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Abstract In this paper, we consider the on-line estimation of optimal cur-
rent subsequences in Partially Observable Untimed Petri Nets. Applying the
counter approach classically used in max-plus algebra for Timed Petri nets,
the idea is to exploit the assumption of a non immediate consumption of the
tokens for each place which introduces an order of precedence between events.
The approach can estimate a global price depending on the costs and gains
provided by the tasks. The estimation of optimal sequences is based on the
determination of a time horizon necessary to describe the sequences. The esti-
mation is relevant to a step defined by two successive occurrences of observable
transition firings. We show that the approach can consider any optimization
problem if the dates of the observations are known or, if a guaranteed hori-
zon can be computed which is always possible when the unobservable sub-
net satisfies a weak assumption close to the structural boundedness (relaxed
structurally boundedness). As the technique avoids the generation of sets, the
approach does not depend on their cardinalities and is numerically efficient.

Keywords Untimed Petri nets · Timed Petri nets · counter · partially
observable · sequence estimation · sliding time horizon · relaxed structural
boundedness

1 Introduction

The problem of estimating the state of a dynamic system is a fundamental
issue in system theory. Observing a process and estimating its state consists in
determining the value of a system variable from a certain set of measurements
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given by a set of sensors. Contrary to [9] which considers Timed Labeled
Petri nets, we focus on a untimed Petri net where by definition the time
durations of the model are unknown; indeed, in some cases, the knowledge
on the time durations can be partial or too complex to permit a resolution.
The aim of this paper is to estimate possible firing sequences of unobservable
transitions which are coherent with the observed label sequence produced by
the observable transitions and present an optimal value for a criterion that is a
linear weighting of the transition firing numbers. Generalizing the nonnegative
cost studied in [16], this criterion can be a global price which is expressed with
a function depending of the costs and the gains of the process.

Let us present the general context about untimed Petri nets and, partic-
ularly two main difficulties which must be tackled. Classically, the estimation
approaches face an explosion of the numbers of the possible trajectories and
markings which remains a challenge. The article [20] shows that the number
of consistent markings in a Petri net with nondeterministic transitions (unob-
servable transitions and/or transitions that share the same label) is at most
polynomial in the length of the observation sequence and so, increases with
the new observations in the worst case which potentially leads to the stop-
ping of the estimation at a given observation. Moreover, the number of firing
sequences can be exponential in the length of the observation sequence.

Another limitation is the assumption of acyclic induced-subnet which is
considered in many approaches and papers. Indeed, the estimation problem
is often based on the generation of count vector giving a simplified picture
of the evolution of the Petri net. As the firing conditions of the unobservable
transitions are often neglected, the case of a count vector which does not
represent a sequence is possible and the assumption of acyclic induced-subnet
allows to remove this possibility: in that case, each count vector corresponds to
at least a sequence and expresses a realistic behavior. However, this assumption
limits the scope of the relevant results as a lot of processes are based on the
repetition of tasks, which are modelled by circuits. Therefore, an objective is
to generalize this hypothesis and to consider more general models containing
circuits which can be self-loops.

In fact, the difficulty comes from the model of the Petri net which is com-
posed of the fundamental equation of marking and an inequality expressing
the firing condition of each transition. Contrary to the state equations used in
automatic control or automata exploited in computer science, these two rela-
tions and their combination cannot easily be manipulated by standard tools
and provide sequences. To overcome this drawback, a slight modification of the
model is proposed in this paper: the idea is to introduce time in the model and
precisely to associate with the untimed Petri net a new Timed Petri net where
each place presents an elementary unitary temporization (Assumption AS−5).
As this time can be arbitrarily taken small, it implies that the consumption
of the tokens for each place is not instantaneous. This weak modification of
the Petri net creates a precedence between the events respectively associated
with the input transitions and the output transitions and leads to the building
of a polyhedron which completely describes the set of time sequences relevant
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to the checked count vector. Therefore, the estimation in the untimed case is
based on a time model having a close behavior which allows to directly con-
sider sequences. A consequence is that this variant of model and the relevant
technique can consider any Petri net possibly with circuits and self-loops.

To describe sequences, we choose to use the "counter" form which repre-
sents the number of events at each moment and can describe complex struc-
tures with weights on the arcs [3] [17] [18]. Note that the "dater" form describes
each event by a numbered date and can express complex synchronizations [10];
undoubtedly these two techniques have brought powerful approaches in the
field of discrete event systems when the consideration of time is important [15].

Let us briefly give some other related approaches. The paper [2] gave a
method for building the modified state class graph of a bounded time Petri
net. The article [6] focused on diagnosability analysis of intermittent Faults.
For the transitions sharing the same label and unobservable transitions, the
study [20] determined bounds on the number of estimated markings and made
the connections with the length of the observation sequence. As the estimation
problem faces an explosion in the number of states, the approaches in [14] were
based on a reduced observer which computes only a subset of the possible cur-
rent markings for a partially observed Petri net. Based on [3], the study [18]
presented an algebraic time model describing Timed Petri nets in standard
algebra. Exploiting this study, the paper [9] adapted this model to the estima-
tion problem and gave an algebraic form describing the complete solution set
for a sequence of observed events without any assumption of acyclicity. This
problem was also considered in [10] where the state space of the time event
graphs with complex synchronizations such as P-time event graphs and time
stream event graphs were expressed under a fixed-point form developed in the
min-max-plus algebra. Standard algebra is considered in the estimation prob-
lem for P-time Petri nets [4]. Analogous to the well-known parity space used
in fault detection for continuous systems, the generation of analytical redun-
dancy relations for Timed Event Graphs in [11] avoided the state explosion
since the technique based on an analogy of the Cayley Theorem in max-plus
algebra would eliminate the state vector. The paper [1] focused on the same
aim by applying the Fourier-Motzkin algorithm in partially observable Petri
nets in the field of fault detection. While the objective of the paper [12] is a
schedulability analysis of sequences relevant to candidate count vectors, this
proposed paper follows another strategy as its aim is to directly provide se-
quences without searching candidate count vectors and to estimate a current
majorant of the necessary horizon on-line.

In this paper, we assume the following assumptions for the untimed Petri
net under investigation:

- Assumption AS−1 : the incidence matrices and the initial marking (de-
noted M init below) are known.

- Assumption AS−2 : the Petri net is live.
- Assumption AS−3 : the occurrences of observable events are assumed to

be non-simultaneous.
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- Assumption AS−4 : the observations are distinguishable, that is, the
same label cannot be associated with more than one observable transition.

The following assumptions are considered for the associated P-timed Petri
net:

- Assumption AS−5 : each place presents an elementary unitary tempo-
rization;

- Assumption AS−6 : the dates of the successive observations are known.
Assumption AS−6 is considered in Section 3.2 and is removed in Section 4.

The assumption of boundedness of the marking and the hypothesis of
acyclicity are not considered in this article contrary to many papers in this
topic. We assume the presence of observations during the application of the
estimation procedure as the estimation procedure exploits observations.

The paper is organized as follows. After the description of the prelimi-
nary notions in Section 2, Section 3 considers the description of P-timed Petri
nets satisfying Assumption AS−5. As article [9] indicated that time could be
considered in an estimation problem on an arbitrary horizon with Assump-
tion AS−6, the objective is to adapt this approach to the untimed case for a
current iteration < k > and to develop it on a relevant sliding horizon. The
polyhedron which describes the estimation problem under an algebraic point
of view and different criteria are presented. Then, Section 4 considers that the
case where Assumption AS−6 cannot be taken. This section focuses on the
computation and analysis of a guaranteed sliding horizon, that is, an horizon
which is sufficiently large such that any possible sequence is modelled in the
estimation problem. The proposed approach is illustrated by a pedagogical ex-
ample containing an unobservable circuit in Section 5. Finally, a comparison
with other approaches is made in Section 6.

