
HAL Id: hal-03187680
https://univ-angers.hal.science/hal-03187680

Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polarization dynamics in nonlinear anisotropic fibers
Andrey Komarov, Konstantin Komarov, Dmitry Meshcheriakov, Foued

Amrani, François Sanchez

To cite this version:
Andrey Komarov, Konstantin Komarov, Dmitry Meshcheriakov, Foued Amrani, François Sanchez.
Polarization dynamics in nonlinear anisotropic fibers. Physical Review A : Atomic, molecular, and
optical physics [1990-2015], 2010, 82 (1), pp.013813. �10.1103/PhysRevA.82.013813�. �hal-03187680�

https://univ-angers.hal.science/hal-03187680
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 82, 013813 (2010)

Polarization dynamics in nonlinear anisotropic fibers

Andrey Komarov,1 Konstantin Komarov,1 Dmitry Meshcheriakov,1 Foued Amrani,2 and François Sanchez2

1Institute of Automation and Electrometry, Russian Academy of Sciences, Acad. Koptyug Pr. 1, RU-630090 Novosibirsk, Russia
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We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index
nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincaré
sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their
stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation
analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of
the polarization in the Poincaré sphere and the motion of a particle in a potential well. Two distinct potentials
are found, leading to the existence of two families of solutions, according to the sign of the total energy of the
equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to
determine analytically the associated beat lengths. General analytical solutions are given for the two families in
terms of Jacobi’s functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers
is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications
are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two
polarization controllers is also considered.
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I. INTRODUCTION

Although the optical Kerr effect in single-mode fibers is
commonly used for many applications involving passive mode
locking based on nonlinear polarization evolution [1–13],
modulational instability [14,15], or soliton propagation [16],
there are few studies concerning the exact polarization dynam-
ics when nonlinearity and birefringence are simultaneously
present. As a matter of fact, in a recent article, Ding and Kutz
had similar conclusions concerning the underlying theory of a
passive polarizer used to mode lock a fiber laser [10].

Modulation instability in optical fibers has a long history.
However, the peculiarities related to the vectorial nature
of an electromagnetic wave have been rarely investigated.
The majority of theoretical studies are based on the scalar
nonlinear wave equation. The interplay between birefringence,
nonlinearity, and dispersion was first studied in [17], where the
polarization instability is predicted in the normal dispersion
regime. In [18], the authors report the generation of ultrahigh-
repetition-rate solitonlike pulse trains as a consequence of the
interplay between the natural and nonlinear birefringence.
In the case of passively mode locked fiber lasers, fully
vectorial models [4–9] include both polarization effects and
birefringence along the fiber, but no attempt is given to
the exact evolution of the polarization state. Scalar models
generally ignore the birefringence [12,13] or simply treat them
as a perturbation [11]. Many authors merely explain that the
optical Kerr effect induces an intensity-dependent rotation of
the polarization ellipse, leading to intensity-dependent losses
after a suitably oriented polarizer. This is true if the fiber
is isotropic but can be completely false when the linear
birefringence takes place. In practice, residual birefringence
is always present, and the resulting beat length can be as low
as 10 cm, as reported from magneto-optic measurements in
Nd-doped fibers [19]. As a consequence, assuming a fiber
length of about 20 m in standard fiber lasers, the length of
the doped fiber spans from about the beat length (for weakly

birefringent fibers) to several hundred times the beat length (for
highly birefringent fibers). Therefore the interplay between the
natural and the nonlinear birefringence as well as the resulting
peculiarities on the mode-locking behavior deserve specific
study. Before treating the full problem of a fiber laser with
gain, dispersion, birefringence, and optical Kerr nonlinearity,
it is of great importance to perform an extensive study of
the properties of a wave which travels along a single-mode
nonlinear birefringent fiber. This is the main objective of this
article. As said previously, there are few results on this domain.
An attempt to derive a formula for the nonlinear transmission
of a nonlinear birefringent fiber placed between two crossed
polarizers is reported in [20]. The authors consider the natural
birefringence of the fiber but neglect the four-wave mixing
terms of the optical Kerr nonlinearity. The range of validity
is then seriously restricted because the nonlinear polarization
coupling is due to the neglected term. In spite of that, the
simplicity of the resulting nonlinear transmission formula
makes it attractive for the description of some aspects of
soliton fiber ring lasers [21,22]. A more realistic approach
has been pioneered by Winful and colleagues, who really
initiated this domain [23–25]. In these articles, the approach
was based on the evolution of the two circular polarization
components which are the polarization eigenstates of a purely
Kerr medium. Winful pointed out the saddle-point instability
for a polarization parallel to the fast axis of a birefringent
fiber [23] and found one particular analytical solution to the
nonlinear propagation problem. He also noted the analogy
with a mechanical oscillator and investigated the nonlinear
transmission of a birefringent nonlinear fiber placed between
two orthogonal polarizers. This latter point is essential to
the optimization of the nonlinear losses for efficient mode
locking. Although the work of Winful is considerable and gives
physical insight to many aspects of the propagation of a wave
in a birefringent nonlinear medium, it is not fully satisfactory.
For instance, the mechanical analogy is just mentioned [24],
and only one analytical solution is given, while there are two
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distinct families of solutions. Our ambition in this article is to
provide an extensive study of the propagation of a wave in a
birefringent nonlinear medium. For that purpose, we adopt a
new approach to this task. The problem is formulated in the
framework of the Stokes parameters and the Poincaré sphere.

This article is organized as follows. In Sec. II, we consider
the evolution of a wave in a nonlinear anisotropic fiber
and derive the evolution equations of the Stokes parameters.
Section III is devoted to the topology of the solutions in the
Poincaré sphere. It is demonstrated that the movement in the
Poincaré sphere in the general case is a rotation around an
instantaneous axis which depends on both the optical intensity
and the surface of the polarization ellipse. Four fixed points are
found in the Poincaré sphere. Two correspond to the eigenaxis
of the anisotropic fiber, while the other two are intensity
dependent and only exist if the nonlinear birefringence is
greater than the natural birefringence. The stability of the
stationary points is then analyzed. In agreement with [18],
it is demonstrated that the point associated with the fast axis is
an unstable saddle point. Local solutions are given for all fixed
points. The mechanical analogy is investigated in Sec. IV.
We first show that the evolution of the representative point in
the Poincaré sphere is analogous to a movement of a particle
in a potential well. Depending on the initial conditions, the
potential may have one or two minima. We demonstrate that
depending on the total energy of the particle, two physically
different families of solutions occur. The first family exists
only when the nonlinear birefringence is greater than the
linear one and the sign of the ellipticity does not change;
it is a rotating solution. The second family always exists
and corresponds to an oscillating solution in which the sign
of the ellipticity is periodically changed. Analytic solutions
are found for both solutions in terms of Jacobi’s functions.
Their properties are examined in Sec. V. In particular, we
show that the modulus of the Jacobian function is related
to the initial conditions (i.e., initial polarization state). In
Sec. VI, we consider the nonlinear losses associated with
a birefringent nonlinear fiber placed between two crossed
polarizers. The nonlinear transmission is derived with the
help of the Mueller matrices. Optimization of the nonlinear
transmission for efficient mode locking is performed. The
general case is also considered. We demonstrate that maximum
transmission discrimination between low and high intensity
is obtained when the corresponding polarization states are
located at opposite ends of any diameter in the Poincaré sphere.

