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Circularly polarized few-optical-cycle solitons in the short-wave-approximation regime
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We consider the propagation of few-cycle pulses (FCPs) beyond the slowly varying envelope approximation in
media in which the dynamics of constituent atoms is described by a two-level Hamiltonian by taking into account
the wave polarization. We consider the short-wave approximation, assuming that the resonance frequency of
the two-level atoms is well below the inverse of the characteristic duration of the optical pulse. By using the
reductive perturbation method (multiscale analysis), we derive from the Maxwell-Bloch-Heisenberg equations
the governing evolution equations for the two polarization components of the electric field in the first order of
the perturbation approach. We show that propagation of circularly polarized (CP) few-optical-cycle solitons is
described by a system of coupled nonlinear equations, which reduces in the scalar case to the standard sine Gordon
equation describing the dynamics of linearly polarized FCPs in the short-wave-approximation regime. By direct
numerical simulations, we calculate the lifetime of CP FCPs, and we study the transition to two orthogonally
polarized single-humped pulses as a generic route of their instability.
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I. INTRODUCTION

Ultrashort optical pulses with duration of merely a few fem-
toseconds find diverse applications in the area of light-matter
interactions, high-order harmonic generation, extreme [1] and
single-cycle [2] nonlinear optics, and attosecond physics [3];
for a review of earlier works in this area see Ref. [4]. Recent
experimental advances in the study of the wave dynamics of
few-cycle pulses (FCPs) in nonlinear optical media have paved
the way for the development of new theoretical approaches to
modeling their propagation in realistic physical systems. We
mention here only a recent work demonstrating the synthesis
of a single cycle of light by using compact erbium-doped fiber
technology [5]; the obtained pulse duration of only 4.3 fs
was close to the shortest possible value for a data bit of
information transmitted in the near-infrared spectrum of light,
at a wavelength of 1300 nm.

Three classes of main dynamical models for FCPs have
been investigated in detail in the past: (i) the quantum
approach [6–9], (ii) refinements within the framework of
the slowly varying envelope approximation (SVEA) of the
nonlinear Schrödinger-type envelope equations [10–13], and
(iii) non-SVEA models [14–21]. Recent works on FCPs
deal with few-cycle light bullets created by femtosecond
filaments [22], ultrashort spatiotemporal optical solitons in
quadratic nonlinear media [23], ultrashort spatiotemporal
optical pulse propagation in cubic (Kerr-like) media with-
out the use of the SVEA [24], single-cycle gap solitons
generated in resonant two-level dense media with a sub-
wavelength structure [25], few-cycle propagating surface
plasmon polariton wave packets [26], and the possibility
of generating few-cycle dissipative optical solitons [27,28].
We also mention recent studies of ultrafast pulse propaga-

tion in a mode-locked laser cavity in the few-femtosecond
pulse regime and the derivation of a master mode-locking
equation for ultrashort pulses [29], the experimental study of
intrinsic chirp of single-cycle pulses [30], and the proposed
method of generating extremely short unipolar half-cycle
pulses based on resonant propagation of a few-cycle pulse
through asymmetrical media with periodic subwavelength
structure [31].

It has been proved in recent years that the propagation
of FCPs in Kerr media can be described beyond the SVEA
by using the modified Korteweg–de Vries (mKdV) [15], sine
Gordon (sG) [16,17], or mKdV-sG equations [18,19]. It is
well known that the mKdV and sG equations are completely
integrable by means of the inverse scattering transform (IST)
method [32,33], whereas the mKdV-sG equation is completely
integrable only if some condition between its coefficients is
satisfied [34].

The aim of this work is to study the propagation of
circularly polarized (CP) few-optical-cycle pulses in optical
media beyond SVEA and when the frequency of the tran-
sition is far below the characteristic wave frequency (the
so-called short-wave-approximation regime). Note that the
characteristic pulse duration is still assumed to be about
1 fs, corresponding to an optical pulse of only a few
cycles. We therefore focus on the vectorial character of the
electric field by taking into account the wave polarization
effects and by applying the reductive perturbation method
(multiscale analysis) to the Maxwell-Bloch equations. Notice
that other vectorial non-SVEA models have been also proposed
[35,36]; however, they were not carefully justified from
physical point of view but built from only an analogy with
common SVEA models. However, recently [37] we found
CP few-optical-cycle solitons in cubic nonlinear media in the

023833-11050-2947/2011/84(2)/023833(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.023833


LEBLOND, TRIKI, AND MIHALACHE PHYSICAL REVIEW A 84, 023833 (2011)

long-wave-approximation regime and beyond the SVEA.
Assuming that the frequency of the transition is far above
the characteristic wave frequency (i.e., in the long-wave-
approximation regime), we showed that propagation of FCPs,
taking into account the wave polarization, is adequately
described by the nonintegrable complex mKdV equation.
We have also concluded that the CP FCP soliton becomes
unstable when the angular frequency is less than 1.5 times the
inverse of the pulse duration. As a result, the unstable subcycle
pulses decay into linearly polarized half-cycle pulses, whose
polarization direction slowly rotates around the propagation
axis [37].