2 Preliminary

2.1 Notations

The notation |Z| is the cardinality of set Z and the notation AT corresponds
to the transpose of matrix A. The 1-norm of vector u is equal to the sum of
the absolute values of the vector elements and is denoted ‖ u ‖1 . The notation
bxc represents the greatest integer less than or equal to x. A Place/Transition
(P/TR) net is the structure N = (P, TR,W+,W−), where P is a set of |P |
places and TR is a set of |TR| transitions. The matrices W+ and W− are
respectively the |P | × |TR| post and pre-incidence matrices over N, where
each row l ∈ {1, ..., |P |} specifies the weight of the incoming and outgoing arcs
of the place pl ∈ P . The incidence matrix is W = W+ − W−. The preset
and postset of the node v ∈ P

⋃
TR are denoted by •v and v•, respectively.

The notation Ω∗ represents the set of firing sequences, denoted σ, consisting
of transitions of the set Ω ⊂ TR. The vector σ of dimension |TR| expresses
the firing vector or count vector of the sequence σ ∈ TR∗, where the i -th
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component σi is the firing number of the transition tri ∈ TR which is fired σi
times in the sequence σ.

The marking of the set of places P is a vector M ∈ N|P | that assigns to
each place pi ∈ P a non-negative integer number of tokens Mi, represented
by black dots. The i -th component Mi is also written M(pi). The marking
M reached from the initial marking M init (which replaces the usual notation
M0) by firing the sequence σ can be calculated by the fundamental relation:
M =M init+W.σ. The transition tr is enabled atM ifM ≥W−(., tr) and may
be fired yielding the marking M ′ =M +W (., tr). We write M [σ � to denote
that the sequence of transitions σ is enabled at M , and we write M [σ � M ′

to denote that the firing of σ yields M ′.

2.2 Definitions

Definition 1 A Petri net is said to be bounded if the number of tokens in
each place does not exceed a finite natural number for any marking reachable
from the initial marking.

Definition 2 A Petri net is said to be Structurally Bounded (SB) if and only
if there exists a vector z with positive integer entries such that z.W ≤ 0.
Formally,

∃z > 0 such that z.W ≤ 0

Definition 3 A Petri net is said to be deadlock structurally bounded (DSB)
if and only if there exists a vector z with positive integer entries such that
z.W < 0. Formally,

∃z > 0 such that z.W < 0

Note that a DSB net is not live as it leads to a deadlock state. Let us
take a vector z > 0 such that z.W < 0. If we have some firings expressed by
the count vector σ, we have M init +W.σ = M. So, z.M init + z.W.σ = z.M
⇒ z.M init > z.M . Another evolution described by σ′ gives M +W.σ′ = M ′

which also gives z.M > z.M ′. Finally, z.M init > z.M > z.M ′ > ... and, as
the inequalities are strict, the nonnegative product converges to zero which is
a deadlock state.

2.3 First notations for estimation

A labeling function L : TR → AL ∪ {ε} assigns to each transition tr ∈ TR
either a symbol from a given alphabet AL or the empty string ε. In a partially
observed Petri net, we assume that the set of transitions TR can be partitioned
as TR = TRobs

⋃
TRun, where the set TRobs (respectively, TRun) is the set

of observable transitions associated with a label of AL (the empty string ε).
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In this paper, we assume that the same label of AL cannot be associated with
more than one transition of TRobs.

The TRun−induced subnet of the Petri net N is defined as the new net
Nun = (P, TRun,W

+
un,W

−
un), where W+

un and W−un (respectively, W+
obs and

W−obs) are the restrictions of W+ and W− to P × TRun (respectively, P ×
TRobs). Therefore, Wun =W+

un −W−un (respectively, Wobs =W+
obs −W

−
obs). A

reorganization of the columns with regards to TRun and TRobs yields W =(
Wun Wobs

)
. Notation xi expresses an unobservable transition, belonging to

TRun while an observable transition belonging to TRobs is denoted yi.
The notation of the count vectors is taken for x of dimension |TRun| and

y of dimension |TRobs| . The reorganization of the components of σ yields
σ =

(
xT yT

)T
.

In this paper, the time is discrete and the occurrence of each event is
synchronized with an external clock. The origin of time zero is absolute,
that is, common to all dates considered in this paper. Starting from the
marking M<1> which is the initial marking M init at time zero, the esti-
mation of the current unobservable sequence is based on the treatment of
the data produced by the observed transitions successively in an on-line pro-
cedure at the dates t<1>, t<2>, t<3>, . . . where: t<k> is the kth firing date
of an observable transition which is defined with respect to the origin of
time t<0> = 0; moreover, < k > is the kth step relevant to a time inter-
val [t<k−1>, t<k>] for k ≥ 1. By construction, t<k−1> 6= t<k> for k ≥ 1
and t<1> is relevant to the first observation. The notation y<k> represents
the count vector of observable transitions firing at time t<k> exactly and
Assumption AS−3 implies ‖ y<k> ‖1= 1. Notation x<k> represents the
count vector for the unobservable transitions TRun for step < k > . From
M<k>, the transition firings relevant to x<k> and y<k> allow the estab-
lishment of marking M<k+1> : formally, M<k>[σ<k> � M<k+1> such that
σ<k> =

(
(x<k>)T (y<k>)T

)T . As M<1> is the initial marking relevant to
time t<0> = 0, we assume that x<k> = 0 and y<k> = 0 for k ≤ 0. So, the
estimation must consider M<1>[x<1>y<1> � M<2> for step < 1 > where
the time horizon is [t<0>, t<1>] and t<1> is relevant to the first observation
y<1>, then M<2>[x<2>y<2> �M<3> for step < 2 > where the time horizon
is [t<1>, t<2>] and t<2> is relevant to the second observation y<2>, and so on.
Note that these notations are not cumulative as we can have x<3> = 0 but
x<1> 6= 0 and x<2> 6= 0 : the condition x<1> ≤ x<2> ≤ x<3> does not hold.

3 Estimation of sequences

3.1 Aim and principle of the approach

The problem considered in the paper is as follows. Let us consider a untimed
Petri net where the incidence matrix W and the initial marking M<1> are
known. We focus on the subsequences of the unobservable firing events of the
transitions of TRun for each step < k > . Given a sequence of the observed
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firing events of the transitions of TRobs generated by the activity of the Petri
net, we want to find the relevant subsequences of the unobservable firing events
of the transitions of TRun for each step < k > which are optimal with respect
to a general criteria given in the sequel.

Let us present the principle of the approach. The system of relations de-
scribing a Petri net (that is, the fundamental equation of marking and the
firing condition of the transitions) does not express a precedence between the
events in a simple way. To compensate this drawback, the idea is to introduce
a precedence between the events by slightly modifying the Petri net and con-
sidering a specific count vector. As a sequence is a succession of events, we take
the assumption that the consumption of the tokens for each place is not in-
stantaneous. In that aim, we associate a temporization equal to an elementary
time unit with each place, which implies that the input flow does not present
an immediate effect on the output flow (Assumption AS−5). Let us consider
the case of a unitary valuation on the arcs. If an input transition is fired,
then a token is produced, but no output transition immediately consumes this
produced token. Therefore, this time model distinguishes some firings of the
input and output transitions (this point is illustrated by Example 2 below).