II. THE STOKES PARAMETERS AND THE
POINCARÉ SPHERE

We consider a monochromatic plane wave propagating
in a fiber which is assumed to be lossless, anisotropic, and
nonlinear (Kerr effect). At steady state and in the framework
of the eigenaxis of the fiber, the electric field components are
coupled through the following nonlinear equations:

du

dz
= iku + iq

(
|u|2u + 2

3
|v|2u + 1

3
v2u∗

)
,

(1)
dv

dz
= −ikv + iq

(
|v|2v + 2

3
|u|2v + 1

3
u2v∗

)
,

where u and v are the slowly varying envelopes along the
slow and fast axis (k > 0), respectively; k is the birefringent
parameter; and q is the nonlinear parameter related to the
nonlinear index coefficient (for focusing nonlinearity q > 0).
Let us recall that the nonlinear term contains, by appear-
ance order in Eqs. (1), the self-phase modulation term, the
crossed-phase modulation term, and the four-wave mixing
term.

The conservation of the energy during the propagation leads
to the conservation relation

|u(z)|2 + |v(z)|2 = const = I. (2)

In order to simplify Eq. (1), let us introduce the new
variables

u = U
√

IeiqIz,
(3)

v = V
√

IeiqIz.

System (1) becomes

dU

dz
= ikU − i�(|V |2U − V 2U ∗),

(4)
dV

dz
= −ikV − i�(|U |2V − U 2V ∗),

where � = qI/3. With the new variables, the electric field is
normalized to unity: |U |2 + |V |2 = 1.

For the analysis, it is convenient to introduce the Stokes
parameters of the electric field. They are defined by [26]

S0 = |U |2 + |V |2 = 1,

S1 = |U |2 − |V |2,
(5)

S2 = UV ∗ + U ∗V = 2|U ||V | cos ϕ,

S3 = −i(UV ∗ − U ∗V ) = 2|U ||V | sin ϕ,

where ϕ = ϕu − ϕv is the phase difference between the two
electric field components.

The Stokes parameters are not independent; they verify the
conservation relation

S2
0 = S2

1 + S2
2 + S2

3 . (6)

The Stokes parameters completely determine the state of the
polarization of the wave. They can be written using the azimuth
ψ of the polarization and the angle of ellipticity χ :

S1 = cos 2ψ cos 2χ,

S2 = sin 2ψ cos 2χ, (7)

S3 = sin 2χ.

All possible polarization states are obtained for ψ ∈ [0,π ] and
χ ∈ [−π/4,π/4]. When ψ and χ vary, the point representative
of the vector �S = (S1,S2,S3)t describes a unit sphere which
is the well-known Poincaré sphere (the superscript t stands
for the transpose vector, i.e., the column vector). With our
definition of the Stokes parameters, the Northern (Southern)
hemisphere is associated with right-handed (left-handed)
polarizations. The Poincaré sphere is illustrated in Fig. 1.
Hence the evolution of the state of the polarization along the
fiber can be represented by the movement of a point on a unit
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FIG. 1. The Poincaré sphere.

sphere. Using the Stokes parameters Eqs. (4) are written in the
form

dS1

dz
= 2�S2S3,

dS2

dz
= −2kS3 − 2�S1S3, (8)

dS3

dz
= 2kS2.

III. TOPOLOGY OF THE SOLUTIONS

A. Case with no natural birefringence

We first consider the case where there is no natural bire-
fringence, that is, k = 0. Under such circumstances, Eqs. (8)
become

dS1

dz
= 2�S2S3,

dS2

dz
= −2�S1S3, (9)

dS3

dz
= 0.

The last equation shows that S3 = const, which means that the
surface of the polarization ellipse remains constant during the
propagation [12]. Equation (9) can be written in vector form
as

d �S
dz

= −2S3 �� ∧ �S, (10)

where �� = ( 0 0 � )t and �S = ( S1 S2 S3 )t .
Relation (10) demonstrates that the movement of �S is a

rotation around the S3 axis at the angular frequency 2S3�

(this results from a simple and direct analogy with a particle
with a circular motion around a fixed axis). Then �S has a
circular motion around the S3 axis on the Poincaré sphere.
If S3 > 0, the movement is clockwise, while if S3 < 0, it is
anticlockwise. This is illustrated in Fig. 2. The equatorial plane
is the boundary between these opposite circular rotations. In
the equatorial plane, S3 = 0 and the polarization state is linear.
As a consequence, the polarization is not modified along
the propagation because the angular frequency of rotation
vanishes.

1S

2S

3S

FIG. 2. (Color online) Evolution of the polarization state with no
natural birefringence. The points in the poles are stationary states.

Relation (10) allows us also to determine the stationary
points (or fixed points) which correspond to the polarization
eigenstates of the nonlinear fiber. In addition to any linear
polarization which does not undergo a variation during prop-
agation, the states for which S1 = S2 = 0 are also stationary
because in this case d �S/dz. Because of the normalization of
the vector �S, the corresponding projection on the S3 axis
is S3 = ±1. Therefore the fixed points are the poles and
physically correspond to the right (North Pole) and left (South
Pole) circular polarizations. The fiber behaves like a circular
birefringent medium. If the incident polarization is circular, it
propagates without any change. If the incident polarization is
right (left) handed, the trajectory of the polarization state in
the Poincaré sphere is clockwise (anticlockwise) around the
North (South) Pole. The trajectories in the Poincaré sphere do
not depend on the intensity or on the polarization eigenstates.
However, the frequency of rotation depends linearly on the
optical intensity (through �) and on the surface of the
polarization ellipse S3, which is a conserved quantity during
the propagation.

B. General case

1. Stationary states

In the general case, we have to consider Eqs. (8) without any
simplification. It is easy to show that Eqs. (8) can be written
in vector form as

d �S
dz

= 2�k ∧ �S − 2S3 �� ∧ �S, (11)

where �k = (k,0,0)t and �� = (0,0,�)t . Relation (11) shows
that the evolution of �S is a rotation around the axis �k −
S3 ��. However, the exact evolution is not a simple rotation
because the axis of rotation depends on the coordinate S3.
Therefore �k − S3 �� defines the instantaneous axis of rotation.
Relation (11) also shows that the nonlinear fiber is a medium
exhibiting a natural linear birefringence (linear is used here in
the sense that the polarization eigenstates are two orthogonal
linear polarizations) and a circular birefringence resulting from
optical Kerr nonlinearity.
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FIG. 3. (Color online) Stationary solutions in the general case.

The trajectories can be better identified if we first look for
the stationary solution, that is, fixed points in the Poincaré
sphere. From Eqs. (8), we get

S2 = 0,
(12)

(�S1 + k)S3 = 0.

The first relation demonstrates that the fixed points are in
the plane (S1,S3). The second relation leads to two different
solutions:

S3 = 0, (13a)

S1 = − k

�
. (13b)

Taking into account that ‖�S‖ = 1, we find four fixed points in
the Poincaré sphere. Their coordinates are as follows:

P

∣∣∣∣∣∣
1
0
0

P ′

∣∣∣∣∣∣
−1
0
0

Q

∣∣∣∣∣∣∣
−k/�

0√
1 − k2/�

2
Q′

∣∣∣∣∣∣∣
−k/�

0

−
√

1 − k2/�
2

.

(14)

Figure 3 shows the localization of the stationary points in the
Poincaré sphere.