In the present work we show, by using the reductive
perturbation method (multiscale analysis) at its first-order
limit, that the evolution of the two wave amplitudes describing
the vectorial character of ultrashort optical pulse propagation
in a system of two-level atoms is adequately described by a
system of coupled nonlinear equations, which reduces to the
common sine Gordon equation in the scalar case (i.e., the case
of linearly polarized few-cycle solitons).

Circularly polarized short-pulse propagation in a system of
two-level atoms has already been studied in the frame of self-
induced transparency [38]. The existence of localized solutions
of Maxwell-Bloch-type systems beyond the SVEA has been
considered [39,40]. However, not all the coupling mechanisms
between the polarization components were taken into account.
The authors of Ref. [40] took an essential coupling term into
account through the out-of-phase polarization, which allowed
them to show that the pulse solution valid within the SVEA
could not be generalized beyond it by means of corrections
terms.

The paper is organized as follows. After introduction of
the corresponding fast and slow variables, we derive the
dynamical equations governing the propagation of vector
femtosecond optical solitons (circularly polarized few-optical-
cycle solitons) in the short-wave approximation by developing
a multiple scaling approach to the Maxwell-Bloch-Heisenberg
equation up to the first order in the small parameter ε. In
Sec. III, we study in detail the mathematical properties of the
derived coupled system of nonlinear equations, and we get
the corresponding conservation laws. We also obtain linearly
polarized few-cycle solitons as a limiting case of the more gen-
eral vectorial model. In Sec. IV, we perform a comprehensive
study of the circularly polarized few-optical-cycle solitons in
the short-wave-approximation regime, and we give an approx-
imate analytical expression of the circularly polarized pulse.
For the sake of completeness, we also consider the slowly vary-
ing envelope approximation derived from the general system
of coupled nonlinear equations obtained in Sec. II. As a result,
we get the corresponding system of two coupled nonlinear
Schrödinger (NLS) equations. We also study the stability of
circularly polarized pulses, which can be done analytically
within the slowly varying envelope approximation. In Sec. V,
we calculate by adequate numerical methods the lifetime
of circularly polarized few-cycle pulses, and we study the
transition to two orthogonally polarized single-humped pulses
as a generic decay scenario of unstable circularly polarized
solitons. Finally, in Sec. VI we summarize the results of our
analysis and indicate some other possible extensions of this
work.

II. DERIVATION OF THE GOVERNING DYNAMICAL
EQUATIONS FOR CIRCULARLY POLARIZED

FEW-OPTICAL-CYCLE SOLITONS IN THE
SHORT-WAVE APPROXIMATION

A. Basic equations

We consider a two-level model, in which the excited state
is degenerated twice, corresponding to oscillations along the
x and y axes. The free Hamiltonian is thus

H0 = h̄

⎛
⎜⎝

ωa 0 0

0 ωb 0

0 0 ωb

⎞
⎟⎠ , (1)

and the resonance angular frequency is � = ωb − ωa > 0. The
electric field �E is coupled with the atoms by the Hamiltonian

H = H0 − �μ · �E, (2)

in which the dipolar momentum operator �μ = μx �ex + μy �ey is
given by

μx =

⎛
⎜⎝

0 μ 0

μ∗ 0 0

0 0 0

⎞
⎟⎠ , μy =

⎛
⎜⎝

0 0 μ

0 0 0

μ∗ 0 0

⎞
⎟⎠ . (3)

Then the evolution of the atoms is governed by the Heisenberg
equation

ih̄∂tρ = [H,ρ] , (4)

in which ρ is the density matrix, and the evolution of the
electric field �E is governed by the wave equation

∂2
z

�E = 1

c2
∂2
t ( �E + 4π �P ), (5)

where c is the speed of light in vacuum and the polarization
density �P is given by

�P = NTr (ρ �μ) . (6)

B. Short-wave approximation

The short-wave approximation is performed according to
the general theory developed in Refs. [16,41,42]. We denote
by (u,v,0) the components of the electric field �E in the (xyz)
frame, by (P,Q,0) the ones of �P , and by ρij , i,j = 1,2,3, the
elements of the Hermitian matrix ρ. All these quantities are
expanded in the power series of a small parameter ε as

�E = �E0 + ε �E1 + ε2 �E2 + · · · (7)

and so on. We introduce fast and slow variables

τ =
(

t − z

V

)
, ζ = εz, (8)

so that

∂t = ∂τ , ∂z = − 1

V
∂τ + ε∂ζ . (9)

The expansion (7) and fast and slow variables (8) are reported
into the basic equations (5) and (4), and the perturbative
scheme is solved order by order.
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C. Order ε0

The Heisenberg equation (4) at order ε0 yields

ih̄∂τ ρ
0 = −[ �μ · �E0,ρ

0], (10)

that is,

ih̄∂τ ρ
0
11 = −(

μρ0∗
12 − ρ0

12μ
∗)u0 − (

μρ0∗
13 − ρ0

13μ
∗) v0, (11)

ih̄∂τ ρ
0
22 = −(

μ∗ρ0
12 − ρ0∗

12μ
)
u0, (12)

ih̄∂τ ρ
0
33 = −(

μ∗ρ0
13 − ρ0∗

13μ
)
v0, (13)

ih̄∂τ ρ
0
12 = −μ

(
ρ0

22 − ρ0
11

)
u0 − μρ0∗

23v0, (14)

ih̄∂τ ρ
0
13 = −μρ0

23u0 − μ
(
ρ0

33 − ρ0
11

)
v0, (15)

ih̄∂τ ρ
0
23 = −μ∗ρ0

13u0 + ρ0∗
12μv0. (16)

We check that Eqs. (11)–(13) satisfy the normalization
condition for the density matrix, that is, ∂τ Trρ0 = 0.