In that case, the model is more realistic as the possible infinite sequences
in untimed Petri nets disappear for the timed Petri nets. In other words, the
length of any sequence is finite. Precisely, the infinite number of events of
these sequences is replaced by an arbitrary large number of events: this trans-
formation is usually made in linear programming to treat infinite values. Note
that an infinite sequence does not seem to represent a realistic evolution as it
corresponds to an infinite number of train arrival at a station or an infinite
production by a machine.

3.2 Polyhedron

As the modelling of time must be made, the previous notations must be com-
pleted with the following notations which are cumulative from the origin of
time. Each transition xi is associated with the number of events that happen
before or at time Θ and is denoted xi(Θ). Assuming that the events can only
occur at Θ ≥ 1, we have x(Θ) = 0 for Θ ≤ 0.

Example 1. Let us show the possibilities of this notation. Note that
for a given transition i, if there are two different instants Θ1 and Θ2 such
that xi(Θ1) 6= xi(Θ2) , then we can conclude the occurrence of an event at
least. Indeed, the arrival of two events at times 3 and 5 implies that the
sequence of numbers of events starting at Θ = 0 and finishing at Θ = 7
is 0, 0, 0, 1, 1, 2, 2, 2, . . . that is xi(Θ = 3) = 1 and xi(Θ = 5) = 2 but also
xi(Θ = 4) = 1 and xi(Θ = 7) = 2. The series of number of events xi(Θ) can
express different situations: no event may take place at time Θ (xi(Θ = 3) = 1
and xi(Θ = 4) = 1 describes the absence of event forΘ = 4); a single event may
happen atΘ (xi(Θ = 4) = 1 and xi(Θ = 5) = 2 represents one event at Θ = 5);
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several events may occur simultaneously at Θ (the sequence 0, 1, 5, . . .expresses
4 events at Θ = 3 and so, we consider a multi-server semantic with a unique
variable xi(Θ)). �

The above notions are usual in max-plus algebra but must be adapted to
the problem. Let y(θ) (respectively, x(θ)) be the count subvector of the state
vector x(θ) at time θ such that the relevant transitions belong to the set of
observable transitions TRobs (respectively, unobservable transitions TRun).

The on-line diagnosis procedure is based on a sliding horizon which is
relevant to a current step < k > for k ≥ 1 separating two successive dates of
observations t<k−1>, t<k> of the last successive observations y<k−1>, y<k>.
Step< 0 > corresponds to the initialization with x<0> = 0 and y<0> = 0 while
the state computation starts at step < 1 >. We take the weak Assumption
AS−6 that the two dates at step < k > are known and we can define a time
horizon

h<k> = t<k> − t<k−1>

relevant to step < k > . For simplicity of the writing, h<k> and t<k> are
denoted h and t respectively. We take:

γ =
(
(y(t− h))T (y(t− h+ 1))T . . . (y(t− 1))T (y(t))T

)T
and

κ=
(
(x(t− h))T (x(t− h+ 1))T . . .

(x(t− 1))T (x(t))T
)T
.

Contrary to y(θ) , the notation y<k> introduced at the previous section is
not cumulative on all past iterations, and so, y(t) =

∑
k′=1,...,k

y<k′>. The introduc-

tion of the notation y<0>→<k> =
∑

k′=1,...,k

y<k′> allows to give short expressions

of the known data for the iteration < k > which are:

y(t− h) = y<0>→<k−1>

y(t) = y<0>→<k> (1)

and y<k> = y(t)−y(t− h). By construction, there is no firing of an observable
transition in step < k > for θ ∈ {t− h+ 1, t− h+ 2, . . . , t− 1} and formally,
y(θ) = y(t− h) = y<0>→<k−1> for t− h+ 1 ≤ θ ≤ t− 1 .

Similarly, the notation x(θ)) is cumulative on all past iterations contrary
to x<k> and particularly x(t) =

∑
k′=1,...,k

x<k′>. The notation x<0>→<k> =∑
k′=1,...,k

x<k′> allows to write

x(t− h) = x<0>→<k−1>

x(t) = x<0>→<k> (2)

and x<k> = x(t)− x(t− h).
The evolution can be described by the following inequalities expressing the

relations between the firing event numbers of transitions. For each place pl ∈ P
which is associated with a time duration ∆l, we can write that the output flow
of tokens at time θ ∈ {t− h+ 1, t− h+ 2, . . . , t} is lower than or equal to the
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addition of the initial marking of pl, that is, M init
l , and the input flow with a

delay ∆l.

W−l,.x(θ) ≤W
+
l,.x(θ −∆l) +M init

l . (3)

Example 2
The Timed Petri net in Fig. 1 allows to illustrate relation (3). The place

p1 with time duration ∆1 in Fig. 1 is described by inequality

x3(θ) + x4(θ) ≤ x1(θ −∆1) + x2(θ −∆1) +M init
1

and so, W−1,. =
(
0 0 1 1

)
and W+

2,. =
(
1 1 0 0

)
.

Fig. 1 A place of a Petri net (example 2)

�
We now consider Assumption AS−5, that is, time duration ∆l is unitary.

The introduction of this assumption leads to a weak restriction of the be-
havior of the Petri net about the firings of the input and output transitions
when there is a causal connection between the relevant events. Precisely, when
the valuations of the Petri net are unitary, the above expression expresses
that the sum of the firing numbers of the output transitions is lower than or
equal to the sum of firing numbers of the input transitions for each place at
a given time θ and the initial marking. The valuated case is more complex
as it introduces ponderations in the sums. The following example shows that
Assumption AS−5 implies that some events cannot be simultaneous.

Example 2 continued.
A simple interpretation can be presented if a simplification of Example 2

is made. We consider the Timed Petri net of Fig. 1 presenting a unique place
p1 with ∆1 = 1 but transitions x2 and x4 are deleted (|•p| = |p•| = 1) and
the tokens of p are removed (M init

1 = 0): so, we can write x3(θ + 1) ≤ x1(θ)
with x1(θ) = x3(θ) = 0 for θ ≤ 0. If x1(θ = 0), then x3(θ = 1) = 0. If the
first firing of x1 occurs at θ = 1, we have x1(θ = 1) = 1 and x3(θ = 2) = 0 or
x3(θ = 2) = 1. Therefore, the first firing of x3 which can occur at θ = 2 cannot
be simultaneous with the first firing of x1. So, the kth firing date of an output
transition of a place occurs strictly after the kth firing date of the relevant
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input transition and the relevant events are not simultaneous. Now, a second
firing of x1 can occur at θ = 2 (x1(θ = 2) = 2) and, if x3(θ = 2) = 1, then the
two relevant events are simultaneous. Therefore, in a Timed Event Graph with
a null initial marking, the kth firing date of the input and output transitions
cannot be simultaneous but this rule depends on the firing number k. If the
initial marking is non-null, a shift in the numbering must be introduced in the
interpretation. �

After an adequate permutation of the columns of matrices, the considera-
tion of the observable/unobservable transitions gives

W−un.x(θ) +W−obs.y(θ) ≤W+
un.x((θ −∆l))+

W+
obs.y((θ −∆l)) +M<1> (4)

for the set of places P with ∆l = 1 and we obtain the system

A1 · κ ≤ C1 −B1.γ (5)

where

A1 =


−W+

un W−un 0 . . .

0 −W+
un W−un . . .

. . . . . . . . . . . . . . . . . .

. . . W−un 0

. . . −W+
un W−un

. . . 0 −W+
un W−un



B1 =


−W

+
obs

W
−
obs

0 . . .

0 −W
+
obs

W
−
obs

. . .

. . . . . . . . . . . . . . . . . .

. . . W
−
obs

0

. . . −W
+
obs

W
−
obs

. . . 0 −W
+
obs

W
−
obs



and C1 =


M<1>

M<1>

. . .
M<1>

M<1>

M<1>

 .

