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Introduction
To date, protein encapsulation is a very promising area of research 

since many proteins are now available thanks to the recent advances in 
biotechnology. However, their use for therapeutic purpose remains a 
challenge in the field of nano and microencapsulation due to physical 
and chemical instability, proteolysis and short half-life. Protein 
encapsulation into polymeric systems such as PLGA particles has 
proven to be a versatile approach to protect these biomolecules, to 
allow their sustained delivery and to improve their therapeutic efficacy 
[1,2]. Therefore, various methods have been used for the formulation of 
PLGA particles loading proteins such as nanoprecipitation [3,4], spray-
drying and spray-freeze-drying [5-7], phase separation (coacervation) 
[8,9], water/oil/water (w/o/w) [10,11], solid/oil/water (s/o/w) [12,13] 
and other derivative methods [14,15]. The main drawback of these 
techniques is the use of volatile organic solvents which have a potential 
toxicity and so are considered harmful to human health and the 
environment. For example, halogenated solvents such as methylene 
chloride and chloroform are commonly used to dissolve the PLGA in 
the encapsulation process [16,17]. As alternative, less-toxic solvents 
were used such as ethyl acetate [13,18], ethyl formate [19], methyl ethyl 
ketone [20] and acetone [21]. In this sense, non-volatile water-miscible 
solvents, which are safer than the volatile ones, were used like dimethyl 
sulfoxide and N-methyl pyrolidone [4]. Otherwise, supercritical fluids, 
especially CO2, were proposed to completely substitute organic solvents 
or to minimize their use [22,23].

Hence, preparation of PLGA particles using non-toxic solvents 
would be of great interest to reduce the toxicity and to preserve protein 
integrity. Among these solvents, glycofurol (GF) and isosorbide 
dimethyl ether (DMI) appear to be the two safest injectable solvents, 
which have considerably low toxicity profiles confirmed by many 
scientific studies [24-29]. For this reason, they were used in many 
drug products for different therapeutic purposes [30-37] and for the 
formulation of PLGA particles as polymer solvents [38-42].

In our previous study, we have introduced the formulation of 
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Abstract
Nanoparticles of biocompatible and biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) are widely 

used as drug delivery systems for the administration of biomolecules like proteins. The purpose of this work is to validate 
a novel formulation method by a phase separation phenomenon using the non-toxic solvent glycofurol (GF) in order 
to encapsulate proteins into PLGA nanoparticles. Nanoprecipitates of a model protein (lysozyme) and a therapeutic 
protein (TGF-β1) were formed to ensure their stability upon subsequent encapsulation into PLGA nanoparticles. 
Good encapsulation efficiency was obtained with preservation of the structure integrity and protein bioactivity after 
encapsulation. PLGA nanoparticles were then characterized in terms of size, zeta potential and morphology. Moreover, 
residual solvent was quantified and in vitro release study of the encapsulated proteins was performed to demonstrate 
the efficacy of our encapsulation method in drug sustained release. Finally, cytocompatibility study of nanoparticles 
was performed. Thus, we developed an effective method based on the preliminary step of protein precipitation for the 
formulation of PLGA nanoparticles as protein carriers for biomedical applications.

PLGA nanoparticles by a novel phase separation method called 
nanoprecipitation using glycofurol as polymer solvent [38]. In the 
present work, in addition to the encapsulation of lysozyme as a model 
protein, TGF-β1 was chosen to be loaded into these nanoparticles due to 
its important role in cell proliferation, differentiation and extracellular 
matrix metabolism [43]. Therefore, controlled release of TGF-β1 might 
be of great interest in cartilage tissue engineering [44,45]. Proteins were 
firstly precipitated using GF or a mixture of GF and DMI to ensure their 
stability and were then encapsulated into the nanoparticles. Physico-
chemical properties of these nanoparticles were investigated and 
solvent residual content was quantified. Moreover, different techniques 
were performed to confirm the protein integrity and bioactivity upon 
the encapsulation. Besides, in vitro release of the proteins from PLGA 
nanoparticles was presented to ensure the utility of these carriers in 
drug sustained release. Furthermore, cytotoxicity of nanoparticles was 
assessed as preliminary evaluation of the cytocompatibility of these 
systems which will be used in cartilage tissue engineering application. 
This work is involved in a global project which aims to conceive novel 
biomaterials composed of implantable synthetic extracellular matrices 
combined with TGF-β1-loaded particles for cartilage regeneration. 
However, the application of obtained polymeric systems might be 
extended to any domain requiring protein encapsulation.

