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We explore families of spatiotemporal dissipative solitons in a model of three-dimensional (3D) laser cavities
including a combination of gain, saturable absorption, and transverse grating. The model is based on the complex
Ginzburg-Landau equation with the cubic-quintic nonlinearity and a two-dimensional (2D) periodic potential
representing the grating. Fundamental and vortical solitons are found in a numerical form as attractors in this
model and their stability against strong random perturbations is tested by direct simulations. The fundamental
solitons are completely stable while the vortices, built as rhombus-shaped complexes of four fundamental
solitons, may be split by perturbations into their constituents separating in the temporal direction. Nevertheless,
a sufficiently strong grating makes the vortices practically stable objects.
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The complex Ginzburg-Landau (CGL) equation [1,2] is
a generic model for pattern-forming transitions in various
dissipative media such as optical cavities, viscous fluid flows
and thermal convection, reaction-diffusion mixtures, and so
on. The characteristic feature of the CGL equations in
situations when they are supposed to produce stable localized
pulses (dissipative solitons, DS’s [3,4]) is the cubic-quintic
(CQ) combination of nonlinear gain and loss added to the
usual linear loss term [1]. In photonics, this combination
corresponds (at least at the phenomenological level) to the
interplay of the linear gain and saturable absorption [2]. Optical
media that feature the CQ nonlinearity in the effective index of
refraction include chalcogenide glasses [5], organic materials
[6], colloids [7], dye solutions [8], and ferroelectrics [9]. It
was also predicted that such nonlinearities can be synthesized
by means of the cascading mechanism [10]. Solitary-pulse
solutions and their stability were first investigated in detail in
the one-dimensional (1D) version of the CQ CGL equation
[11]. A challenging problem is the search for stable two-
dimensional (2D) and three-dimensional (3D) DS’s as well as
localized modes with embedded vorticity (i.e., vortex solitons).
As concerns solitons of the latter type, a fundamental difficulty
is that they are vulnerable to azimuthal perturbations, which
tend to split them into sets of zero-vorticity fragments [12–14].
Actually, the CQ CGL equation was originally introduced by
Petviashvili and Sergeev [15] in the 2D form with the objective
of generating such vortices. Stable 2D dissipative vortex rings
in the form of “spiral solitons” with topological charges
(vorticity) S = 1 and 2 were found in the framework of the CQ
CGL equation in Ref. [16]. Stable fundamental (S = 0) DS’s
are known in 3D models based on CQ CGL equations [17–20].
Three-dimensional double-soliton complexes including ro-
tating ones [21] were also found. Three-dimensional stable
vortex solitons, otherwise known as vortex tori, with S = 1, 2,
and 3 were reported as solutions to the CQ CGL equation
in Ref. [22]. Their stability was analyzed in terms of the
growth rates of perturbation eigenmodes and verified in direct
simulations. It is also relevant to mention that the dynamics

of weakly nonstationary 2D and 3D soliton complexes were
studied in different conservative and dissipative settings in
Refs. [23–28]. Collisions between coaxial 3D vortex solitons
in the framework of the CQ CGL equation were investigated
in Ref. [29].

In terms of the light propagation in bulk media along
coordinate z, the scaled form of the 3D CQ CGL equation for
the amplitude U (x, y, z, t) of the electromagnetic field is [22]

iUz + (1/2)
(
Uxx + Uyy

) + (D/2) Utt

+ [
iδ + (1 − iε)|U |2 − (ν − iµ)|U |4] U = 0, (1)

where (x, y) and t are the transverse coordinates and reduced
temporal variable. The coefficients that are scaled to be 1/2
and 1 in Eq. (1) account, respectively, for the diffraction in the
transverse plane and self-focusing Kerr nonlinearity, ν is the
coefficient of the quintic self-focusing or defocusing, and D

is the group-velocity dispersion (GVD), with D > 0/D < 0
corresponding to the anomalous or normal GVD. In the
dissipative part of the equation, real constants δ, ε, and µ

represent, respectively, the linear loss, cubic gain, and quintic
loss. The dispersion of the linear loss (spectral filtering) is
not included in Eq. (1) as it is not essential to the stability
of multidimensional solitons and is negligible in physically
relevant models [22,30]. In the conservative counterpart of the
CQ CGL equation (i.e., the nonlinear Schrödinger equation
with the CQ nonlinearity) the quintic term must be self-
defocusing (in both 2D and 3D settings), which corresponds
to ν > 0 in Eq. (1) to arrest the collapse driven by the
self-focusing cubic nonlinearity [12,14]. However, it was
shown in Ref. [22] that multidimensional DS’s may remain
stable with the self-focusing quintic term (ν < 0); the collapse
being arrested by the action of the quintic dissipation. On the
contrary, vortex solitons cannot be stable against splitting in the
framework of Eq. (1) and its 2D counterpart without adding an
extra term −iβ(Uxx + Uyy) with β > 0, which will account for
an effective diffusivity in the transverse plane [22]. However,
the diffusivity does not emerge in laser-cavity models except
for some special cases [31]. Therefore, an important issue is