Assuming that the electric field components u and v

vanish as τ tends to −∞, by integrating (14) and (15) and
incorporating them into (11) we get

∂τρ
0
11 = 2 |μ|2

h̄2

[
u0

∫ τ

−∞
(w1u0 + σv0)

+ v0

∫ τ

−∞
(σu0 + w2v0)

]
, (17)

where we have set the population inversion quantities

w1 = ρ0
22 − ρ0

11, w2 = ρ0
33 − ρ0

11, (18)

and

σ = Reρ0
23 = ρ0

23 + ρ0∗
23

2
. (19)

Then by incorporating (14) into (12), we get

∂τρ
0
22 = −2 |μ|2

h̄2 u0

∫ τ

−∞
(w1u0 + σv0) . (20)

Integrating Eq. (15) and incorporating it into (13) yields

∂τρ
0
33 = −2 |μ|2

h̄2 v0

∫ τ

−∞
(σu0 + w2v0) . (21)

The x and y components P0 and Q0 of the zeroth-order
polarization density �P0 are given by

P0 = N
(
ρ0

12μ
∗ + ρ0∗

12μ
)
, (22)

Q0 = N
(
ρ0

13μ
∗ + ρ0∗

13μ
)
. (23)

By integrating (14) and (15), incorporating them into (22) and
(23), and setting

κ = Im
(
ρ0

23

)
, (24)

we get

P0 = 2 |μ|2 N

h̄

∫ τ

−∞
κv0, (25)

Q0 = −2 |μ|2 N

h̄

∫ τ

−∞
κu0. (26)

By integrating Eqs. (14) and (15), incorporating them into
(16), and separating real and imaginary parts, we obtain
evolution equations for σ = Reρ0

23 and κ = Imρ0
23, as

∂τσ = −u0Px − v0Py, (27)

where we have set

Px = |μ|2
h̄2

∫ τ

−∞
(w1u0 + σv0) , (28)

Py = |μ|2
h̄2

∫ τ

−∞
(w2v0 + σu0) , (29)

and

∂τ κ = − |μ|2
h̄2

(
u0

∫ τ

−∞
κu0 + v0

∫ τ

−∞
κv0

)
. (30)

Since Eq. (30) is a linear homogeneous integro-differential
equation, it is obviously satisfied by κ = 0. Depending on the
electric field component, it might admit a nonzero solution.
Let us assume that such a solution exists, and call it κ0. Then,
κ = λκ0 also solves Eq. (30) for any real λ, and neither the
boundary conditions limτ−→−∞ κ = 0 nor the value of the
field allow us to determine λ. This shows that the nonzero
solution would not have any physical meaning in the frame
of the perturbation expansion, and forces us to consider the
solution κ = 0 only; consequently, ρ0

23 = σ is real.
Then, assuming that it vanishes at infinity, it is found that

�P0 = �0. (31)

By incorporating this value into the wave equation (5) at
order ε0, we get

1

V 2
∂2
τ

�E0 = 1

c2
∂2
τ ( �E0 + 4π �P0), (32)

which, taking (31) into account, is satisfied if the wave velocity
is V = c at the zeroth order of the series expansion in the small
parameter ε.

D. Order ε1

1. Polarization density

The Heisenberg equation (4) at order ε1 is

ih̄∂τ ρ
1 = [H0,ρ

0] − [ �μ �E0,ρ
1] − [ �μ �E1,ρ

0], (33)

and then we get

ih̄∂τ ρ
1
11 = − (

μρ1∗
12 − ρ1

12μ
∗) u0 − (

μρ1∗
13 − ρ1

13μ
∗) v0

− (
μρ0∗

12 − ρ0
12μ

∗) u1 − (
μρ0∗

13 − ρ0
13μ

∗) v1, (34)

ih̄∂τ ρ
1
22 = − (

μ∗ρ1
12 − ρ1∗

12μ
)
u0 − (

μ∗ρ0
12 − ρ0∗

12μ
)
u1, (35)

ih̄∂τ ρ
1
33 = − (

μ∗ρ1
13 − ρ1∗

13μ
)
v0 − (

μ∗ρ0
13 − ρ0∗

13μ
)
v1, (36)

ih̄∂τ ρ
1
12 = −h̄�ρ0

12 − μ
(
ρ1

22 − ρ1
11

)
u0 − μρ1∗

23v0

−μ
(
ρ0

22 − ρ0
11

)
u1 − μρ0∗

23v1, (37)

ih̄∂τ ρ
1
13 = −h̄�ρ0

13 − μρ1
23u0 − μ

(
ρ1

33 − ρ1
11

)
v0

−μρ0
23u1 − μ

(
ρ0

33 − ρ0
11

)
v1, (38)

ih̄∂τ ρ
1
23 = −μ∗ρ1

13u0 + ρ1∗
12μv0 − μ∗ρ0

13u1 + ρ0∗
12μv1. (39)
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The computation of the polarization density components
P1 and Q1 involve the density matrix elements ρ1