Materials and Methods
Materials

Lysozyme (14 kDa) from chicken egg-white, Micrococcus 
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lysodeikticus, glycofurol (tetraglycol or α-[(tetrahydro-2-furanyl)
methyl]-ω-hydroxy-poly(oxy-1,2-ethanediyl, isosorbide dimethyl ether 
(1,4:3,6-Dianhydro-2,5-di-O-methyl-D-glucitol), dimethyl sulfoxide 
(DMSO), NaCl, Lutrol® F68 (poloxamer 188) and bovine serum 
albumin (BSA) were obtained from Sigma-Aldrich (Saint Quentin 
Fallavier, France). Ethanol was obtained from Fischer Scientific. Human 
TGF-β1 was purchased from Peprotech (Paris, France). TGF-β1 ELISA 
Kit was obtained from R&D Systems (Lille, France). Micro-BCA 
protein assay reagent kit was purchased from Pierce (Bezons, France). 
Uncapped 75/25 PLGA provided by Phusis (Saint-Ismier, France) had 
a mean molecular weight of 21,000 Da (polydispersity index I=1.8) as 
determined by size-exclusion chromatography (standard: polystyrene). 
Phosphate buffered saline (PBS) was purchased from Lonza 
biowhittaker®, Belgium. Dulbecco’s modified eagle medium (DMEM) 
was provided by Gibco®, Life Technology. Ultrapure water was obtained 
from a Milli-Q® Advantage A10 system (Millipore, Paris, France). All 
samples were lyophilized in Freeze-Dryer (Lyovax GT, Steris®, France) 
for 18 h.

Methods

Protein precipitation and encapsulation: Lysozyme precipitates, 
optimized by Giteau et al. [46], were used for the encapsulation of the 
protein. Precisely, 975 µl of glycofurol (GF) was added to 25 µl of 0.16 
M NaCl solution containing 500 µg lysozyme to obtain a suspension 
of protein precipitates. TGF-β1 was precipitated in similar method but 
adapted to this protein. Mixture of 120 µl GF and 75 µl of isosorbide 
dimethyl ether (DMI) was added to 5 µl of Tris-HCl 0.05M, NaCl 2M 
solution (pH=7.4) containing 15% w/v Lutrol® F68 and 10 µg TGF-β1 
to obtain a suspension of protein precipitates. The encapsulation of 
protein was then performed as previously described in our paper [38]. 
Briefly, 100 µl of the suspension of protein precipitates was added into 
300 µl of 12% w/v PLGA solution in GF to finally obtain a suspension 
of protein precipitates in polymer solution. This suspension was then 
gently mixed with 100 µl of ethanol right before 1.5 ml of 1% Lutrol® 
F68 solution was added into this mixture to start the phase separation 
and thus to produce the nanoparticles. Thereafter, 15 ml of 6% Lutrol® 
F68 solution in 1.25 mM glycine buffer (solution A) was introduced 
into the suspension of nanoparticles. After 15 min, 25 ml of the solution 
A was added and the final suspension was left to stand for 16 h at room 
temperature (≈25°C) for the extraction step. For the preparation of 
blank PLGA nanoparticles, 100 µl of protein precipitates was replaced 
by 100 µl of GF or mixture of GF and DMI. It should be noted that the 
pH of the solution A is 10.35 and 9 in the case of lysozyme and TGF-β1 
respectively. Finally, the suspension of nanoparticles was concentrated 
by centrifuging and then freeze-dried for further quantification. 