1050-2947/2010/81(2)/025801(4) 025801-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.025801


BRIEF REPORTS PHYSICAL REVIEW A 81, 025801 (2010)

to find a physically relevant modification of the 2D and 3D
CGL models that will support stable localized vortices. In the
framework of the 2D setting, it was recently reported that this
is possible if a 2D lattice (spatially periodic potential) that
represents a transverse grating created in the laser cavity is
added to the model [30]. The grating may be a permanent
one created by means of the diffusion technology [32] or a
virtual grating induced in a photorefractive material [33]. The
splitting instability of 2D vortex complexes, built as sets of
four peaks pinned by the transverse periodic potential, may be
completely suppressed by the lattice potential [30].

The objective of the present work is to study the existence
and stability of both fundamental and vortical 3D spatiotem-
poral DS’s in the model of the bulk optical medium with the
anomalous GVD D = +1, which contains the 2D transverse
grating as the stabilizing element. The accordingly modified
version of Eq. (1) is

iUz + (1/2)(Uxx + Uyy + Utt ) + {iδ + (1 − iε)|U |2
− (ν − iµ)|U |4 + p [cos (2x) + cos (2y)]}U = 0, (2)

where p is the strength of the respective lattice potential,
the period of which is scaled to be π . Taking into regard
the rescalings used to derive Eq. (2) from the full wave-
propagation equation and assuming that the wavelength of light
and the realistic value of the grating’s period are, respectively,
λ ∼ 1 µm and � ∼ 30λ, one can conclude that z = 1 and
t = 1 correspond in physical units to ∼1 mm and 10 fs and
p = 1 corresponds to the amplitude of the local modulation
of the refractive index δn ∼ 0.001. Stationary solutions were
generated as attractors of Eq. (2) by direct simulations of this
equation. Thus found objects are single-peaked fundamental
solitons (with S = 0) and rhombus-shaped vortical solitons
(onsite vortices), which are built as complexes of four peaks
of the local intensity, set at local minima of the lattice potential
with a nearly empty site in the middle, see Fig. 3. The
topological charge (vorticity) of the complex is provided by the
phase shifts of π/2 between adjacent peaks, which corresponds
to the total phase circulation of 2π around the core of the
pattern as it should be in vortices with S = 1. The numerical
results are presented in the following for a fixed set of three
parameters in Eq. (2): µ = 1, ν = 0.1, and δ = 0.4, which
adequately represent the generic case while cubic gain ε and
strength p of the transverse periodic potential are varied.

FIG. 1. (a) Total energy E versus cubic gain ε for fundamental
solitons and (b) for rhombus-shaped vortices with S = 1 at different
fixed values of strength p of the lattice potential. Note the difference
in the scale on the vertical axes in the two panels.

FIG. 2. (Color online) Isosurface plots of total intensity
|U (x, y, t)|2 showing typical stable fundamental solitons: (a) p = 0,
(b) p = 1, and (c) p = 4. Here ε = 2. Each soliton occupies,
approximately, one cell of the transverse grating, its temporal
extension being T � 2 (cf. Fig. 5).

As the shape and stability of the DS’s are most sensitive to
values of these coefficients they can be easily adjusted in
the experiment. The simulations of Eq. (2) were run using
a 3D Crank-Nicolson finite-difference scheme with typical
transverse and longitudinal step sizes �x = �y = �t = 0.05
and �z = 0.005. In most cases, we used 281 discretization
points for t and 161 × 161 mesh points in the (x, y) plane for
the fundamental solitons or 201 × 201 points for the rhombic
vortices. After a particular stationary solution was found from
the direct integration of Eq. (2), it was then used as the input
for a new run of simulations with slightly modified values
of the parameters; the aim of this was to find an attractor
corresponding to these new values. When the simulations
converged to localized modes their stability was additionally
tested by adding to them white noise at the amplitude level of
up to 10% and running the subsequent simulations—typically,
up to z = 500 for fundamental solitons and up to z = 3000
for vortices [as follows from Eq. (2), z = 500 corresponds
to ∼25 diffraction lengths defined by the grating]. To make
conclusions about the stability we monitored the evolution
of amplitude max|U (x, y, t)| of the pattern and the total
energy of the solution E = ∫∫∫ |U (x, y, z, t)|2dxdydt . The
perturbed solution was identified as a stable one if its amplitude
and shape will relax back to the unperturbed values. When
localized states cannot self-trap in the course of the evolution
or existed temporarily, but eventually turned out to be unstable,
the eventual state of the system will be either U = 0 or a
quasirandom speckle pattern covering the entire domain. The
decay toward zero was observed when the gain was too weak
versus the dissipation [i.e., ε in Eq. (2) was too small]. In the
opposite case with ε too large, the speckle structure was filling
out all lattice cells, expanding also along t .