12 and ρ1
13

respectively. The former is obtained from (37), in which ρ0
12 is

reported using (14) to yield

∂τρ
1
12 = −μ�

h̄

∫ τ

−∞
(w1u0 + σv0) + iμ

h̄

[(
ρ1

22 − ρ1
11

)
u0

+w1u1 + ρ1∗
23v0 + σv1

]
. (40)

Since

P1 = N
(
ρ1

12μ
∗ + ρ1∗

12μ
)
, (41)

the expression of P1 becomes

P1 = − 2 |μ|2 �N

h̄

∫ τ

−∞

∫ τ

−∞
(w1u0 + σv0)

+ 2 |μ|2 N

h̄

∫ τ

−∞
κ̂v0, (42)

in which we have set

κ̂ = Im
(
ρ1

23

)
. (43)

In the same way, we have

∂τρ
1
13 = − μ�

h̄

∫ τ

−∞
(σu0 + w2v0) + iμ

h̄

[(
ρ1

33 − ρ1
11

)
v0

+w2v1 + ρ1
23u0 + σu1

]
, (44)

and

Q1 = − 2 |μ|2 �N

h̄

∫ τ

−∞

∫ τ

−∞
(σu0 + w2v0)

− 2 |μ|2 N

h̄

∫ τ

−∞
κ̂u0. (45)

2. Equation for the electric field

The wave equation (5), at order ε1, yields

1

V 2
∂2
τ

�E1 − 2

V
∂τ ∂ζ

�E0 = 1

c2
∂2
τ ( �E1 + 4π �P1). (46)

When we incorporate the expressions (42) and (45) of the
components of �P1 and take into account the fact that V = c,
the terms involving u1 and v1 vanish from the equation, which
reduces to

∂τ ∂ζ u0 = 4π |μ|2 �N

h̄c
(w1u0 + σv0)

−4 |μ|2 N

h̄c
∂τ [̂κv0 + κv1] , (47)

∂τ ∂ζ v0 = 4π |μ|2 �N

h̄c
(σu0 + w2v0)

+ 4 |μ|2 N

h̄c
∂τ (̂κu0 + κu1) . (48)

However, evolution equations for w1, w2, σ , and κ̂ are
required, and we derive them in what follows.

3. Equations for w1, w2, and σ

The evolution equations for the diagonal elements of ρ0 are
Eqs. (17), (20), and (21). The evolution equations for w1, w2

are deduced straightforwardly from them, as

∂τw1 = −2u0Px − v0Py, (49)

∂τw2 = −u0Px − 2v0Py, (50)

where Px and Py are defined by (28) and (29) respectively.
The evolution equation for σ has already been computed in
Eq. (27).

Then ρ0
13 and ρ0

12 are extracted from Eqs. (14) and (15) and
incorporated into (39) to yield

∂τρ
1
23 = i

h̄

(
μ∗ρ1

13u0 − ρ1∗
12μv0

) − |μ|2
h̄2

[
u1

∫ τ

−∞
(σu0 + w2v0)

+v1

∫ τ

−∞
(w1u0 + σv0)

]
. (51)

Then we take the imaginary part of Eq. (51):

∂τ κ̂ = 1

h̄

[
Re

(
μ∗ρ1

13

)
u0 − Re

(
μ∗ρ1

12

)
v0

]
. (52)

It follows from Eqs. (40) and (44) that

Re
(
μ∗ρ1

12

) = −h̄�

∫ τ

−∞
Px, (53)

and

Re
(
μ∗ρ1

13

) = −h̄�

∫ τ

−∞
Py, (54)

and consequently

∂τ κ̂ = −�

(
u0

∫ τ

−∞
Py − v0

∫ τ

−∞
Px

)
. (55)

The set of coupled nonlinear equations (47), (48), (28), (29),
(22), (23), (55), (49), (50), and (27) yields the sought nonlinear
dynamical model, eventually. It contains two kinds of terms
coupling the polarization components: One is the structure of
the population inversion, which involves three components w1,
w2, and σ , and the other one is the term involving κ̂ , which
couples the components of the polarization density at the level
of their dynamics. Only parts of these coupling terms were
taken into account in previous studies [39,40]. Notice that the
coupling terms are responsible for the instability of the CP
pulse in the subcycle range.

III. MATHEMATICAL PROPERTIES OF THE COUPLED
SYSTEM OF NONLINEAR EQUATIONS

We get the coupled system of equations:

∂ζ u0 = −2π

c
∂τP1, (56)

∂ζ v0 = −2π

c
∂τQ1, (57)

∂τP1 = −2Nh̄�Px + 2N |μ|2
h̄

v0κ̂, (58)

∂τQ1 = −2Nh̄�Py − 2N |μ|2
h̄

u0κ̂, (59)
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∂τPx = |μ|2
h̄2 (w1u0 + σv0) , (60)

∂τPy = |μ|2
h̄2 (w2v0 + σu0) , (61)

∂τ κ̂ = 1

2Nh̄
(u0Q1 − v0p1) , (62)

∂τw1 = −4u0Px − 2v0Py, (63)

∂τw2 = −2u0Px − 4v0Py, (64)

∂τσ = −(u0Py + v0Px). (65)

A. Normalization

Setting

(u,v) = 1

E0
(u0,v0), T = τ

T0
, Z = ζ

D
, (66)

in which the reference electric field E0, the reference propaga-
tion distance D, and the reference time T0 are related through