Note that vector C1 does not depend on the current marking which brings
an important advantage.

The dimension of vector κ is denoted by n = (h + 1).|TRun| while the
dimension of vector γ is (h+ 1).|TRobs|. The dimensions of matrices A1, B1,
C1 and column vector b1 = C1 −B1.γ are respectively (h.|P | x n), (h.|P | x
(h+ 1).|TRobs|), (h.|P | x 1) and (h.|P | x 1).

The unobservable trajectory κ is non-decreasing and we must add the
condition

x(θ − 1) ≤ x(θ) (6)
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for θ ∈ {t− h+ 1, t− h+ 2, . . . , t} or A2=


I −I 0 . . .
0 I −I . . .
. . . . . . . . . . . . . . . . . .

. . . −I 0

. . . I −I

. . . 0 I −I

 b2 =


0
0
. . .
0
0
0

 . The dimensions of matrices A2 and column vector b2 are respectively

(h.|TRun| x n) and (h.|TRun| x 1). Moreover, we have

A3· κ ≤ b3 (7)

where A3 = −Inxn and b3 = 0nx1 as the trajectories are non-negative.
Finally, a synthesis of the previous systems (5) (6) and (7) allows to obtain

a simple polyhedron of the general form

A · κ ≤ b<k> (8)

with A =

A1

A2

A3

 and b<k> =

b1 = C1 −B1.γ
b2

b3


which allows to express the unobservable sequences of the Petri nets for

the iteration < k > .

Example 3.
Let us build systems (5) (6) and (7) for the Timed Petri net of Fig. 2.

y1 x1 y2

p1 p2
Fig. 2 Petri net with unitary time durations (example 3)

All the places of the P-timed Petri net of Fig. 2 present unitary time dura-

tions. The relevant relations are
{
x1(θ) ≤ y1(θ − 1) +M<1>

1

y2(θ) ≤ x1(θ − 1) +M<1>
2

with x1(θ − 1) ≤

x1(θ) and x1(θ) ≥ 0 for θ ∈ {t<k> − h, t− h+ 2, . . . , t<k>}. For an arbitrary
horizon h = 3, we have
γ =

(
(y(t− 3))T (y(t− 2))T (y(t− 1))T (y(t))T

)T
and

κ=
(
(x1(t− 3))T (x1(t− 2))T (x1(t− 1))T (x1(t))

T
)T
.As θ ∈ {t−2, t−1, . . . , t}
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with t = t<k>, the relations (5) are



x1(t− 2) ≤ y1(t− 3) +M<1>
1

−x1(t− 3) ≤ −y2(t− 2) +M<1>
2

x1(t− 1) ≤ y1(t− 2) +M<1>
1

−x1(t− 2) ≤ −y2(t− 1) +M<1>
2

x1(t) ≤ y1(t− 1) +M<1>
1

−x1(t− 1) ≤ −y2(t) +M<1>
2

or


0 1 0 0
−1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1
0 0 −1 0

 .κ ≤


1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1

 .γ +


M<1>

1

M<1>
2

M<1>
1

M<1>
2

M<1>
1

M<1>
2

.

Inequality (6) becomes:
x1(t− 3) ≤ x1(t− 2) ≤ x1(t− 1) ≤ x1(t) or
x1(t− 3)− x1(t− 2) ≤ 0

x1(t− 2)− x1(t− 1) ≤ 0

x1(t− 1)− x1(t) ≤ 0

which is

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 .κ ≤ 0

System (7) is expressed by:

x1(t− 3) ≥ 0, x1(t− 2) ≥ 0, x1(t− 1) ≥ 0, x1(t) ≥ 0 or


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .κ ≤

0. �

3.3 Criteria

Let us present some criteria c.κ which can be exploited in the optimization
with system (8).

- If we want to estimate a sequence inside the step < k > presenting
the minimum or maximum number of events for the Petri net, we can ex-
press the sum of the event numbers with c1x|TRun|.x

<k> where c1x|TRun|

is unitary. As x<k> = x(t) − x(t− h), we can compute the difference be-
tween (x(t)) and (x(t− h)) by taking cdiff .κ (diff: difference) and cdiff =(
−c1x|TRun| 0 . . . 0 c1x|TRun|

)
where c1x|TRun| is unitary.

- We can consider that each task is expressed by the presence of a token
in a place associated with a cost (produced by the amount of products or
energy needed to execute the task) or a gain (generated by the termination of a
product and its selling). As the firing of a transition produces the consumption
of the tokens in its input places, it describes the end of the relevant tasks. The
addition of their costs and gains (possibly multiplied by the value of the ingoing
arcs) implies that the transition firing is also associated with a scalar that
can be positive, negative or null. Formally, if the row-vector PR represents
the price for each place, the price relevant to one firing of a transition i is
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j

PRj .W
−
j,i . So, the balance-sheet on the period [0, t] is

PR.W−.

(
x(t)

y(t)

)

= cba.κ + PR.W−obs.y(t) where
cba =

(
01x|TRun| 01x|TRun| . . . 01x|TRun| c1x|TRun|

)
(ba: balance) with

c1x|TRun| = PR.W−un

4 Guaranteed time horizons

Up to now, we have considered time sequences for a given step < k > and
Timed Petri nets. In this section, the time Assumption AS−5 is kept but As-
sumption AS−6 saying that the dtes of observations are known is removed.
In that case, a possibility is to assume that the horizon h is taken sufficiently
large such that the relations (8) describing the estimation problem presented
in Section 3 do not limit the consistency of the untimed sequences and par-
ticularly the coherence between y<0>→<k−1> and y<0>→<k>. However, the
computations can be time costly and there is no guarantee that this value is
sufficient for each considered estimation problem.

Therefore, the objective of Section 4 is to adapt the technique presented
in Section 3 to the case where the dates of observations are unknown: the aim
is to determine time horizons h which does not limit the expressivity of every
subsequence. The technique is based on the construction of untimed systems
consistent with the Timed Petri net.

This part is organized as follows. The following Subsection 4.1 is the pivot
point of the paper which makes the connection between the timed case and the
untimed case. Different untimed systems in Subsection 4.2 are the supports of
linear programming problems allowing the computation of the time horizons.
Based on a relaxation over R, the convergence of these problems to finite
values is analyzed in Subsection 4.3. Finally, the introduction of the notion
of Relaxed Structurally Boundedness in Subsection 4.4 makes the connections
with standard definitions of SB and DSB Petri nets.

4.1 Connection between the timed case and the untimed case

We desire to find a time horizon corresponding to a possible time evolution of
the Timed Petri net relevant to any sequence of the untimed Petri net for each
step < k >. The following result exploits a slow-down of the time behavior of
the P-timed Petri net which is always possible as the token deaths are only
determined by the consumption of the transition firings.
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Theorem 1 Let c be an unitary row-vector with |c| = |TRun|. The following
optimization

∇<k>
max = max(c.x<k>)

where x<k> represents the unobservable sequence of the untimed Petri net for
step < k >, defines a guaranteed time horizon

hg = ∇<k>
max + 1 (9)

for (8) if ∇<k>
max is finite (∇<k>

max ∈ N).