From Eq. (14), one can deduce that the polarization
eigenstates P and P ′ exist for any value of the parameters.
This is not the case for the solutions Q and Q′, which exist
only if k � �. Solutions P and P ′ physically correspond to the
polarization eigenstates of the fiber with linear birefringence:
P is the eigenmode associated with the linear polarization
parallel to the slow axis, while P ′ corresponds to the fast axis
polarization eigenmode. An incident polarization parallel to
one of the eigenaxis of the fiber remains in the same state
because the linear anisotropy does not modify it, and as a
consequence, it does not undergo nonlinear effects because the
surface of the polarization ellipse remains equal to zero. The
solutions Q and Q′ correspond to the polarization eigenstates
of the fiber in the presence of the optical Kerr effect. These
eigenstates are elliptic polarizations with the same azimuth
but opposite ellipticity (note that they are not orthogonal
polarizations since their representations in the Poincaré sphere
are not two diametrically opposite points). The fact that these

2S

3S

P

FIG. 4. (Color online) Trajectory around the stationary point P .

solutions exist only for k � � demonstrates that if the linear
anisotropy is greater than the nonlinear anisotropy, then the
natural polarization eigenmodes are not modified, and one can
expect that the efficiency of mode locking will be considerably
changed. If we recall that the nonlinear anisotropy � depends
on the intensity I , and previous situation occurs below some
value of the intensity, there is a threshold for the emergence
of new intensity-dependent polarization eigenstates. The latter
take place for I > 3k/q.

2. Movement in the vicinity of P

To investigate the evolution of �S around the stationary point
P , we assume that S1 ≈ 1 and |S2|,|S3| 	 1. Equations (8)
reduce to

dS2

dz
= −2(k + �)S3,

(15)
dS3

dz
= 2kS2.

System (15) has a periodic solution with a rotation frequency
�P = 2

√
k(k + �). Therefore the point representative of the

polarization state has a left-handed periodic movement around
P , as illustrated in Fig. 4. The trajectories of the movement
are given by S2

2/(k + �) + S2
3/k = const, which are ellipses.

The ratio of the semimajor axis of the ellipse (S2 direction) to
the semiminor one (S3 direction) is equal to

√
1 + �/k.

3. Movement in the vicinity of P′

In this case, we assume that S1 ≈ −1 and |S2|,|S3| 	 1.
Equations (8) reduce to

dS2

dz
= −2(k − �)S3,

(16)
dS3

dz
= 2kS2.

The eigenvalues of the associated matrix are λ =
±2i

√
k(k − �). We have thus to consider two different cases.

If k > �, the eigenvalues are imaginary and there is a periodic
movement around P ′ at the frequency �P ′ = 2

√
k(k − �).

The trajectories are ellipses. The ratio of the semiminor axis
of the ellipse (S2 direction) to the semimajor one (S3 direction)
is equal to

√
1 − �/k. Otherwise, if k � �, the eigenvalues

are real, and the point P ′ can be attractive, repulsive, or both.
The nature of the stationary point is determined with the sign
of the derivatives. If (S2 > 0,S3 > 0) or (S2 < 0,S3 < 0),P ′ is
repulsive, while if (S2 < 0,S3 > 0) or (S2 > 0,S3 < 0),P ′ is
attractive. P ′ is therefore a saddle point, as evidenced in [24].
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FIG. 5. (Color online) Trajectories around the stationary point P ′.
(a) Elliptic motion when k > �. (b) Hyperbolic motion when k � �.
The dashed lines are the asymptotes.

Trajectories can be easily calculated from Eq. (16). They can
be put in the form

S2
2

� − k
− S2

3

k
= const. (17)

Trajectories are therefore hyperbolas with oblique asymptotes.
The equations of the asymptotes are S3 = ±√

k/(� − k)S2,
and they cross at the saddle point. The trajectories in both
cases, k > � and k � �, are illustrated in Fig. 5.

4. Movement in the vicinity of Q

Solution Q is restricted to the case k � �. We consider
small variations around the solution Q: δ �S = �S − �SQ, where
�SQ is the vector associated with the stationary solution Q.
Assuming that ‖δ �S‖ 	 1, Eqs. (8) can be rewritten in the
form

dδS1

dz
= 2�S3QδS2,

dδS2

dz
= −2�S3QδS1, (18)

dδS3

dz
= 2kδS2,

where S3Q =
√

1 − k2/�2. The eigenvalues of the associated
matrix are λ1,2 = ±2i�S3Q,λ3 = 0. This means that there
is a periodic movement around Q at the frequency �Q =
2
√

�2 − k2. From the first and second Eqs. (18), one can see
that the projection of the closed movement trajectory into the
plane (S1,S2) is a circle. That means that the corresponding
trajectory on the Poincaré sphere is an ellipse. The minor axis
of the ellipse is along the S2 axis, and the major one lies in the
plane (S1,S3). The ratio of the former to the latter is equal to√

1 − k2/�2. The point representative of the polarization state
has a right-handed periodic movement around Q.

5. Movement in the vicinity of Q′

The analysis is analogous to that performed in the case
of the fixed point Q. Results are analogous in both cases Q′
and Q. The point representative of the polarization state has
a right-handed elliptical movement around Q′. The rotation
frequency is �Q′ = 2

√
�2 − k2. The ratio between the lengths

of the principal axis of the ellipse is equal to
√

1 − k2/�2.
These results are obvious if we keep in mind the invariance
of Eqs. (8) under the transformation S3 → −S3,z → −z. As a
consequence of this invariance, the trajectories on the Poincaré

sphere are symmetrical with respect to the plane S3 = 0. There
exists also the equivalent symmetry for trajectories pictured
with respect to the plane S2 = 0.

IV. MECHANICAL ANALOGY

A. Basic equations

Following the suggestion of Winful [24], we fully develop
the mechanical analogy existing between the polarization
evolution in the Poincaré sphere and a particle moving in a
potential well. Substituting S2 from the third Eq. (8) into the
first one, we obtain the conservation of the quantity:

J = kS1 − �
S2

3

2
= const. (19)

From the second and third Eqs. (8), one can write the following
equation:

d2S3

dz2
= −4k(k + �S1)S3. (20)

Using Eq. (19), we can rewrite Eq. (20) in the form

d2S3

dz2
= [−4(J� + k2) − 2�2S2

3

]
S3 = −dU (S3)

dS3
. (21)

This equation coincides with the equation describing the
movement of a particle of unit mass in a potential well
U = U (S3) (S3 plays the role of the coordinate variable and z

of the temporal variable), where

U (S3) = 2(J� + k2)S2
3 + �2

2
S4

3 . (22)

The form of the potential well U (S3) depends on both the
initial coordinate and the velocity of the particle (on initial
area of the polarization ellipse and its orientation) because
these parameters determine the conserved value J in Eq. (22).
Equation (21) describes the evolution of the S3 component
of a point moving on the unit sphere shown in Fig. 1. For
the particle moving in the potential well U (S3), it leads to
the conservation of the total energy W , including kinetic and
potential parts:

W = 1

2

(
dS3

dz

)2

+ U (S3)

= 1

2

(
dS3

dz

)2

+ 2(J� + k2)S2
3 + �2

2
S4

3 = const. (23)

The value of the total energy W determines the trajectory
(trajectories around the fixed points Q,Q′ or P,P ′).