In Fig. 1 we show the total energy E as a function of
cubic gain ε for families of the fundamental solitons with
S = 0 and rhombic vortices with S = 1 for zero and nonzero
values of strength p of the transverse grating. The shape of
the fundamental solitons for different values of p is displayed

FIG. 3. (Color online) The same as in Fig. 2, but for rhombic
vortices with S = 1: (a) p = 0.25, ε = 1.9; (b) p = 1, ε = 1.7, and
(c) p = 4, ε = 1.8.
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FIG. 4. (Color online) The transverse distribution of the local
field amplitude |U (x, y, 0)| in the rhombic vortices shown in Fig. 3.

by means of isosurface plots of total intensity |U (x, y, t)|2
in Fig. 2. Similarly, in Figs. 3 and 4 we show the shapes
of rhombus-shaped vortices for three representative values
of parameter pairs (p, ε). These figures explain why the
relation between the energies of the compound vortices and
fundamental solitons Evort ≈ 4Esol holds in strong lattices,
but not in weaker ones (see Fig. 1) in which the vortex’
constituents are not well separated [see Figs. 3(a) and 4(a)].
The families of fundamental solitons shown in Fig. 1(a)
are entirely stable (i.e., the solitons feature self-healing)
restoring their stationary shape after the addition of random
perturbations. The stability of fundamental solitons in the
present model is not surprising as they are stable in both the 2D
[16] and 3D [22] versions of Eq. (2) without the lattice
potential (p = 0); unlike localized vortices, which cannot be
stable in either case. Nevertheless, fundamental 3D solitons
in the CQ CGL equation with the lattice potential were not
studied before, therefore we report here basic results for
them—in particular, for comparison with localized vortices.
As concerns the stationary rhombic vortices presented by
dependences E = E(ε) in Fig. 1(b), they were generated by
direct simulations of Eq. (2), hence they are robust objects in
this sense. The grating’s potential prevents the splitting of the
vortex in the transverse plane. As shown in Ref. [30], this is
sufficient for the stabilization of the compound vortices in the
2D counterpart of the present model, which represents spatial
vortical solitons. However, in the 3D setting the spatiotemporal
vortex complexes develop instability against separation of their
constituents in the temporal direction as shown in Fig. 5. This
figure demonstrates that the vortex splits into two pairs of
fundamental solitons that later split into individual solitons.
Nevertheless, Fig. 5 (as well as the results of many other runs
of simulations) demonstrates quasistabilization of the vortex
solitons with the increase of the grating’s strength p. Indeed,
from Fig. 5 the splitting distance for p = 1, zsplit � 100 may be
estimated as tantamount to ∼10 soliton’s dispersion lengths,

FIG. 5. (Color online) Temporal profiles of the four constituents
of an unstable rhombic vortex: (a) at z = 150; (b) at z = 270, for
p = 1 and ε = 1.7. Labels attached to the plots refer to coordinates
of the pulses in the (x, y) plane.

with the temporal width of each constituent being T ∼ 2. With
the increase of the lattice strength to p = 4, the distance
of the stable transmission increases to z � 1500, which
exceeds a meter in physical units (i.e., this vortex will be a
completely stable object in the experiment). In this relation,
it is relevant to mention a general fact that various complex
structures supported by lattice models—first of all, discrete
vortex solitons—are stable up to a certain critical value of the
intersite coupling constant [34]. In the present case, the latter
is tantamount to the stability above a certain minimum value
of p.

In conclusion, we investigate families of fundamental and
vortical spatiotemporal dissipative solitons in the framework
of the 3D CGL equation with the CQ nonlinearity, periodic
potential in the transverse plane, and anomalous GVD in the
temporal direction. The model applies to the description of
bulk optical media with the combination of gain and saturable
absorption. Solitons of both types were readily found as
attractors by direct simulations of the CQ CGL equation.
The fundamental solitons are stable against strong random
perturbations while the vortices, built as rhombus-shaped
complexes of four fundamental solitons with phase shifts π/2
between them, may be split by perturbations in the temporal
direction. Nevertheless, a sufficiently strong periodic potential
inhibits the splitting of the vortices making them practically
stable objects.
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