Proof. Let us now consider step < k > where the untimed Petri net
follows an arbitrary subsequence x<k>y<k> starting from M<k>. Formally,
M<k>[x<k>y<k> � . At the beginning of step < k >, vector M<k> is pro-
duced by the past evolution at step< k−1 > that is,M<k−1>[x<k−1>y<k−1> �
M<k>. Let q =‖ x<k> ‖1 . If q 6= 0, the subsequence x<k>y<k> can be de-
veloped under the form x<k> = x(1)x(2) . . . x(i) · · ·x(q)y<k> where x(i) rep-
resents the transition whose rank is i ∈ {1, . . . , q} in the subsequence in
the untimed Petri net. Let M<k,1> = M<k>, M<k,i> is the marking used
at rank i in step < k > and M<k,i+1> is the expected marking produced
by x(i). So, M<k,1>[x(1) � M<k,2>[x(2) � M<k,3> . . .M<k,i−1>[x(i−1) �
M<k,i> . . .M<k,q>[x(q) �M<k,q+1>[y<k> �M<k+1>

Now, we desire that the associated P-time Petri net follows the same sub-
sequence x<k>y<k>: as the untimed Petri net satisfies M<k>[x<k>y<k> �
where x<k> and y<k> are subsequences whose count vectors are x<k> and
y<k> respectively, we must find a time evolution which can always be satisfied
by the relevant P-time Petri net. By construction (presented in Section 2.3),
the last firing date of step < k− 1 > occurs at t<k−1>. As the time durations
are unitary, all the tokens produced by x<k−1>y<k−1> are available at time
t<k−1> + 1 and so, the marking M<k> is obtained at t<k−1> + 1.

We consider the following slow-down of the P-time Petri net where the rule
is that a unique firing of a transition occurs at each time θ ∈ N.

As the markingM<k> is available at date t<k−1>+1, the first unobservable
transition x(1) can fire at the same date and modifies the marking and the new
marking M<k,2> is available at t<k−1> + 2 for sure. Formally, M<k,1>[x(1) �
M<k,2> is guaranteed at time t<k−1> + 2 in the associated P-time Petri net.
Similarly, for any i ∈ {1, . . . , q}, each transition x(i) can fire at t<k−1> + i as
this time is sufficient such that the marking modified by x(1)x(2) . . . x(i−1) is
available: M<k>[x(1)x(2) . . . x(i) �M<k,i+1> is guaranteed at time t<k−1>+ i
in the associated P-time Petri net. Therefore, the above rule allows that the
P-timed Petri net can follow a time trajectory consistent with subsequence
x<k> and the value q =

∑
i=1,...,|TRun|

xi
<k> = c.x<k> gives a time duration

sufficiently large for all the firings relevant to x<k>.
Finally, considering the last observation y<k> with ‖ y<k> ‖1= 1, the

optimization max(c.x<k>)+1 for a given step < k > provides the worst count
vector which is a guaranteed horizon which cannot restrict the expressivity of
every subsequence for step < k > . �
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In general, the guaranteed time horizon defined by (9) is not the smallest
horizon and can be improved. We can consider a specific Petri net where the
possible parallelism can reduce the necessary horizon to express the sequences.
Another situation is the case of an unobservable input transition that is with-
out input place: the firing can be immediate and occur without delay at time
t<k−1>. In that case, a reduction of the time horizon of one time unit can be
made for each unobservable input transition.

4.2 Untimed systems and linear programming problems

Containing the unobservable subsequences and observable subsequences, each
sequence whose firing at the initial marking is consistent with the observations
must satisfy the enabling condition and the marking equation. Their applica-
tion leads to system (3b) in Proposition 1 of [13] (also, (2) in Lemma 1 of [5],
(5) in [7]). As demonstrated by the proof of this proposition (part Only if),
it does not need the acyclicity assumption which is only necessary when the
aim is to show that algebraic solutions satisfying this system corresponds to
consistent sequences (part (If) in Proposition 1). The optimization of Theo-
rem 1 where the objective is the determination of sufficient time horizons can
be applied to this exact system or to a simplified form of this system. As the
size of the exact system increases with the observations, we now explore the
last case which can give systems where the dimensions only depend on the
structure of the Petri net.

4.2.1 Guaranteed time horizon for step < 1 >

Let us consider the system at step < 1 >. Remember that M<1> is the initial
marking M init. Leading to the observation y<1>, it exists a marking M ′ with

M ′ =M<1> +Wun · x<1> (10)

satisfying M ′[(y )<1> � . So,

M ′ =M<1> +Wun · x<1> ≥W−obs.y
<1> (11)

or,
−Wun.x

<1> ≤ b<1> (12)

where b<1> = M<1> − W−obs.y
<1>. Therefore, a guaranteed horizon for

step < 1 > is provided by the maximization

∇<1>
max = max(c.x<1>) (13)

with the constraints (12) and x<1> ≥ 0.
Example 3 continued.
This example allows to illustrate the computation of a guaranteed horizon

for step < 1 >. Consider the Petri net of Fig. 2 and the relevant untimed
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system (12). We take M<1> =

(
1
0

)
and the observation is y2 at step < 1 >:

so, y<1>
2 = 1. As M<1>

2 = 0, the analysis of the Petri net shows that the

firing of x1 is necessary. So, M<1>[x1 �
(
0
1

)
[y2 �

(
0
0

)
and a possible time

trajectory which can describe the evolution is
θ 0 1 2

x1(θ) 0 1 1

y2(θ) 0 0 1

. So, we can take

t<1> = 2 and the time horizon t<1>− t<0> = 2 or greater values are sufficient
for describe the sequence of step < 1 > . Let us confirm this result.

As Wun =

(
−1
1

)
, W−obs =

(
0 0
0 1

)
and Wobs =

(
1 0
0 −1

)
, inequality (12)

becomes(
1
−1

)
.x<1> ≤

(
M<1>

1

M<1>
2 − y<1>

2

)
=

(
1
−1

)
which gives x<1> = 1 = ∇<1>

max

and hg = ∇<k>
max + 1 = 2 which is coherent with the above results. �

4.2.2 Guaranteed time horizon for the step horizon < 1 > . . . < k >

We now consider a step horizon going from < 1 > to < k > with k ≥ 2. Let

∇<0>→<k>
max = max(c.x<0>→<k>). (14)

AsM<k> =M<1>+Wun ·x<0>→<k−1>+Wobs ·y<0>→<k−1>, the inequal-
ity allowing the observation y<k> for the marking M ′ =M<k> +Wun · x<k>

can be rewritten as follows

−Wun.x
<0>→<k> ≤ b<k> (15)

where b<k> =M<1> +Wobs · y<0>→<k−1> −W−obs.y
<k> for k ≥ 2.

Therefore, the integer linear programming problem

∇<0>→<k>
max = max(c.x<0>→<k>)
−Wun.x

<0>→<k> ≤ b<k> (16)

with
x<0>→<k> ≥ 0,

b<k> =M<1> +Wobs · y<0>→<k−1> −W−obs.y
<k>

computes a guaranteed time horizon for the step horizon going from < 1 > to
< k > for k ≥ 2 if the computed value is finite.

4.2.3 Guaranteed time horizon for a step < k > with k ≥ 2

Let us focus on a guaranteed horizon relevant to a step < k > with k ≥ 2.
From (15), we simply obtain −Wun · x<0>→<k−1> −Wun · x<k> ≤ b<k>
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Moreover, the conditionM<k> ≥ 0 withM<k> =M<1>+Wun·x<0>→<k−1>+
Wobs · y<0>→<k−1> can also be used. We obtain(

−Wun 0
−Wun −Wun

)
.

(
x<0>→<k−1>

x<k>

)
≤(

M<1> +Wobs · y<0>→<k−1>

b<k>

) (17)

Therefore, a guaranteed horizon for step < k > is provided by the maxi-
mization

∇<k>
max = max(c.x<k>) (18)

with the constraints (17), x<k> ≥ 0 and x<0>→<k−1> ≥ 0.
The dimensions of (12), (15) and (17) are constant and only depend on the

parameters of the Petri net and not the sequences: the sizes of the systems are
|P |x|TRun|, |P |x|TRun| and 2.|P |x2.|TRun| respectively.