Thus the evolution of the polarization ellipse during the
propagation of radiation in a nonlinear anisotropic fiber is
similar to the evolution dynamics of a particle moving in a
potential well. This analogy enables a simple way to describe
conditions for a realization of various regimes of a polarization
evolution through an initial state of radiation. An equation for
S1, analogous to Eq. (21), can also be obtained:

d2S1

dz2
= 4k(� + 4J ) − 8(2k2 − �J )S1 − 12�kS2

1 . (24)
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FIG. 6. (Color online) Potential associated with the evolution of
the S3 component of the polarization state during the propagation
along the fiber. (a) The initial conditions are such that J < −k2/�.
Depending on the total energy, the trajectory in the Poincaré sphere
is periodic around stationary points Q,Q′ or P,P ′. A, B, C, D, E,
F, and P ′ are turning points. (b) The initial conditions are such that
J � −k2/�. The total energy is positive, and the trajectories in the
Poincaré sphere are periodic around point P,P ′.

B. Analysis of the evolution of the polarization on the basis
of mechanical analogy

1. General properties of the evolution

Depending on the initial conditions, and then on the value
of J , there are two distinct potential forms U (S3). Indeed, if
J < −k2/� (case a), the potential has two minima and one
maximum, while if J � −k2/� (case b), the potential U (S3)
exhibits only one minimum. The two situations are depicted
in Fig. 6. It can be easily checked that if k < �, both potential
curves can be obtained depending on initial conditions, while
if k � �, only the potential with one minimum occurs.
The minima (maxima) correspond to the stable (unstable)
stationary points in the Poincaré sphere.

Let us first consider case a, where J < −k2/�. There exist
several families of solutions depending on the total energy
W . If W < 0, the trajectories are periodic around the points
Q or Q′ [(Q,Q′) family of solutions]. For these trajectories,
the sign of S3 is conserved. That means that the sign of the
ellipticity is conserved, that is, the sense of rotation of the
electric field remains the same during the propagation along
the fiber (the polarization ellipse rotates in a monotonic way,
while the ellipticity varies). If W > 0, the trajectories are peri-
odic above a potential barrier [(P,P ′) family of solutions]. The
sign of S3 is periodically changed. As a consequence, and in
contrast with the case W < 0, the polarization ellipse oscillates
around the slow or the fast axis, depending on the initial
conditions. The maximum located at S3 = 0 corresponds to
the stationary saddle point P ′. The case W = 0 corresponds
to the boundary (or separatrix) between the (Q,Q′) family
and the (P,P ′) family. These two families are delimited by the
asymptotes in the Poincaré sphere [see Fig. 5(b)].

Case b, where J � −k2/�, occurs always if k � �. In this
case, the energy is always positive, and the trajectories are
periodic around points P or P ′ [(P,P ′) family]. Let us now
determine the conditions for the realization of various types of
polarization evolution. First of all, it is necessary to note that
in turning points A, B, C, P ′, D, E, and F in Fig. 6, the velocity
dS3/dz = 0, and from the last relation of Eqs. (8), we obtain

S2 = 0, that is, ϕ = ±π/2 in Eq. (5). This means that in these
points, the principal axis of the polarization ellipse coincides
with the eigenaxis of the fiber [Eq. (7) implies that the azimuth
is ψ = 0 or ψ = π/2]. Thus any periodic evolution of the
polarization ellipse can be obtained if an initial ellipse is taken
with such orientation. The corresponding initial point z is then
a turning point. In a turning point, the polarization ellipse is
then fully characterized by the value S1, which determines
the ellipticity, and by the sign of S3, which determines if the
polarization is left handed or right handed. Each trajectory has
two turning points, as shown in Fig. 6. The relation between
parameters of the ellipses S1 in two turning points �1 and �2

can be found from Eq. (19):

J = kS1�2 − �
S2

3�2

2
= kS1�1 − �

S2
3�1

2
. (25)

Depending on the family of solutions, the turning points �1 and
�2 will be A and B or E and F. Taking into account the relation
S2

1�1,�2
+ S2

3�1,�2
= 1, the quadratic algebraic equation (25)

admits two solutions:

S1�2 =
⎧⎨
⎩

S1�1,

−2
k

�
− S1�1.

(26)

Equations (26) determine the characteristics of the polarization
ellipse in the second turning point through its properties in the
first turning point.

2. Polarization evolution for the ( Q, Q′) family of solutions

The rotating solution is illustrated in Fig. 7, which shows
the evolution of the polarization state along the fiber. The
spatial period LB is the beat length. In the case where
−2k/� − S1A > −1, the ellipse with parameter S1A in the first
turning point transforms into the ellipse with parameter S1B =
−2k/� − S1A in the second turning point. In turning point B
(Fig. 6), S3 is minimum, and S3 = S3 min and corresponds to the
greater magnitude from S1�1 or S1�2 [see Eq. (26)]. The state
with S3 = S3 max (point A in Fig. 6) corresponds the smaller
one. Thus the condition for the realization of the rotating
solution (S3 never vanishes; S3 �= 0) can be rewritten in the
form

2
k

�
+ S1A < 1. (27)

BL

B

A

B

z

FIG. 7. (Color online) Evolution of the polarization state for the
rotating solution. A and B are the turning points and LB is the beat
length.
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The solution with S = S3 min = S3 max (the bottoms of the
potential well in Fig. 6 and the pole points Q,Q′ in the unit
sphere) is realized with S1A = −k/�. In this case,
the polarization ellipse is stationary and does not rotate [see
Eqs. (8) with S2 = 0].

In the case of a weak linear anisotropy k 	 �, we obtain
from Eq. (26) S1B ≈ −S1A. This means that the polarization
ellipses are placed orthogonally relative to each other in the
turning points (i.e., x and y have changed their roles: the
semiminor axis of one coincides with the semimajor axis
of the other). Equation (25) gives S3 max ≈ S3 min. The fre-
quency of the ellipse rotation resulting from Eqs. (8) with
k = 0 coincides with the frequency of the change of the area
S3 in the vicinity of the bottom of the well, which is obtained
from Eq. (21): �osc = 2�S3 max.

At the boundary S1A = 1 − 2k/�, we get S1B = −1,

S3 min = 0. This solution corresponds to the boundary (DC)
which separates rotating solutions [(Q,Q′) family] from
oscillating solutions [(P,P ′) family].

From Eq. (23), and after some cumbersome algebra,
we obtain the expression for a total spatial period of one
oscillation, which corresponds to the beat length

LB = 2

�

∫ S3 max

S3 min

dS3√(
S2

3 max − S2
3

)(
S2

3 − S2
3 min

)
= 2

�S3 max
K(κ), (28)

where K(κ) = ∫ π/2
0 (dϕ/

√
1 − κ2 sin2 ϕ) is the complete el-

liptic integral of a first kind and κ2 = (S2
3 max − S2

3 min)/S2
3 max.

The period of oscillation in the vicinity of the polar points
Q,Q′ is LB0 = π/

√
�2 − k2 = 2π/�Q,Q′ . Indeed, near Q or

Q′,S3 max ≈ S3 min ≈
√

1 − (κ/�)2,κ ≈ 0, and K(0) = π/2.
For a solution in the vicinity of the boundary between
the two families of solutions, S3 min → 0,κ → 1,K → ∞,
and the beat length diverges: LB → ∞. Assuming S3 max ≈
S3Q =

√
1 − (κ/�)2 in the denominator of Eq. (26), we

obtain an approximate expression for the beat length, LB ≈
2K(κ)/

√
�2 − k2, which is a useful expression to study the

influence of κ . Results are given in Fig. 8, which points out
that the beat length increases while the trajectory approaches
the separatrix.

