ξð Þ þ �f1 η; ξð Þ þ…ð Þei ωT−kZð Þ
; ð49Þ

and run the perturbative reduction procedure [42].



Fig. 2. Initial (at Z=100) and final (at Z=40,000) profiles of a CP FCP soliton. The initial
data is composed of one mKdV breather (53) for each polarization component, with a
π/2 dephasing between them. The parameter used is p1=1+1.5i, which correspond
to a ratio of the angular frequency divided by the pulse length of 1.5. Blue (dotted):
initial |f|, light blue (thick solid, gray): initial U, red (solid black): final |f|, pink
(dash-dotted): final U. The green (thin dashed) and yellow (thick dashed, gray)
lines are fits using the analytical approximate profile (52).
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At leading order �, we get k=ω3; at second order, we find the inverse
velocity w=3ω2, and at order �3 we get a nonlinear Schrödinger (NLS)
equation for f0:

i∂ξf0 þ 3ω∂2ηf0 þωf0 f0j j2 ¼ 0: ð50Þ

Let us consider the fundamental soliton solution of NLS:

f0 ¼ p
ffiffiffi
6

p
sech pηð Þei3p

2ωξ
: ð51Þ

Coming back to the initial variables, we obtain

f ¼ b
ffiffiffi
6

p
sech b T−3ω2Z

� �h i
eiω T− ω2−3b2ð ÞZ½ �: ð52Þ

Eq. (52) gives an approximate solution to the cmKdV Eq. (44),
which is valid for long pulses (b≪ω).

The numerical resolution of the cmKdV equation is performed
using the exponential time differencing second order Runge–Kutta
(ETD-RK2) method [51]. The numerical scheme does not conserve
exactly the L2-norm (or energy W) of the solution, however the
error remains small (typically ΔW/W∼10−4 for Z=10,000).

Due to the scale invariance of the cmKdV equation, only the ratio
b/ω may modify the stability properties of the solution. Practically,
we fix b=1 and decrease the frequency ω.

Fig. 1 shows the evolution of a FCP of this form,with b=1andω=2.
The propagation of the linearly dispersive FCP is also shown for the
sake of comparison. The FCP propagates without change in width and
maximum amplitude after propagation over at least Z=10,000 units,
however, its shape is somehow distorted after propagation. The prop-
agation speed is also quite different from the result of the above ana-
lytical approximate solution. We computed the speed of the pulse
maximum. The averaged speed is about −6.8 instead of +12. It un-
dergoes large fast oscillations (variance about σf≃1.66), due to a peri-
odical move of the maximum inside the pulse. In addition, long-range
fluctuations are seen (variance σl≃0.18), which seem to be fully ran-
dom. In fact, since no steady state with linear phase exists, the pulse
is not a true steady state, and consequently its velocity varies in a
quite erratic way; nevertheless, it is a very robust FCP.

4.2. A robust circularly polarized FCP soliton

Notice that the approximate solution (52) does not have a zero
mean value, except at the SVEA limit b≪ω. However the mean
value of the field is conserved. It is likely that the CP FCP soliton
 T
 

Z

-40

-20

0

20

40

0 2 4 6 8 10 12

a) Nonlinear

Fig. 1. Propagation of a CP FCP. The left panel shows the nonlinear propagation of the x-polar
shows the propagation of the linearly dispersive FCP having the same initial profile but wit
would have a zero mean value, and hence this would explain the
discrepancy between the approximate analytical solution (52) and
the direct numerical computation shown on Fig. 1.