Example 3 continued.
This example allows to illustrate the computation of a guaranteed horizon

for step < k >. Consider the Petri net of Fig. 2 and the relevant untimed

system (17). We take M<1> =

(
1
0

)
and the sequence of observations is

y2y1y2. So, y<1> = y2, y
<2> = y1 and y<3> = y2. The analysis of the Petri net

shows that M<1>[x1 �
(
0
1

)
[y2 �

(
0
0

)
[y1 �

(
1
0

)
[x1 �

(
0
1

)
[y2 �

(
0
0

)
and x<1> = x1, x<2> = ε and x<3> = x1. A possible time trajectory which
can describe the evolution is

θ 0 1 2 3 4 5

x1(θ) 0 1 1 1 2 2

y1(θ) 0 0 0 1 1 1

y2(θ) 0 0 1 1 1 2

.

For steps < 1 >,< 2 > and < 3 >, we take t<1> = 2, t<2> = 3 and t<3> =
5 corresponding to the observations y2, y1 and y2, respectively. The horizons
h<1> = t<1>−t<0> = 2, h<2> = t<2>−t<1> = 1 and h<3> = t<3>−t<2> = 2
are sufficient to express the relevant trajectories. Let us verify these results.

Inequality (15) at iteration < 3 > becomes(
1
−1

)
.x<0>→<3> ≤

(
M<1>

1 + y<0>→<2>
1

M<1>
2 − y<0>→<2>

2 − y<3>
2

)
=

(
2
−2

)
which gives

x<0>→<3> = 2 = ∇<0>→<3>
max ;

Inequality (17) at < 3 > becomes
1 0
−1 0
1 1
−1 −1

 .

(
x<0>→<2>

x<3>

)
≤


M<1>

1 + y<0>→<2>
1

M<1>
2 − y<0>→<2>

2

M<1>
1 + y<0>→<2>

1

M<1>
2 − y<0>→<2>

2 − y<3>
2

 =


2
−1
2
−2


and its resolution yields 0 ≤ x<3> ≤ 1. So, ∇<3>

max = max(c.x<3>) = 1 and
h<3>
g = ∇<3>

max + 1 = 2 for step < 3 > which is coherent with the above result
h<3> = 2. �



18 P. Declerck

As these systems provide guaranteed majorants with the condition that the
optimization converges to a finite solution, we below analyze the conditions
such that the problems (16) and (18) can give a finite solution. We define
the boundedness of a linear programming problem as the possibility that the
optimal value of the criterion is upper bounded. To facilitate the analysis, we
consider the boundedness of the problem (16) which implies the boundedness
of the problem (18) as (15) is the last row of (17). Moreover, a relaxation over
R allows to exploit useful results of linear programming and also the efficient
softwares of linear programming. Note that the relaxation gives a value equal
to or greater than the value obtained by the direct application of softwares of
integer linear programming.

4.3 Convergence of problem (16) over R

The objective is now to know if ∇<0>→<k>
max is finite otherwise the approach

cannot be applied in all cases. Exploiting the duality, the following result sug-
gests that the maximization (9) provides a finite value when the unobservable
subnet presents a specific characteristic which can be checked once in the es-
timation problem.

Theorem 2 The maximization (9) over R is upper bounded if there is z ≥ 0
over R such that z.Wun ≤ −c with c unitary.

Moreover, c.x<0>→<k> ≤ z.b<k>

Proof.
We search max(c.x) such that A.x ≤ b with x = x<0>→<k> ≥ 0 over the

integers, A = −Wun and b = b<k>.
If we relax the problem over R, the application of the duality theorem

implies
min(z.b) such that z.A ≥ c with z ≥ 0 over R or
z.Wun ≤ −c with z ≥ 0 over R and c unitary with the notations of this

paper. The theorem 4.5 in [8] shows that any possible finite solution z implies
the existence of x satisfying A.x ≤ b and provides a majorant z.b to c.x, or
c.x ≤ z.b (indeed, A.x ≤ b and z.A ≥ c implies z.b ≥ z.A.x ≥ c.x )

With the notations of this paper, we obtain c.x<0>→<k> ≤ z.b<k> and
any solution z ≥ 0 over R provides a majorant of the criterion for the problem
relaxed over R and ad fortiori to the initial problem which is more restrictive
as defined over N. Note that the integer solution x<0>→<k> is also finite as
the obtained value c.x<0>→<k> is finite and c unitary does not contain null
component. �

Note that conversely any possible finite solution x<0>→<k> provides a
minorant c.x to z.b<k>.

Corollary 1 If the maximization (9) over R is not upper bounded, then we
cannot find z ≥ 0 over R such that z.Wun ≤ −c.
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Proof.
This corollary is directly deduced from the negation of the above proposi-

tion. Another reasoning is as follows.
If the maximization (9) over R is not upper bounded, thenmax(c.x) = +∞

which implies an impossibility in the dual problem as any solution to z.A ≥ c
must also satisfy z.b ≥ c.x = +∞ which is impossible over R as z and b are
finite. �

Property 1 The case min(z.b) = − ∞ is not possible in the estimation prob-
lem.

Proof.
Assume that min(z.b) = − ∞. Therefore, in the primal problem, any

solution to A.x ≤ b must also satisfy c.x ≤ z.b ≤ − ∞ which is impossible as
c unitary and x ≥ 0. Note that the practical context of the paper implies that
the Petri net always follows a sequence: c.x ≥ 0. �

The duality theorem implies over R

max(c.x<0>→<k>) = min(z.b<k>) (19)

The condition of existence of z ≥ 0 in the Corollary and Theorem 2 can
be checked with the following linear programming problem

min(c′.zT )
W t

un.z
T ≤ −cT

zT ≥ 0

with c′ a unitary row-vector and |c′| = |z|. The minimization avoids the prob-
lem of boundedness and an unfeasible problem means that there is no z satis-
fying the constraints.

4.4 Discussion

Let us make the connections with the definitions of SB and DSB Petri nets
which are close. The following definition modifies the condition in Theorem 2
by replacing z.Wun ≤ −c by z.Wun < 0.

Definition 4 The unobservable induced Petri net is Relaxed Structurally
Bounded (RSB) if and only if there exists a non-negative vector z over R such
that z.Wun < 0. Formally,

∃z ≥ 0 such that z.Wun < 0 with z over R

So, the last definition considers the unobservable induced subnet and not
the complete Petri net as in definitions of SB and DSB Petri nets. We consider
the real numbers while the definitions of SB and DSB Petri nets are over the
integers. Moreover, the inequalities are different as some components of z in
the proposed definition can be null (z ≥ 0). We present the following result
which makes the connection with Theorem 2.
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Property 2 The maximization in (16) is upper bounded if the unobservable
subnet is RSB.

Proof. From −Wun.x
<0>→<k> ≤ b<k>, we can write

−z.Wun.x
<0>→<k> ≤ z.b<k> as z ≥ 0 does not modify the sign.

Moreover, −z.Wun > 0 by definition: we can always make a multiplica-
tion by a positive scalar λ such that −λ.z.Wun ≥ c with c =

(
1 1 . . . 1

)
or

−z′.Wun ≥ c with z′ = λ.z, the inequality becomes c.x<0>→<k> ≤
−z′.Wun.x

<0>→<k> ≤ z′.b<k> with c unitary. As the right-hand term z′.b<k>

is a (finite) majorant of the left-hand term for any evolution of the system, we
can deduce that c.x<0>→<k> is upper bounded and is always finite. �

5 Simple example with unobservable circuit (example 4)

Let us consider the Untimed Labelled Petri Net (LPN) of Fig. 3 which contains
an unobservable circuit. The simplicity of this Petri net allows to present easily
the main concepts of the approach.