3. Polarization evolution for the (P,P ′) family of solutions

With breakdown of Eq. (27), oscillating solutions are
realized. These solutions are the (P,P ′) solutions and are
illustrated in Fig. 9, which shows the evolution of the
polarization state along the fiber. An example of evolution
in the (S2,S3) plane is given in Fig. 10(a), together with the
notation used for the relevant points. (P,P ′) solutions are
realized when W > 0 and the turning points are E and F [see
Figs. 6 and 10(a)]. In this case, Eq. (26) gives S1F = S1E ,
but S3F = −S3E . All solutions of such kind can be obtained
from a starting initial point G in the Poincaré sphere such that
S3G = 0 and with a variable parameter S1G. That means that
the initial polarization is taken in the equatorial plane (see
Fig. 3) and is then a linear polarization. The azimuth of the
initial polarization is equal to ψG (S1G = cos 2ψG).

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

separatrix

Q

L
B
 / 

L
B

0

κ

FIG. 8. (Color online) Approximate evolution of the beat length
for the (Q,Q′) family of solutions as a function of κ .

Let us now determine the state of polarization in relevant
points of the trajectory. After a quarter period of the total
oscillation the polarization area, S3 becomes maximal S3 max

[the turning point is E, as illustrated in Fig. 10(a), and the
principal axes of the polarization ellipse are aligned with the
eigenaxes of the fiber (x and y)]. From Eq. (19), we obtain

J = kS1G = kS1E − �
S2

3E, max

2
. (29)

With the help of the relation S2
1E + S2

3E, max = 1, Eq. (29) yields
the angle of the ellipticity χE :

S1E = cos 2χE = − k

�
+

√(
k

�

)2

+ 2

(
k

�

)
cos 2
G + 1.

(30)

After a half period [point H in Fig. 10(a)], the field has
again a linear polarization S3H = 0. The polarization direction
is determined by the azimuth ψH = −ψG if ψG < π/4 and by
the angle ψH = π − ψG if ψG > π/4. After a three-quarter
period, the area reaches the minimal size S3 min = −S3 max,
which corresponds to the second turning point F. In this point,
the polarization ellipse is the same as that of point E, except that
the sense of rotation has changed because the ellipticity angle
becomes the opposite of that of point E. After a total period,
the polarization comes back to the initial linear state with the

BL

z

FIG. 9. (Color online) Evolution of the polarization state for the
oscillating solution.
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2S

3S
)b()a(

G P′

E

H

F

x

y

Gψ

Gψ−

G

H

F,E

Q

Q′

FIG. 10. (Color online) (a) Example of evolution around the
point P ′ with points of interest. (b) Electric field polarization in the
x-y plane corresponding to the relevant points G (linear polarization),
E (right-handed elliptic polarization), H (linear polarization), and F
(left-handed elliptic polarization).

angle ψ = ψG. Thus the semimajor axis of the polarization
ellipse oscillates around the x axis between the ψG and −ψG

directions if ψG < π/4 [see Fig. 10(b)] or around the y axis
between the ψG and π − ψG directions if ψG > π/4. In the
turning points, the polarization ellipse is aligned along the
eigenaxis of the fiber.

The conservation of the energy in the mechanical analogy
takes the form

2(J� + k2)S2
3 + �2

2
S4

3 + 1

2

(
dS3

dz

)2

= 1

2

(
dS3

dz

∣∣∣∣
G

)2

,

(31)

with J = kS1G = k cos 2ψG and dS3/dz|G = 2kS2G = 2k sin
2ψG. From Eq. (31), we obtain the expression for the spatial
period of an oscillation (beat length):

LB = 4

�

√
S2

3 max + ∣∣S2
3n

∣∣K(κ), (32)

where κ2 = S2
3 max/(S2

3 max + S2
3n) and the values S2

3 max and
S2

3n are the positive and negative roots of a square algebraic
equation for S2

3 , respectively, which is obtained from Eq. (31):

(
S2

3

)2 + 4

(
k

�

) [
cos 2ψG +

(
k

�

)]
S2

3

−4

(
k

�

)2

sin 2ψG = 0, (33)

S2
3 max ,3n = −2

(
k

�

) ⎡
⎣ cos 2ψG +

(
k

�

)

∓
√

1 + 2

(
k

�

)
cos 2ψG +

(
k

�

)2
⎤
⎦ . (34)

In the case of a movement in the vicinity of the polar point P ,
we obtain S3 max → 0,S2

3n → −4(k/�)(1 + k/�),κ → 0, and
LB ≈ π/

√
k(k + �) = 2π/�P . In the case of a movement

in the vicinity of the saddle point P ′(k < �), we obtain
S2

3 max ≈ 4(k/�)(1 − k/�),S2
3n → 0,κ → 1,K → ∞, and

the beat length diverges as LB → ∞. Finally, for a movement

(a) (b)

(c)

FIG. 11. (Color online) Evolution of the state of polarization
in the Poincaré sphere. (a) Evolution around P when k > �.
(b) Evolution around P ′ when k > �. (c) Case where k < �. The
double-loop curve is the boundary between Q-Q′ solutions and
P -P ′ solutions.

in the vicinity of the polar point P ′(k > �), we obtain S2
3 max →

0,S2
3n ≈ −4(k/�)(k/� − 1),κ → 0,K → π/2, and the

period LB ≈ π/
√

k(k − �) = 2π/�P ′ .

C. Numerical solutions in the Poincaré sphere

For sake of completeness, we give numerical solutions
of Eqs. (8). The different evolutions are represented in the
Poincaré sphere and are shown in Fig. 11. As was predicted
in Sec. III, the movement is very close to elliptic motion in
the case where k > �. This is demonstrated in Figs. 11(a) and
11(b), which give the solutions around stationary points P and
P ′. In the case where k < �, the results are shown in Fig. 11(c):
If the initial conditions are such that the total energy is negative,
the movement is periodic around points Q or Q′, while if the
initial conditions are taken in order to obtain a positive total
energy W, the evolution is periodic around Q and Q′. The
double-loop curve with a crossing at point P ′ corresponds to
the separatrix between the two families of solutions. It is re-
markable to note that similar trajectories in the Poincaré sphere
were obtained in a very different problem, which concerned
a nonlinear coupler [27]. In that case, the intensity-dependent
fixed points were located in the equatorial plane because no
photo-induced circular birefringence was taken into account.

V. EXACT SOLUTIONS

A. Properties of Jacobian functions

Equations (28) and (32), giving the period of oscillation,
suggest that the evolution of the Stokes parameters (S1,S2,S3)
can be expressed through Jacobi’s functions. Before pro-
ceeding, we briefly describe the basic properties of these
functions [28]. The Jacobi’s functions are determined through
an incomplete elliptic integral of the first kind, u(ϕ,κ) =∫ ϕ

0 dϕ/
√

1 − κ2 sin2 ϕ, where ϕ and κ are the amplitude
and the modulus of u, respectively (κ2 < 1). The amplitude
is generally written as ϕ = am u. We now define the sine
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amplitude sn u = sin ϕ, the cosine amplitude cn u = cos ϕ,
and the delta amplitude dn u =

√
1 − κ2 sin2 ϕ = dϕ/du. The

functions sn u, cn u, and dn u are the Jacobi’s functions. They
verify the relations sn2u + cn2u = 1,dn2u + κ2sn2u = 1,

sn 0 = 0, cn 0 = 1, and dn 0 = 1. The Jacobi’s functions
verify the following differential equations:

d

du
sn u = cn u dn u,

d

du
cn u = −sn u dn u, (35)

d

du
dn u = −κ2sn u cn u.