T0 = h̄

|μ|E0
, D = E0c

4πN�|μ| , (67)

and

(m,n) = h̄

μ

(
Px,Py

)
, (p,q) = E0

2Nh̄�
(P1,Q1) , (68)

system (56)–(65) reduces to

∂Zu = −∂T p, (69)

∂Zv = −∂T q, (70)

∂T p = −m + vK, (71)

∂T q = −n − uK, (72)

∂T m = w1u + Sv, (73)

∂T n = w2v + Su, (74)

∂T K = uq − vp, (75)

∂T w1 = −4um − 2vn, (76)

∂T w2 = −2um − 4vn, (77)

∂T S = −un − vm, (78)

or, setting w = (w1 + w2)/2, r = (w2 − w1)/2, they reduce
to

∂Zu = −∂T p, (79)

∂Zv = −∂T q, (80)

∂T p = −m + vK, (81)

∂T q = −n − uK, (82)

∂T m = (w − r)u + Sv, (83)

∂T n = (w + r)v + Su, (84)

∂T K = uq − vp, (85)

∂T w = −3(um + vn), (86)

∂T r = um − vn, (87)

∂T S = −un − vm. (88)

Coming back from the scaled variables (with ε) to the
original ones is simply performed by restoring � to its initial

value. Then it is seen from (67) that the short-wave assumption
mainly expresses in the fact that the reference propagation
distance D is large.

By setting

P = p + iq, M = m + in, U = u + iv, s = r − iS,

(89)

as new complex quantities, the coupled system of equations
(79)–(88) can be written in a more compact form as

UZ = −PT , (90)

PT = −M − iUK, (91)

MT = wU − sU ∗, (92)

KT = Im(U ∗P ), (93)

sT = UM, (94)

wT = −3Re(U ∗M). (95)

B. Conservation laws

Let us denote by I = u2 + v2 the normalized intensity. It is
straightforward that

IZ = −2
3 wT , (96)

which shows that when the homogeneous population inversion
w has its value corresponding to the thermal equilibrium both
before and after the pulse, the power

∫ +∞
−∞ Idt is conserved

during propagation. It also shows that the energy transfer inside
the pulse is entirely governed by the homogeneous population
inversion w.

However, there is another conservation law. Let us consider
the scalar case v = 0. It is seen that K , S, n, q are 0 and
w1 = 2w2. Then the system (79)–(88) reduces to

uZ = −pT , (97)

pT = −m, (98)

mT = w1u, (99)

w1T = −4um. (100)

System (97)–(100) reduces to the sine Gordon equation as
follows (computation was given first in [43]; however, it is
worth being detailed again here). To this aim, let us set

m = A sin ϕ, w1 = 2A cos ϕ. (101)

Then, direct computation shows AT = 0, and hence A is a
constant. From (97)–(99), it is seen that

uZ = A sin ϕ. (102)

On the other hand, uZT can be computed, either by taking
the T derivative of (102), which yields uZT = w1ϕT /2,
or by combining (97) and (99), which yields uZT = w1u.
Comparison between both expressions shows that u = ϕT /2,
and we get the sG equation

ϕZT = 2A sin ϕ. (103)
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From this derivation, it is seen that the reduction of system
(97)–(100) to sG is based on the conservation law

∂T A2 = ∂T

(
m2 + w2

1

4

)
= 0. (104)

The question is whether (104) can be generalized to the vector
case. The answer is yes. It is easy to show that the quantity

A = m2 + n2 + 1
3w2 + r2 + S2 (105)

in terms of the real normalized variables, or

A = |M|2 + 1
3w2 + |S|2 (106)

in terms of the complex ones, is conserved, which can
be checked by direct computation of ∂τA. Let us notice,
however, that the remaining of these transformations cannot
be generalized to the vector system of nonlinear coupled
equations.

C. Linear polarizations

We seek for solutions to system (69)–(78) of the form(
u

v

)
= f

(
cos θ

sin θ

)
, (107)

in which θ is the angle between the polarization direction and
the x axis. It is straightforward to see that(

p

q

)
= �

(
cos θ

sin θ

)
, (108)

with

∂Zf = −∂T �, (109)

and hence K = 0 from Eq. (75). Then Eqs. (71)–(72) yield(
m

n

)
= R

(
cos θ

sin θ

)
, (110)

with

∂T � = −R. (111)

Equations (76)–(78) show that w1, w2, and S must be
proportional. Let us set W so that

∂T W = −4f R, (112)

and then we get

w1 = (1 + cos θ2)
W

2
, (113)

w2 = (1 + sin θ2)
W

2
, (114)

S = cos θ sin θ
W

2
. (115)

Then the equation for R is

∂T R = Wf, (116)

and hence the amplitudes f , �, R, and the reduced population
inversion W solve the scalar model (97)–(100) for any
polarization angle θ . Hence the vectorial model allows us to
retrieve the linear polarization case.

IV. CIRCULAR POLARIZATION

A. Approximate expression of circularly polarized pulses

A circularly polarized FCP is more easily described by
means of the complex system (90)–(95). It would correspond
to a solution of the form

U = F

(
T − Z

vg

)
ei(kZ−ωT ). (117)

Direct substitution of (117) into the system (90)–(95) shows
(after some computation, details of which are omitted here)
that no exact solution of this form exist. The nonexistence of
exact non-SVEA circularly polarized pulse solutions to the
Maxwell-Bloch equations was already pointed out in [39],
although in the frame of a slightly different model.