In order to check this interpretation, let us consider an input having
zero mean value. Such an alternative expression is found from the
breather (or two-soliton) solution of the real mKdV equation [52].
Recall that the two-soliton has the expression

U ¼
eη1 þ eη2 þ p1−p2

p1 þ p2

� �2 eη1

4p21
þ eη2

4p22

 !
eη1þη2

1þ e2η1

4p21
þ 2eη1þη2

p1 þ p2ð Þ2 þ e2η2

4p22
þ p1−p2

p1 þ p2

� �4 e2η1þ2η2

16p21p
2
2

; ð53Þ

with

ηj ¼ pjτ−p3j ζ−γj; ð54Þ

for j=1, 2, and becomes a breather if p2=p1
*. Then Re(p1) is the

inverse of the pulse length, and Im(p1) is the angular frequency,
as are b and ω respectively in Eq. (52). The real part of the constant
γ1=γ2

* determines the position of the center of the pulse, while its
imaginary part is a phase. Taking for one polarization component,
say U, the breather (53) with γ1U=0, and for the second polarization
T

Z

-40

-20

0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4

b) Linear

ized component U. Initial data is given by Eq. (52) with b=1 and ω=2. The right panel
h very small amplitude.



Fig. 3. Optical spectrum of an unstable CP FCP just before (at Z=400, blue dotted line)
and just after its decay (at Z=500, red solid line) into slowly rotating LP half-cycle
pulse. Initial data is based on Eq. (53) with p1=1+ i, which correspond to an angular
frequency equal to the pulse length.

Fig. 5. Evolution of the polarization of the unstable CP FCP with both angular frequency
and pulse length 1. Blue (dotted): initial CP pulse (at Z=100), red (solid): final linearly
polarized pulse (at Z=1300).
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component V the same expression, but with a π/2 dephasing, i.e. with
γ1V= iπ/2, we get some expression which can be used as an input
data for solving numerically the cmKdV equation. This pulse is very
close to the approximate analytical solution (52), but has a zero
mean value. Numerical resolution shows that the pulse, apart from
small apparently chaotic oscillations, keeps its shape and characteristics
during the propagation.

Fig. 2 shows the evolution of a FCP built of two breathers dephased
by π/2, for a breather parameter p1=1+1.5i, which corresponds
roughly to b=1 and ω=1.5. The initial amplitude | f | and the real
part U are depicted by the blue and light blue lines, the amplitude
and the real part after propagation over Z=40,000 are depicted in
red and pink, respectively. The locations and phase have been re-set
artificially to the initial value so that comparison can be made easily.
The robustness of the FCP is obvious. The sech-type profiles
corresponding to formula (52) in which b is evaluated using the
maximum value of | f | obtained numerically (b=1.139 instead of
1 as expected from the input) are plotted in green and yellow
respectively. Although the actual FCP is not accurately sech-shaped,
the agreement is quite good. Recall that the solution (52) is valid for
very large ratios ω/b, while in Fig. 2, ω/b≃1.5.

4.3. Transition to a half-cycle soliton

The value ω/b≃1.5 appears to be the lower limit for the stability of
the CP FCP soliton. For smaller values of the ratio ω/b, the FCP becomes
unstable, and decays into a LP single-humped (half-cycle) pulse, in the
form of a fundamental soliton of the real mKdV equation.
a) Initial (at Z = 100) b

Fig. 4. Profiles for an unstable CP FCP. Initial data is defined by the breather (53) with p1=1+
U, and the same with a π/2 dephasing for V. Light blue (dotted): |f| and − |f|, pink (solid): U
The transition occurs, for ω/b=1.4, between Z=19,100 and
19,200, for ω/b=1.3, between Z=9300 and 9400, but for ω/b=1,
between Z=400 and 500. Further, it occurs very abruptly, and
involves a strong modification of the spectrum. Fig. 3 gives the
evolution of the optical spectrum, i.e. the Fourier transform F Uð Þ of
the x polarization component, in the latter case (ω/b=1). The initial
spectrum is centered aboutω/b=1, while the second one is centered
at zero.