The oscillation period for sn u and cn u is T = 4K(κ),
where K(κ) = u(π/2,κ) = ∫ π/2

0 dϕ/
√

1 − κ2 sin2 ϕ. There
are the useful following relations sn(u + K) =
cn u/dn u,cn(u + K) = −√

1 − κ2sn u/dn u, and dn(u+
K) = √

1 − κ2/dn u.
In the particular case κ → 0, the solutions simplify in

sn u → sin u, cn u → cos u, and dn u → 1. Another case
of interest is when κ → 1, for which sn u → tanh u and
cn u = dn u → 1/cosh u.

B. (P,P ′) solutions (oscillating solutions)

Solutions of Eqs. (8) are chosen in the form

S1 = A sn2u + D,

S2 = B sn u dn u, (36)

S3 = C cn u,

where u = �J z. This solution corresponds to the initial
conditions in the Poincaré sphere �S(0) = (D,0,C)t = (D,0, ±√

1 − D2)t . Substituting Eq. (36) into Eqs. (8) and using
Eqs. (35), we obtain a set of algebraic equations

A�J = BC�, B�J = −2C(k + �D),
(37)

B�J κ2 = AC�, C�J = −2kB.

In addition, the normalization of �S gives

‖�S‖2 = D2 + C2 = 1. (38)

From Eqs. (37) and (38), we get the five parameters A,B,C,D,
and �J through κ:

D = −2κ2 k

�
±

√
1 − 4κ2(1 − κ2)

(
k

�

)2

, (39)

A = −2κ2

(
k

�
+ D

)
, (40)

B2 = A2/κ2, (41)

C2 = −2
k

�
A, (42)

�2
J = 4k�

(
k

�
+ D

)
. (43)

Equation (43) yields the condition D + k/� > 0. The
parameter D determines the initial point on the Poincaré
sphere in the plane S2 = 0, and then from Eq. (39), we can
determine κ as a function of the initial point D = S1(0). The

other parameters A,B,C, and �J are then completely fixed
with the initial condition S1(0). When κ changes from 0 to
1, the resulting S1(0) value changes from 1 to 1 − 2k/�

(the former value corresponds to the point P , while the latter
one is exactly the magnitude of S1 at the boundary between
the two families of solutions in the plan S2 = 0) in the case
where k < �. If k > �, then when S1(0) changes from 1 to
−1, the magnitude of κ varies from 0 to κmax and after that
decreases to 0 according to the dependence

κ2 = 1 − D2

4(k/�)(D + k/�)
. (44)

Let us now consider some limit and useful cases. First
of all, we look for approximate solutions in the vicinity
of the boundary between the two families of solutions. In
this case, (1 − κ2) 	 1 and D ≈ 1 − 2k/�. As previously,
this solution exists if k < � because of the condition
D + k/� > 0. The other parameters can be easily found: A ≈
−2(1 − k/�),B ≈ ∓2(1 − k/�),C2 ≈ 4(k/�)(1 − k/�),
and �2

J ≈ 4k(� − k). Thus Eqs. (36) simplify to

S1 ≈ D + A tanh2 �J z,

S2 ≈ B
sinh �J z

cosh2 �J z
, (45)

S3 ≈ C

cosh �J z
.

For the movement in the vicinity of P or P ′, we have κ2 	
1. With k < �, only the plus sign is suitable in Eq. (39). In
this case, D ≈ 1 − 2κ2(k/�)(1+k/�),A ≈ −2κ2(1+k/�),
B ≈ ±2κ(1 + k/�),C ≈ ±2κ

√
(k/�)(1 + k/�), and �J ≈

2
√

k(� + k). The previous set of parameters is also valid for
k > � and corresponds to a movement around the point P .
The solution with the negative sign in Eq. (39) is valid only
for k > �. The corresponding values for the parameters
are D ≈ −1 + 2κ2(k/�)(k/� − 1),A ≈ −2κ2(k/� − 1),
B ≈ ±2κ(k/� − 1),C ≈ ±2κ

√
(k/�)(k/� − 1), and �J ≈

2
√

k(k − �). This case corresponds to a movement around
the point P ′ and is valid in the case k > �. In both cases, we
may use sn u ≈ sin �J z,cn u ≈ cos �J z,dn u ≈ 1, and the
following approximate solutions can be used:

S1 ≈ A sin2 �J z + D,

S2 ≈ B sin �J z, (46)

S3 ≈ C cos �J z.

The last case of interest that we consider is with large
natural anisotropy k/� � 1. In this case, from Eq. (39), we get
κ2 	 1. The parameters become D ≈ ±

√
1 − 4κ2(k/�)2,

A ≈ −2κ2(k/�), B ≈ ±2κ(k/�), C ≈ ±2κ(k/�), and
�J ≈ 2

√
k(k − �D). We may use sn u ≈ sin �J z, cn u ≈

cos �J z, dn u ≈ 1. The value of κ changes in the range
0 � κ � �/(2k).

C. ( Q, Q′) solutions (rotating solutions)

Solutions of Eqs. (8) are chosen in the form

S1 = Asn2u + D,

S2 = Bsn u cn u, (47)

S3 = Cdn u,
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where u = �J z. This solution corresponds to the initial
conditions in the Poincaré sphere �S(0) = (D,0,C) = (D,0, ±√

1 − D2). This solution exists only if k/� < 1.
Following the same treatment as in the previous section, we

obtain a set of algebraic equations

A�J = BC�, B�J = −2C(k + �D),
(48)

B�J = AC�, C�J κ2 = −2kB.

The normalization of �S also holds, leading to D2 + C2 = 1.
The parameters A,B,C,D, and �J can be written as a function
of κ:

D = −2
1

κ2

k

�
±

√
1 + 4

1

κ2

(
1

κ2
− 1

)(
k

�

)2

, (49)

A = −2

(
k

�
+ D

)
, (50)

B2 = A2, (51)

C2 = −2
1

κ2

k

�
A, (52)

�2
J = 4k�

κ2

(
k

�
+ D

)
. (53)

Equation (53) yields the condition D + k/� > 0. Finally,
Eq. (49) can be written in the form

κ2 = 4(k/�)(D + k/�)

1 − D2
. (54)

As in the last paragraph, D is related to the initial point in
the Poincaré sphere, and then it is possible to link A,B,C,κ ,
and �J to the initial value S1(0). When κ changes from 1
to 0, S1(0) = D varies monotonously from (1 − 2k/�) (the
magnitude of S1 at the boundary between the two families of
solutions in the plan S2 = 0) to (−k/�) (the magnitude of S1 at
the fixed points Q or Q′). To obtain the solutions for an initial
point such that −1 < S1(0) < −k/�, it is necessary to change
in the solution (47) the value u to u + T/2, where T = 2K(κ)
is the spatial period (i.e., the beat length). Taking into account
the properties of the Jacobi’s functions given earlier, we obtain
the solution

S1 = A
cn2u

dn2u
+ D,

S2 = −B
√

1 − κ2
sn u cn u

dn2u
, (55)

S3 = C
√

1 − κ2
1

dn u
.