We can seek for approximate solutions in the limit of large
ω (i.e., in the SVEA limit) by means of a multiscale expansion
close to the standard one for deriving a NLS model in the
SVEA limit [44]. We consider some small parameter ε, so that
1/ε is the order of magnitude of the number of optical cycles
in the pulse, assumed to be large. We expand

U =
∑

n�1,r

εneirϕUr,n (118)

with ϕ = kZ − ωT , and introduce slow variables

τ = ε(t − z

vg

), ζ = ε2Z. (119)

At leading order, we assume that U1,1 = F is the only nonzero
term. In contrast with the standard derivation, U−1,1 = 0
instead of F ∗. The other variables P , M , K , s, and w are
expanded in the same way as U is, except that we allow a
zeroth-order term for w and s.

The expansion is incorporated into system (90)–(95) and
solved order by order. At leading order ε, we get

P1,1 = k

ω
F, M1,1 = ikf, (120)

the other Pr,1 and Mr,1 being zero. The dispersion relation is
found as

w0,0 = ωk, (121)

and s0,0 = 0. It is also seen that Kr,1 = sr,1 = wr,1 = 0 for any
nonzero r .

At order ε2, we obtain the velocity vg = −ω/k,

P1,2 = 2k

iω2
∂τF + k

ω
U1,2, (122)

M1,2 = ikU1,2 + k

ω
∂τF − iK0,1F, (123)

and

Pr,2 = k

ω
Ur,2, Mr,2 = irkUr,2, (124)

for all nonzero r . It is also seen that w0,1 = −ωK0,1, s0,1 = 0,
Ur,2 = 0 for all r �= 1, while U1,2 is free. A nonlinear terms is
computed:

s2,2 = −k

2ω
F 2, (125)

while sr,2 = 0 for r �= 0,2 and Kr,2 = 0 for r �= 0.
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Other relevant nonlinear terms are sought at order ε3:

K0,2 = −k

ω2
|F |2, w0,2 = −3k

2ω
|F |2. (126)

The equation for the fundamental Fourier component r = 1
of U at order ε3, after cancellation of the terms involving U1,2

and U1,3 and substitution of the various terms computed above
(especially the nonlinear ones), yields the following nonlinear
evolution equation:

∂ζF = −ik

ω2
∂2
τ F − K0,1∂τF − 2ik

ω2
F |F |2 , (127)

which is the NLS equation. The term involving K0,1 represents
only a shift in the velocity; its physical meaning is not clear.
We can restrict ourselves to the case when w0,1 = K0,1 = 0.

Let F be the fundamental soliton solution to the NLS
equation (127),

F = βe
−iβ2k

ω2 ζ sechβτ. (128)

It accounts for a circularly polarized FCP. The corresponding
approximate expression of U is

U = be
i[(k− b2k

ω2 )Z−ωT ]sech

[
b

(
T + k

ω
Z

)]
, (129)

in which the soliton parameter b is b = εβ and assumed to be
small.

The nonzero nonlinear terms which are involved in the
evolution of the circularly polarized FCP (129) are s2,2, w0,2,
and K0,2, i.e., the second harmonic for the cross term of
population inversion s, the rectified term of the population
inversion w, and the coupling polarization term K .

B. Stability of the circularly polarized soliton in the SVEA

1. Derivation of a system of two coupled NLS equations

The stability of the circularly polarized pulse (129) can be
addressed analytically within the SVEA. Therefore, we first
compute the slowly varying envelope approximation of the
system (69)–(78). The real form of the system is required,
since each real component will be expanded in both a Fourier
series and a series of power of ε, as

u =
∑

n�1,r

εneirϕur,n, (130)

with u1,1 = f , u−1,1 = f ∗, and so on, and respectively, v1,1 =
g. We use the same phase ϕ and the same scaled variables ζ ,
τ as in previous section [Eq. (119)].

At order ε1 we get

p1,1 = k

ω
f, q1,1 = k

ω
g, m1,1 = ikf, n1,1 = ikg, (131)

the other components of p, q, m, n, K at order 1 being zero,
and f and g remain free if

S0,0 = 0, w1,0,0 = w2,0,0 = ωk, (132)

the other components of w1, w2, S at order 0 being zero.

At order ε2 we get

p1,2 = k

ω
u1,2 + i

ω

(
1

vg

− k

ω

)
∂τf, (133)

q1,2 = k

ω
v1,2 + i

ω

(
1

vg

− k

ω

)
∂τg, (134)

m1,2 = iku1,2 − 1

vg

∂τf + K0,1g, (135)

n1,2 = ikv1,2 − 1

vg

∂τg − K0,1f, (136)

pr,2 = k

ω
ur,2, qr,2 = k

ω
vr,2, (137)

mr,2 = irkur,2, nr,2 = irkvr,2. (138)

The solvability condition of the equations for u and v, for
r = 1, at this order, yield vg = −ω/k as in previous section.