The transition to a half-cycle soliton is shown of Figs. 4 and 5. It is a
single pulse, whose profile accurately coincides with that of the
fundamental soliton solution to the real mKdV equation

U ¼
ffiffiffi
2

p
bsech bT−b3Z

� �
; ð55Þ

but which slowly rotates around the propagation axis. Fig. 6 show
the oscillations of the two polarization components U and V, and
the evolution of the phase. The period of oscillation is close to
the length of the propagation distance interval presented in the
figure, about 50, which yields an ‘angular frequency’
ω≃2π/50≃0.13. In some sense, ω has fallen about one order of
magnitude. However, this should not be considered as a frequency
change, sinceω does not represent anymore the central frequency of
the pulse. This rotation speed is not modified during the propagation
from Z=2000 to Z=10,000 at least. However, it is strongly depending
) Final (at Z = 1300)

i, i.e. both pulsewidth and angular frequency equal to 1, for the polarization component
=Re(f), green (dashed): V= Im(f).



a) ‘Initial’ state, Z = 2000 b) ‘Final’ state, Z = 20000

Fig. 6. One period of rotation of the slowly rotating LP half-cycle pulse resulting from the instability of the CP FCP with both angular frequency and pulse length 1, at the beginning of
its evolution (a), and after long propagation (b). Red (thin solid): norm of the electric field |f|, blue (dotted): x-polarized component U, light blue (thick solid gray): y-polarized
component V, black (dashed): phase arctan(V/U).
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on the continuous pedestal. Indeed, if we remove this pedestal by
setting the field f to zero out of the main pulse and then compute
the evolution, the rotation does not appear any more. Starting
from an initial data in the form of a fundamental soliton of the
real mKdV multiplied by some small linear phase,

f T;0ð Þ ¼
ffiffiffi
2

p
bsech bTð ÞeiωT ; ð56Þ

(we used b=1 and ω=0.008), we get that the rotation speed
gradually decreases down to zero, and the pulse becomes a fundamental
soliton of the real mKdV equation.

We note that half-cycle optical solitons were also put forward in
quadratic nonlinearmedia; thus a few-cycle pulse launched in a quadratic
medium may result in a half-cycle soliton in the form of a single hump,
with no oscillating tails [53]. We also mention here the incentive earlier
works by Kazantseva et al. [54–56] on propagation and interaction of
extremely short electromagnetic pulses in quadratic nonlinear media.
In Ref. [56] the problem of propagation of extremely short unipolar
electromagnetic pulses (the so-called “videopulses”) was considered in
the framework of a model in which the material medium is represented
by anharmonic oscillators (approximating bound electrons) with both
quadratic and cubic nonlinearities. Two families of exact analytical
solutions (with positive or negative polarity) were found for the
moving solitary pulses. Those videopulses were very robust against
perturbations. Moreover, it was found in Ref. [56] that two such
unipolar pulses collide nearly elastically, while collisions between
pulses with opposite polarities and a small relative velocity are
inelastic, leading to emission of radiation and generation of a
small-amplitude additional pulse.

5. Conclusion

Themultiscale perturbation analysiswas used to derive approximate
evolution equations governing the propagation of circularly polarized
femtosecond optical solitons in cubic (Kerr-like) media beyond the
slowly varying envelope approximation. Thus we took into account
the vectorial character of the electric field and therefore we
properly considered the wave polarization effects. In the long-
wave-approximation regime we have found that the two interacting
wave forms corresponding to such vector few-optical-cycle solitons
are adequately described by a coupled pair of complex modified
Korteweg-de Vries equations at the third-order approximation of
the perturbation approach. The present study completes a recent
previous brief work [39] and presents an alternative derivation of
the governing model in the relevant case of a “crystal-like” structure
as opposed to the “glass-like” model, which was introduced and
investigated in detail in Ref. [39].
A challenging extension suggested by the presentwork is to consider
the case of two transitions, one below and one above the range of
propagated wavelengths. Another interesting issue is the generalization
of the presentwork to one or even to two spatial transverse dimensions,
in addition to time and spatial longitudinal coordinates, that is, the study
of formation and robustness of vector few-optical-cycle spatiotemporal
solitons, alias ultrashort vector light bullets, beyond the slowly varying
envelope approximation (for overviews of recent studies of spatio-
temporal solitons in several relevant physical settings, see Refs. [57,58]).
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