From the first Eq. (55), we obtain the relation between S1(0)
and D for initial conditions in the plan S2 = 0 in the case
−1 < S1(0) < −k/�:

S1(0) = A + D = −
(

2
k

�
+ D

)
. (56)

We can easily check that when D changes from −k/� to
1 − 2k/�, the parameter κ varies from 0 to 1 and the initial
value S1(0) varies from −k/� (fixed point Q or Q′) to −1
(fixed point P ′). From Eq. (52), we get C = ±

√
2|A|k/(κ2�).

The positive (negative) sign corresponds to a movement
around Q (Q′).

Let us now consider some special cases of interest. We start
with the movement in the vicinity of the boundary between the
two families of solutions. In this case, (1 − κ2) 	 1, and the
parameters become D ≈ 1 − 2k/�,A ≈ −2(1 − k/�),B ≈
±2(1 − k/�),C ≈ ±2

√
(k/�)(1 − k/�), and �2

J ≈
4k(� − k). Finally, as one could expect, the approximate
solutions take the same form as Eqs. (45).

For a movement in the vicinity of stationary points
Q or Q′, we have κ2 	 1(k �= 0), and the parameters
simplify into D ≈ −k/� + (κ2/4)(�/k − k/�),A ≈
−(κ2/2)(�/k − k/�),B = ±A,C ≈ ±

√
1 − (k/�)2, and

�J ≈ √
�2 − k2. The approximate solutions are written

S1 ≈ k

�
− A

2
cos 2�J z,

S2 ≈ ±A

2
sin 2�J z, (57)

S3 ≈ ±
√

1 −
(

k

�

)2

.

The last case of interest concerns an isotropic fiber.
In this case, k → 0,κ → 0, and the parameters become
A = −2D,B = ±A,C = ±√

1 − D2, and �J = |C|�. The
solution becomes a simple rotation around the poles Q

and Q′:

S1 = D cos 2�J z,

S2 = ±D sin 2�J z, (58)

S3 = ∓
√

1 − D2.

VI. NONLINEAR LOSSES

A. Derivation of the nonlinear transmission

The nonlinear evolution of the polarization along a fiber
is commonly used to realize intensity-dependent losses in
passively mode locked fiber lasers. It is therefore of great
importance to determine optimal conditions leading to efficient
modulation of the losses. In the ideal case are a vanishing
transmission for low intensity (very high losses), a high
transmission for high intensity (low losses), and a moderate
switching power. The first property can be easily realized
by considering a fiber length � such that k� = π placed
between two crossed polarizers. The transmission is null in
the absence of nonlinear effects. In fact, the first condition
is realized each time k� is an integer multiple of π . Our
choice k� = π is equivalent to considering a low-birefringent
fiber, which is the case in the majority of experimental
situations [11,29]. The realization of the second property will
be achieved with a suitable orientation of the linear input
polarization state. In the following, we consider therefore that
the passing axis of the input polarizer is oriented along a
direction doing an angle θ with the slow axis of the fiber.
The output polarizer is therefore oriented along a direction
with an angle α = θ + π/2. Although the Poincaré sphere
is very convenient to study the evolution of the polarization
state, it is not useful to describe the action of a polarizer
because it is not merely a projection onto a vector in the
equatorial plane. To simulate the action of a polarizer, we need
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to use the Mueller matrices and the Stokes vectors. The Stokes
vector �S is just a four-component vector built with the Stokes
parameters defined in Eqs. (5). In such a formalism, the action
of an optical component is modeled through a 4 × 4 matrix
named the Mueller matrix. The Mueller matrix associated with
a polarizer aligned with an angle α with Ox is written [30] as
follows:

M(α) = 1

2

⎛
⎜⎜⎜⎝

1 cos 2α sin 2α 0

cos 2α cos2 α cos 2α sin 2α 0

sin 2α cos 2α sin 2α sin2 α 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

(59)

The Stokes vector just after the input polarizer is

�S(0) =

⎛
⎜⎜⎜⎝

1

cos 2θ

sin 2θ

0

⎞
⎟⎟⎟⎠ . (60)

The first component represents the intensity and is equal to
unity, meaning that we are dealing with normalized quantities.
The Stokes vector �S(�) = [1,S1(�),S2(�),S3(�)]t at the exit
of the fiber is numerically calculated from Eqs. (8) because
analytic solutions are not very useful for such calculations. Of
course, the first component remains equal to unity because the
fiber is considered lossless. Finally, the Stokes vector after the
output polarizer is calculated by

�St = M(α) · �S(�). (61)

The component of interest is only the first one, which
represents the transmitted intensity. In addition, because we
have taken a normalized input intensity, the first component
directly gives the transmission of the system:

T = 1
2 [1 + S1(�) cos 2α + S2(�) sin 2α]. (62)

The transmission T depends on the intensity (through the
parameter �) and also on the orientation θ of the input
polarizer. For the numerical simulations will be used k = π

and � = 1, except when other values are specified.

B. Optimization of the nonlinear transmission

We consider the evolution of the nonlinear transmission
as a function of the input intensity or, more conveniently,
as a function of the pumping parameter �. First of all, we
can note that for θ = 0◦ or θ = 90◦, the transmission is null
for any input power because the associated polarizations are
eigenstates of the medium. The results are given in Fig. 12
for increasing values of the orientation angle of the input
polarizer θ .

Results show that while θ increases from about 10◦ to 45◦,
the maximum transmission increases to reach unity for 45◦.
At the same time, the switching power, that is, the power
needed to switch from 0 to the first maximum transmission,
increases reasonably. We have checked that in the range
0◦–45◦, the trajectories in the Poincaré sphere remain far from
the instability point P ′. For θ > 45◦, the nature of the evolution
changes because the maxima are no longer equivalent since
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FIG. 12. (Color online) Evolution of the nonlinear transmission
as a function of � for increasing values of the input polarization
angle θ .

their amplitude strongly varies, the first being significantly
lower than the second, thus rending the nonlinear switching
less efficient than in the case θ < 45◦, where all maxima are
equivalent. In addition, when the input polarization approaches
the unstable fast axis, the resulting nonlinear transmission
becomes very sensitive to the exact value of θ , as pointed
out in [24]. The repulsive behavior of P ′ is clearly evidenced
in Fig. 13, which gives the evolution of the polarization state
at the exit of the fiber in the Poincaré sphere for θ = 89◦ and
for increasing values of the pump parameter �. Indeed, as was
pointed out in the stability analysis, the representative point is
first attracted by P ′ then is ejected far from P ′.

FIG. 13. (Color online) Evolution of the polarization state at the
exit of the fiber in the Poincaré sphere as a function of � for an
incident polarization close to the unstable fast axis, θ = 89◦
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FIG. 14. (Color online) Evolution of the nonlinear transmission
as a function of θ for increasing values of �.

Additional physical insight is obtained with the evolution
of the transmission as a function of the incident polarization
angle θ . Results are given in Fig. 14 for different values of �.
In the case � = 1(� < k), the transmission undergoes low-
amplitude variations, meaning that if the linear birefringence
is greater than the nonlinear birefringence, the resulting non-
linear losses are not adapted for mode-locking applications.
On the other hand, when � > k, the nonlinear transmission
is well contrasted, leading to potential efficient mode locking.
In the range θ ∈ [30◦,60◦], the transmission exhibits a high
maximum for a wide range of �, thus resulting in behavior
compatible with mode-locking applications. Figure 14 also
shows that the transmission suffers from a strong sensibility
to the input polarization angle when approaching the unstable
axis (except when � < k, for which the fast axis is stable). Of
course, such a situation is far to be desired for mode-locking
applications.