Next we get the nonlinear terms

w1,2,2 = k

ω
(2f 2 + g2), (139)

w2,2,2 = k

ω
(f 2 + 2g2), (140)

S2,2 = k

ω
fg, (141)

and their complex conjugate (r = −2), while the components
with r = 0 remain free, and the other components are zero,
including K2,2.

The nonlinear rectified terms are found at order ε3, and they
are

K0,2 = 2ik

ω2
(fg∗ − f ∗g), (142)

w1,0,2 = −k

ω
(4|f |2 + 2|g|2), (143)

w2,0,2 = −k

ω
(2|f |2 + 4|g|2), (144)

S0,2 = −k

ω
(fg∗ + f ∗g). (145)

As in the previous section, the equations for the fundamen-
tal Fourier component r = 1 of u and v, at order ε3, after
cancellation of the terms involving u1,2, v1,2, u1,3, and v1,3 and
substitution of the various terms computed above (especially
the nonlinear ones), yields a system of two coupled nonlinear
equations:

∂ζ f = −ik

ω2
∂2
τ f − 2ik

ω2
(f |f |2 + 2f |g|2 − f ∗g2), (146)

∂ζ g = −ik

ω2
∂2
τ g − 2ik

ω2
(g|g|2 + 2g|f |2 − g∗f 2). (147)

The system yielded by Eqs. (146) and (147) is a system of
two coupled NLS equations, presenting both self- and cross-
phase-modulation, and four-wave mixing terms.

Before we proceed to the stability analysis of the circularly
polarized pulse (117), let us consider more generally the solu-
tions of (146) and (147) corresponding to a fixed polarization.
If the polarization is fixed, we have g = df with d some
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constant. By incorporating g = df into Eqs. (146) and (147),
we obtained two different equations, which coincide if

|d|2 − d2 = 1 − d∗

d
. (148)

Equation (148) is solved by separating amplitude and phase
of d, and the solutions are d real, or d = ±i. Hence the
“eigenpolarizations” of the system yielded by (146) and (147)
are the linear polarizations and the two circular ones. For a
circular polarization, Eqs. (146) and (147) reduce to

∂ζ f = −ik

ω2
∂2
τ f − 8ik

ω2
f |f |2 . (149)

It is seen that the cross-phase and four-wave mixing terms add
up in this case, while they cancel each other in the case of
linearly polarized pulses.

The complex field is U = u + iv, with u � ε(f eiϕ +
f ∗e−iϕ) and v � ε(geiϕ + g∗e−iϕ), hence for f = ig, U �
ε2igeiϕ , and the amplitude considered in previous section is
F = 2f , which proves that (149) coincides with (127).

2. Stability

Let us change ζ into z = −2k
ω2 ζ . Equations (146) and (147)

become

i∂zf + ∂2
τ f + f |f |2 + 2f |g|2 − f ∗g2 = 0, (150)

i∂zg + ∂2
τ g + g |g|2 + 2g |f |2 − g∗f 2 = 0. (151)

In the same way, the equation for the circular polarization
becomes

i∂ζ g + ∂2
τ g + 4g |g|2 = 0. (152)

Let g0 be the fundamental soliton solution to Eq. (152), so that
the corresponding U is the circularly polarized pulse (129).

Consider a perturbation of this pulse, defined by

f = ig0 + ηf1, (153)

g = g0 + ηg1, (154)

where η is a small parameter. Equations (153) and (154) are
incorporated into Eqs. (150) and (151), and the following
evolution equations for f1 and g1 are derived at first order
in η:

i∂zf1 + ∂2
τ f1 + 4f1 |g0|2 −2f ∗

1 g2
0

+ 4ig1 |g0|2 + 2ig∗
1g

2
0 = 0, (155)

i∂zg1 + ∂2
τ g1 + 4g1 |g0|2 +2g∗

1g
2
0

− 4if1 |g0|2 + 2if ∗
1 g2

0 = 0. (156)

Then, setting

ψ± = 1

2
g1 ± i

2
f1, (157)

we get

i∂zψ− + ∂2
τ ψ− + 8ψ− |g0|2 + 4g2

0ψ
∗
− = 0, (158)

i∂zψ+ + ∂2
τ ψ+ = 0. (159)

Equation (158) is nothing else but the NLS equation (152)
linearized about its solution g0. From the IST it is well
known that g0 is a stable solution of Eq. (152), and hence

T
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100
0  100  200  300  400

FIG. 1. (Color online) The circularly polarized FCP and its decay
into orthogonally polarized single-humped pulse. Evolution in the
(Z,T ) plane. Parameters are ω = 5, b = 2. Here Zdisp = 37.

no instability can arise in ψ−. Equation (159) is easily solved
by seeking solutions of the form ψ+ = exp i(k′z − ω′τ ); the
dispersion relation is k′ = −ω′2. Since k′ is real for any real
ω, no instability occurs from ψ+. Consequently the circularly
polarized pulse is stable.

V. LIFETIME OF CIRCULARLY POLARIZED
FEW-CYCLE PULSES AND TRANSITION TO

SINGLE-HUMPED PULSES

The existence and stability of the circularly polarized pulse
within SVEA do not ensure either its stability or even its
existence beyond SVEA [39]. In the following, we investigate
numerically the stability of circularly polarized few-cycle
pulses beyond SVEA. System (79)–(88) is solved numerically
in the domain Z � 0, T � 0 as follows. The Z evolution of
u and v is computed by means of a standard fourth-order
Runge-Kutta algorithm. At each step and substep of the
scheme, the eight other components are computed using the
same algorithm but relative to the T variable. It involves values
of u and v at intermediary times, which are computed by
means of a polynomial interpolation over four existing points.
The procedure does not allow speed compensation or periodic
boundary conditions, and hence the propagation distance is
limited by the size of the numerical box in T .