P 
2

P 
1 P 

4

X1 XX2

P 
3

y
1

y
2

Fig. 3 A simple Petri with an unobservable circuit (example 4)

Let TRun = {x1, x2} and TRobs = {y1, y2} . The alphabet AL is {a, b}. La-
bel a is associated with the transition x1 (Ωa = {x1}), and label b is associated
with the transition x2 ( Ωb = {x2}. Hence, n = |TRun| = 2 , n′ = |TRobs| = 2,
n′′ = |AL| = 2 , m = |P | = 4.

The incidence matrices Wun, Wobs, W
−
obs and the initial marking are as

follows: Wun =


−1 0
1 −1
−1 1
0 1

, Wobs =


1 0
0 0
0 0
0 −1

, W−obs =


0 0
0 0
0 0
0 1

 and M<1> =

(
0 1 0 0

)T
. The unobservable subnet is RSB as ∃z =

(
3 3 1 1

)
> 0 such that

z.Wun =
(
−1 −1

)
< 0. Therefore, the proposed approach can be applied in

all situations.
Subsequence to be estimated. We consider the following possible tra-

jectory followed by the Petri net which is assumed to be unknown. Start-
ing from the initial marking M<1> =

(
0 1 0 0

)T
, an obtained sequence is
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x2y1x1y2x2y2y1 which contains the sequence of observable transitions y1y2y2y1
relevant to the sequence of labels abba and corresponding to the count vectors
y<k> given in the table 1 for each step < k > which also contains the subse-
quence of unobservable transitions and x<k>. In the sequel, the objective is
to estimate these unknown subsequences and to compute some criteria.

Table 1 Simulation: observations and unknown data to be estimated

< k > 1 2 3 4
Observation y1 y2 y2 y1

y<k>

(
1
0

) (
0
1

) (
0
1

) (
1
0

)
Subsequence x2 x1 x2 ε

x<k>

(
0
1

) (
1
0

) (
0
1

) (
0
0

)

Phase 1: Determination of a guaranteed horizon
Let us check that the computed time horizons are finite. System (15)
−Wun.x

<1>→<i> ≤M<1> +Wobs · y<1>→<i−1> −W−obs.y
<i> for i ≥ 2

becomes:
1 0
−1 1
1 −1
0 −1

 .x<0>→<k> ≤


y<0>→<k−1>
1

1
0

−y<0>→<k>
2

 . The maximization of (16)

with c unitary provides the time horizon ∇<0>→<k>
max for each step < k > .

The obtained values can be verified by the following algebraic resolution. As
the system is sup-monotone (the system of linear inequalities A.x ≤ b is inf-
monotone (respectively, sup-monotone ) if each row of matrix A has one strictly
negative (respectively positive) element at most [9]), a greatest solution exists
and is x+1 = y<0>→<k−1>

1 and x+2 = 1 + x1
<0>→<k−1> under the condition

of existence y<0>→<k>
2 ≤ x+2 (this relation is always satisfied as it is deduced

from a consistent model describing the considered live Petri net. In addition, all
the considered observations coming from this Petri net are exact. Otherwise,
other estimation approaches must be used [10]). The estimated time horizon
∇<0>→<k>

max is the sum of the firing numbers of the unobservable transitions
computed with the above relation, that is, x+1 +x+2 = 1+2.y<0>→<k−1>

1 which
is always finite.

A candidate horizon∇<k>
max (which is used in the estimation of subsequences

below) is given by the maximization in (18) based on system (17). The first
three lines of the following table 2 represent the known data while the last
four lines are the computed results.

Therefore, the obtained values of ∇<0>→<k>
max and ∇<k>

max are finite and
the proposed approach can be applied. We can check that c.x<k> ≤ ∇<k>

max ≤
∇<0>→<k>

max for each iteration < k > where x<k> is the result of the simulation
in Table 1.
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Table 2 Greatest estimate and computed ∇

< k > 1 2 3 4

y<0>→<k−1>
(
0
0

) (
1
0

) (
1
1

) (
1
2

)
x<k>

(
1
0

) (
0
1

) (
0
1

) (
1
0

)
x+1 0 1 1 1
x+2 1 2 2 2

∇<0>→<k>
max 1 3 3 3
∇<k>

max 1 3 2 0

.

Phase 2: Estimation of subsequences
- Let us consider iteration < 4 > which leads to the simplest calculations:

we have hg = ∇<4>
max + 1 = 1 for < 4 > as there is a unique observation.

As ∇<4>
max = 0, we can deduce that x<k> = 0 and (x(t− hg)) = (x(t)). Let

us verify this result. We have n = 2.|TRun|. The dimensions of matrices A1,
B1, C1 and column vector b1 = C1−B1 · γ are respectively (|P | x 2.|TRun|),
(|P | x 2.|TRobs|), (|P | x 1) and (|P | x 1). γ=(
(y<0>→<k−1>)T (y<0>→<k>)T

)T
=
(
1 2 2 2

)T and

κ=
(
(x(t− 1))T (x(t))T

)T
.

A1 · κ ≤ C1 −B1.γ

where A1=
(
−W+

un W
−
un

)
, B1=

(
−W+

obs W
−
obs

)
and C1 =

(
M<1>

)
.

So,(
−W+

un W
−
un

)
·
(
x(t− 1)

x(t)

)
≤M<1> −

(
−W+

obs W
−
obs

)
.

(
y(t− 1)

y(t)

)
or

0 0
−1 0
0 −1
0 −1

1 0
0 1
1 0
0 0

 · (x(t− 1)

x(t)

)
≤


0
1
0
0

−

−1 0
0 0
0 0
0 0

0 0
0 0
0 0
0 1

 .

(
y(t− 1)

y(t)

)

For y(t− 1) =

(
1
2

)
and y(t) =

(
2
2

)
at iteration < 4 >, a simple res-

olution gives a unique solution with (x(t− hg)) = (x(t)) =

(
1
2

)
which cor-

responds to one firing of x1 and two firing of x2 from iteration < 1 > to
< 4 >. The equality (x(t− hg)) = (x(t)) expresses that there is no new firing
of unobservable transitions for iteration < 4 >, that is x<k> = 0.

- Let us consider iteration < 3 > . We have hg = ∇<3>
max + 1 = 3. The

dimension of vector κ is denoted by n = 4.|TRun| while the dimension of
vector γ is 4.|TRobs|. The dimensions of matrices A1, B1, C1 and column
vector b1 = C1−B1 ·γ are respectively (3.|P | x n), (3.|P | x 4.|TRobs|), (3.|P |
x 1) and (3.|P | x 1).
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γ=
(
(y<1>→<2>)T (y<1>→<2>)T (y<1>→<2>)T (y<1>→<3>)T

)T
with y<1>→<2> =

(
1
1

)
and y<1>→<3> =

(
1
2

)
.

κ=
(
(x(t− 3))T (x(t− 2))T (x(t− 1))T (x(t))T

)T
,

A1 · κ ≤ C1 −B1.γ

where

A1=

−W+
un W−un 0 0

0 −W+
un W−un 0

0 0 −W+
un W

−
un

,

B1=

−W+
obs W−obs 0 0

0 −W+
obs W−obs 0

0 0 −W+
obs W

−
obs

 and C1 =

M<1>

M<1>

M<1>

 .