The last parameter of great practical interest is the switching
power defined previously. Because of the increasing sensibility
of the nonlinear transmission for incident orientation beyond
45◦, we restrict the range of variation of θ to [0,π/4]. Figure 15
gives the evolution of the switching pump parameter �switch as
a function of the incident polarization angle θ . For moderate
linear birefringence k� = π , the switching power increases
very slowly. It varies by a factor less than 2 when θ increases
from 0◦ to 45◦. On the other hand, for high birefringence
fibers, the switching power increases considerably, leading to
a great penalty when operating near θ = 45◦. This result is in
agreement with the results reported in [23].

In summary, our results demonstrate that the optimal
operating conditions for efficient nonlinear transmission,
compatible with mode-locking applications, are a nonlinear
birefringence greater than the natural birefringence and a
linear input polarization oriented at about 45◦ from the slow
axis of the fiber, although the switching power is slightly
greater in comparison to the case θ = 0. The modeling of the
mode-locking properties in such conditions is left for further
studies.

C. General case

In the last section, we considered a fiber placed between
two crossed polarizers. A real experiment consists in a
unidirectional ring cavity with a polarizer placed between
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FIG. 15. (Color online) Evolution of the switching power param-
eter as a function of the incident polarization angle.

two polarization controllers, as depicted in Fig. 16. The
controller is generally composed of a set of half-wave and
quarter-wave plates. After the polarizer, all the intensities
have a well-defined linear polarization state parallel to the
passing axis of the polarizer oriented with a direction making
an angle α with Ox; the corresponding three-component Stokes
vector is �S+. At the entrance of the fiber, all the intensities
have the same Stokes vector �S(0) and are represented by
a unique point in the Poincaré sphere. At the exit of the
fiber, the optical Kerr effect leads to different polarization
states for low and high intensities. We must therefore con-
sider different representative points in the Poincaré sphere.
The corresponding Stokes vectors are �Shigh(�) and �Slow(�) for
high and low intensity, respectively. Finally, just before the
polarizer, the Stokes vectors are �S−

high and �S−
low for high and

low intensity, respectively. Efficient mode locking requires
high transmission for high intensities. The optimal value
Thigh = 1 is achieved if �S−

high = (cos 2α, sin 2α,0)t , that is,
if the polarization incident on the polarizer is parallel to its
passing axis. Let us assume that the polarization controller 1
is adjusted in such a way that Thigh = 1. The low transmission
value associated with low intensity is

Tlow = 1
2 [1 + S−

low,1 cos 2α + S−
low,2 sin 2α]. (63)

This can be written in the condensed form

Tlow = 1
2 [1 + �S−

high · �S−
low]. (64)

The phase plates are mathematically modeled through unitary
transformations [31]. That means that a set of any phase
plates conserves the angle between Stokes vectors for two in-
cident polarizations. As a consequence, we have �S−

high · �S−
low =

�Shigh(�) · �Slow(�). The low value of the transmission vanishes if
�Shigh(�) · �Slow(�) = −1. Hence the maximum difference in the
transmission is reached when the two representative points of
the polarization states associated with low and high intensity
are located on the opposite ends of any diameter of the Poincaré
sphere. Under such circumstances, we have Thigh = 1 and
Tlow = 0.

This property allows us to optimize the nonlinear losses. For
example, let the natural birefringence be large, k � �. If the
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Polarization
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Polarization
Controller 2

−S +S )0(S)(S

Polarizer

FIG. 16. Nonlinear birefringent fiber ring cavity with an intracav-
ity polarizer placed between two polarization controllers.

polarization controller 2 is adjusted such that the initial point
is in the vicinity of P or P ′, then during the propagation along
the fiber, all points with different intensities remain near these
points, as shown at the end of Sec. V B. As a consequence,
�Shigh(�) · �Slow(�) ≈ 1 and Thigh ≈ Tlow; that is, the dependence
of nonlinear losses on intensity is weak and is not suitable
for passive mode locking. If the initial point on the Poincaré
sphere is placed on the meridian plane S1 ≈ 0, then D ≈ 0,
and following Eq. (43), �J does not depend on �. All points
move at the same velocity because the nonlinear dependence is
lost. As a consequence, the optimal condition is realized in the
intermediate position D ≈ ±1/

√
2 for which the difference in

rotation velocity between low and high intensities is δ�J ≈
�/

√
2. The efficiency of the nonlinear losses is of the same

order of magnitude as in the case of a fiber without anisotropy
k = 0, for which δ�J ≈ |C|�, as has been demonstrated at
the end of Sec. V C. It is obvious that the fiber should have
the right length for which two points corresponding to high
and low intensities could go away in Poincaré sphere at the
greatest possible distance.

VII. CONCLUSION

In this article, we have revisited and fully analyzed the
propagation of an electromagnetic wave in a birefringent
fiber exhibiting optical Kerr nonlinearity. In the framework
of Stokes parameters and the Poincaré sphere, we have deter-
mined the fixed points (i.e., the polarization eigenstates) and
analyzed their stability. That allowed us to fully characterize
the local topology of the solutions. Saddle-point instability has
been confirmed in the case where the natural birefringence is

lower than the nonlinear birefringence. Thanks to a conser-
vation relation, we have established the formal mathematical
analogy between the evolution of the polarization state and
a particle moving in a potential well. Depending on both
the initial conditions and the respective magnitude of linear
and nonlinear birefringence, two potential wells are obtained.
The first exhibits two minima, while the second has only
one minimum. The potentials lead to the identification of
two classes of solutions depending on the total energy of the
equivalent particle. The first is a rotating solution for which
the elliptical state of polarization rotates during propagation
without changing the sign of the ellipticity. The second solution
is an oscillating solution for which the sign of the ellipticity
is periodically changed. In the Poincaré sphere, the two
classes of solutions are separated by the separatrix, which
is a double-looping curve crossing at the saddle point. The
beat length has been determined in all cases of interest. Exact
solutions have been found in terms of Jacobian functions. The
two classes of solutions match at the separatrix.

The nonlinear losses associated with a nonlinear birefrin-
gent fiber placed between two crossed polarizers have been
determined thanks to the Mueller matrices. We have identified
the optimal conditions for efficient mode-locking applications.
These conditions are a natural birefringence lower than the
nonlinear one and a linear input polarization at about 45◦ of
the slow axis of the fiber. We have then considered the general
case of a ring fiber cavity with a polarizer placed between
two polarization controllers. We have demonstrated that the
maximum difference in the transmission for low and high
intensities is achieved when the corresponding polarization
states are located on the opposite ends of any diameter of the
Poincaré sphere.

Our analysis is very important for understanding the
laser dynamics in passively mode-locked fiber lasers based
on nonlinear polarization rotation. It opens new interesting
subjects of investigation such as the implication of the saddle
instability on the operating regime of the laser. This is actually
in progress. Another important study will be to perform the
same analysis that we have done in this article for the more
general case of an elliptical natural birefringence. Moreover,
it will also be very interesting to perform an extensive
investigation of the polarization dynamics associated with the
modulational instability and soliton formation.
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