We assume that all atoms are initially in the fundamental
state: w = −1 at T = 0. We use the approximate circularly
polarized pulse (129) as an input, with ω = 5, and vary the
pulse duration b. An instability occurs: The FCP decays
into linearly polarized single-humped pulses. In general, two
orthogonally polarized pulses with different amplitudes are
obtained (see Figs. 1, 2, and 3). For the shortest subcycle
pulses, the instability occurs very fast, the amplitudes of
the two single humped pulses strongly differ, and the angle
between their polarization directions is not close to π/2.
The single-humped pulses are fundamental solitons of the sG
equation (103) to which the system reduces in the case of linear
polarizations.

The distance at which the transition occurs was also eval-
uated. In fact, the instability process has some duration. First,
the amplitude starts to decay, then the internal oscillations slow
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FIG. 2. (Color online) The circularly polarized FCP and its decay
into orthogonally polarized single-humped pulse (same as Fig. 1).
The shape of the FCP is shown at Z = 280 (left) and Z = 360 (right).
Light blue (gray) denotes the amplitude |U | = √

u2 + v2 (and −|U |),
and red (black) denotes u = Re(U ).

down, and finally the pulse splits. We measure the distances
Zi and Zf of the beginning and start of the process and take
their mean value Zmax. It is then compared to the dispersion
length Zdisp. The latter is computed as follows: We use the
same code and the same initial data but strongly decrease
the amplitude to compute the linear dispersion. Then the
pulse duration [at full width at half maximum (FWHM)] is
computed for each Z. It evolves linearly; the parameters of
this evolution are computed using a least squares algorithm,
from which the dispersion length Zdisp is computed. Zdisp is
defined as the length at which the pulse length is twice its
initial value. It is seen that Zmax/Zdisp evolves exponentially
with respect to the pulse length (Fig. 4). The pulse duration may
be measured by the ratio ω/b; however, we can also consider
the number of optical cycles Nc, which is the ratio of the pulse
duration (FWHM = 2 ln[1 + √

(2)]/b) divided by the optical
period 2π/ω. The curve Zmax/Zdisp versus Nc is shown in

-1
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-2 -1.5 -1 -0.5 0 0.5 1 1.5

v

u

FIG. 3. (Color online) The circularly polarized FCP and its decay
into orthogonally polarized single-humped pulse (same as Fig. 1). The
trajectories of the tip of the normalized electric field vector (u,v) are
in the transverse plane, for the two same values of Z, showing the
polarization. Light blue (gray) denotes Z = 280 (left), and red (black)
denotes Z = 360.
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FIG. 4. (Color online) Plot of the lifetime of the circularly
polarized FCP, measured in units of the dispersion length, against
the number of optical cycles in the pulse. The red (black) line
shows the numerical data. The light blue (gray) line shows the
exponential fit.

Fig. 4, together with an exponential fit obtained by linear least
squares in semilogarithmic representation. Properly speaking,
no stability threshold for the circularly polarized FCPs can
be evidenced; however, the lifetime becomes very long for
Nc > 1 (see Fig. 4). Notice that in Ref. [40], only the coupling
through a common single population inversion (homogeneous
broadening) was considered. This allowed the derivation of
a non-SVEA pulse solution [40]. The frequency modulation
of this non-SVEA pulse solution becomes as large as the
frequency itself for ω/b = 1/2

√
3, that is, for a number of

cycles Nc � 0.08. The result obtained in Ref. [40] presents
some analogy with the transition from a circularly polarized
oscillating pulse to the single-humped linearly polarized one
that we described here, but would be smooth and occur at
Nc � 0.08 instead of Nc � 1. We stress that the instability
of the circularly polarized FCPs for subcycle pulses is
thus strongly related to the coupling between polarization
components.

VI. CONCLUSIONS

The powerful multiscale perturbation analysis was used
to derive evolution equations governing the propagation of
circularly polarized femtosecond optical solitons in optical
media beyond the slowly varying envelope approximation and
in the short-wave-approximation regime. We took into account
the vectorial character of the electric field, and therefore we
properly considered the wave polarization effects. We have
found that the two interacting wave forms corresponding
to such vector few-optical-cycle solitons are adequately
described by a coupled system of nonlinear equations at the
first-order approximation of the perturbation approach. By
direct numerical simulations, we calculated the lifetime of
circularly polarized few-optical-cycle solitons, and we studied
their decay into two orthogonally polarized single-humped
pulses as a generic route of their instability. A challenging
extension suggested by the present work is to consider the
case of two optical transitions, one below and one above the
range of propagated wavelengths. Another interesting issue
is the generalization of the present study to one or even
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to two spatial transverse dimensions, in addition to time
and spatial longitudinal coordinates, that is, to investigate
vector few-optical-cycle spatiotemporal solitons (ultrashort
circularly polarized light bullets) beyond the slowly varying
envelope approximation.
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