The minimization and maximization c.x(t) with c unitary gives (x(t))=(
1 2

)T
. The minimization cdiff .κ gives κ=

(
1 2 1 2 1 2 1 2

)T which corre-
sponds to no firing (no variation of the count number vector which is always(
1 2
)T ) and the maximization gives

κ=
(
0 1 1 1 1 2 1 2

)T which describes the subsequence x1x2 for the itera-
tion < 3 > (change (0, 1)→ (1, 1) in

(
0 1 1 1

)T gives x1, (1, 1)→ (1, 2) gives
x2 and (1, 2)→ (1, 2) gives ε). So, for step < 3 >, the estimate x1x2 includes
the subsequence of the simulation x2 which includes ε. The same remark holds
for the other steps.

In table 3, the first part represents the simulation of the Petri net where
y(t) and x<k> for < k > are given. Considering the minimization and the
maximization of the criterion c.κ with c = cdiff for each step < k >, the
second part gives the estimated subsequence (deduced from the trajectory
κ) and the relevant vectors x<k> (deduced from x<k> = x(t) − x(t− h))
which are denoted [xun(t)]

− and [xun(t)]
+ respectively. The tests show that

[x<k>]− ≤ x<k> ≤ [x<k>]+ where x<k> is the count vector of the unknown
subsequence to be estimated. The analysis of the results shows that the un-
known subsequence to be estimated is included by the estimated subsequence
formax(cdiff .κ) and includes the estimated subsequence formin(cdiff .κ). The
estimation is exact for step < 4 > . Note that the values of the criterion are
always lower than or equal to ∇<k>

max computed in Table 2.
Taking c = cba, the last part presents the minimum and maximum of the

balance-sheet on the period [0, t] for PR =
(
−10 20 −15 8

)
: places p1 and p3

have a cost 10 and 15 while places p2 and p4 have a gain 20 and 8 respectively.

6 Comparison with some approaches

In [13], the diagnosis approach of partially observed LPN is based on the reso-
lution of some Integer Linear Programming (ILP) problems for each observed
transition. A fault expressed by an unobservable transition firing is detected
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Table 3 Estimation of subsequences and balance-sheets by step

< k > 1 2 3 4

Observation y1 y2 y2 y1

y(t)

(
1
0

) (
1
1

) (
1
2

) (
2
2

)
Unknown subsequence x2 x1 x2 ε

Unknown x<k>
(

0
1

) (
1
0

) (
0
1

) (
0
0

)
Estimated subsequences ε, x2 ε, x2x1x2 ε, x1x2 ε, ε

Computed x<k>
(

0
0

)
,

(
0
1

) (
0
0

)
,

(
1
2

) (
0
0

)
,

(
1
1

) (
0
0

)
,

(
0
0

)
min(cdiff .κ) and max(cdiff .κ) (0, 1) (0, 3) (0, 2) (0, 0)

minimum and maximum balance-sheets (0, 20) (3, 28) (31, 31) (31, 31)

if it is included in a subset of unobservable sequences coherent with the obser-
vation verifying an ILP problem. The authors proposed a diagnosis approach
based on the resolution of at most F + 2 ILP problems where F is the num-
ber of faults that may occur in the system. The effectiveness was indicated in
the particular case where the unobservable subnet of a bounded LPN was an
acyclic "state machine" where the incidence matrix of the unobservable sub-
net is totally unimodular. In that case, the solutions of the relaxed problem
are integers and the resolution presents a polynomial time. The drawback of
approaches [13] and also [7] is that the receding horizon could not be increased
infinitely as it rises with the cardinality of the observed word and the relevant
execution time. In this paper, the technique based on a sliding window avoids
this limitation.

In the literature, the case of cyclic unobservable induced subnet has been
considered by only few studies as [19] [7] [5]. The study [19] gives an example
presenting a large initial marking where an approach based on a "fluidifica-
tion" can be used when discrete approaches are not applicable in practice.
Using the convexity property, the diagnosis approach is based on the compu-
tation of a set of vertices of a polytope for each observed transition. The firing
vectors of unobservable sequences consistent with an observed transition is the
convex hull of the union of all the vertices thus obtained. The drawback of this
approach is that the time to compute the diagnosis status at a given observa-
tion would increase when the number of vertices at the previous observation
rose and the determination of the complexity is a perspective.

Analyzing an algebraic description of Petri nets close to [13], the paper [5]
focuses on the diagnosability of a fault which is useful during the design phase.
Considering any sequence generated by the system that ends in a failure event,
diagnosability implies that along every continuation of this sequence it is possi-
ble to detect the occurrence of the fault with a finite length of the continuation
and a problem is the existence of an upper bound for the continuation of the
sequence. The paper [5] focuses on a relevant quantitative bound for bounded
Petri nets and checks if the designed system fulfills an algebraic feasibility
problem in terms of number of events needed to detect the faults. Treated
with ILP, a practical question is the possibility to specify a majorant for the
number of events of any sequence that ends in the failure and an upper bound
depending of the initial marking and the T-invariants is presented.
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Section 4 of this paper presents some similarities, as the goal is about a
majorant of a sequence length and the case where only a single transition is
enabled under each reachable marking (the concurrence cannot be exploited)
is used in the establishment of the majorant. However, the objective is different
as we focus on the on-line procedure and not on the diagnosability. Our aim is
to determine a guaranteed time horizon which does not limit the expressivity of
every subsequence for each step < k > and the considered subsequences ends
in an observation and not in an unobservable fault transition. The reading
of [5] suggests that a natural perspective of this proposed paper is the K-
diagnosability.

Finally, an important difference with many papers in Petri nets [19] [7] [5]
is that Section 3 exploits a series of specific count vectors developed in an
approach similar to max-plus algebra where each trajectory, which is defined
with respect to the time, corresponds to a unique sequence contrary to the
count vector used in Section 4 where each count vector is possibly a picture of
different sequences. Therefore, an estimation of subsequences is directly made.

7 Conclusion

In this paper, we have presented an estimation approach which generates sub-
sequences for untimed Petri nets which can be optimal with respect to a gen-
eral criterion expressing a price. The induced unobservable subnet can contain
circuits and self-loops contrary to many papers in this topic.

The approach is based on two optimizations for each step, that is, the
determination of a majorant of the length of the sequences (phase 1 in Section
4) and the estimation of an optimal sequence (phase 2 in Section 3). The
two-phase approach needs the addition of the weak Assumption AS−5 and
we show that Assumption AS−6 is not necessary if a time horizon can be
computed. In particular, the approach is guaranteed in every situation when
the induced unobservable subnet is relaxed structurally bounded which is a
weak assumption introduced in this paper. We provide simple examples to
illustrate the approach and show the validity of the approach.

The proposed approach avoids the classical drawback of the generation
of sets which is time-costly, or even leads to a state explosion even for small
Petri nets. The phase 1 where a relaxation over R is possible uses the standard
software of linear programming as the Simplex which is efficient in practice
or modern algorithms which are known to be polynomial. The phase 2 is
more time costly as the resolution is over the integers but, a relaxation is also
possible in the context of fault diagnosis [7]. Moreover, some general cases
lead to an efficient resolution ( [13], Section IV.d in [9]) and this point will be
discussed in a next paper.

As the horizon is defined by two successive occurrences of observations, a
perspective is a generalization to a larger sliding horizon relevant to a subse-
quence of successive observations. As some firing conditions of the observations
are neglected in systems (15) and (17) which are simplified forms, a second
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perspective is the generalization of these systems. Another natural perspec-
tive is to extend this technique to the schedulability analysis of P-time Petri
nets and Time Stream Petri nets. Finally, the perspectives of the proposed
approach are large as the technique can be applied to any problem needing
the generation of sequences associated with count vectors.
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