Characterization of protein-loaded nanoparticles: The 
morphology of the nanoparticles was performed by transmission 
electron microscopy (TEM, JEOL, JEM1400, Japan). Drops of 
nanoparticle suspension diluted in ultrapure Milli-Q® water were 
deposited in carbon-coated copper grids and negatively stained with 
1% phosphotungstic acid solution, the excess solution was blotted 
off using filter paper, and the grids were air dried before observation. 
Nanoparticle size was determined by dynamic light scattering and zeta 
potential was measured by electrophoretic light scattering principle 
using a Nanosizer® ZS (Malvern Instruments, Worcestershire, UK). 
Suspensions of nanoparticles diluted in ultrapure water to a suitable 
concentration were used for these analyses. Data analysis was performed 
in automatic mode at 25˚C. Measured size was presented as the average 
value of 20 runs, with triplicate measurements within each run.

Quantification of the proteins

Quantification of the model protein (lysozyme): The total 
amount of each batch of freeze-dried nanoparticles was dissolved in 
1 ml of DMSO (3 batches, 3 experiments per batch). After 1 h at room 
temperature, 3 ml of 0.01M HCl was added into the solution. The 
solution was left for an additional hour for protein extraction and then 
samples were taken for further analyses of total and bioactive lysozyme.

Total lysozyme quantification: Total lysozyme content in the 
nanoparticles was measured by micro-BCA protein Kit according to 
the manufacturer’s procedure [47]. Briefly, samples were centrifuged 
at 10,000 g for 30 min to eliminate polymer precipitates and then 100 
µl of supernatant were mixed with 100 µl of BCA reagent in a 96-well 
microplate (Sterilin®, Thermo-Fisher Scientific, France) and incubated 
at 37°C for 2 h away from light. Absorbance was finally measured at 
580 nm with a plate reader (Multiskan Ascent®, Labsystems, USA). A 
standard curve was used to calculate the protein concentration after 
subtraction of the control value of blank sample prepared in the same 
conditions as described in the previous section.

Active lysozyme quantification: The biologically active entrapped 
lysozyme was determined by measuring the protein activity in the 
presence of its substrate, Micrococcus lysodeikticus. Samples were 
diluted to an appropriate range of concentration before being incubated 
with 0.015% Micrococcus lysodeikticus suspension in Tris-HCl (0.05M, 
pH 7.4) buffer solution at 37°C for 4 h. Lysozyme activity determination 
was based on turbidity measurement at 450 nm on a spectrophotometer 
(Shimadzu, Japan). Amount of active protein was calculated using a 
standard curve.

Quantification of the therapeutic protein (TGF-β1)

Enzyme-linked immunosorbent assay (ELISA): As previously 
described, the total amount of each batch of freeze-dried protein-loaded 
nanoparticles was dissolved in 1 ml of DMSO (3 batches, 3 experiments 
per batch). After one hour at room temperature, 3 ml of 10 mM citric 
acid was added into the solution. The solution was left for an additional 
hour for the protein extraction. Samples were diluted to an appropriate 
concentration using reagent diluent according to the manufacturer’s 
procedure. TGF-β1 was then quantified at room temperature using the 
corresponding ELISA Kit. Briefly, a plate (Nunc, polylabo, Strasbourg, 
France) was coated with capture antibody solution. After an overnight 
incubation, the plate was washed with PBS buffer, 0.05% Tween 20 and 
then blocked by adding PBS buffer, 5% Tween 20 in each well for 1 h. 
After washing, aliquots of standard solution and sample solution diluted 
in Kit reagent diluent were added and incubated for 2 h. After washing, 
a detection antibody solution was added and incubated for 2 h. The 
solution was then rinsed and a prepared streptavidin-HRP solution was 
added for 20 min. Afterwards, the plate was washed and a substrate 
solution was added to each well for 20 min. Finally, the reaction was 
stopped by 2N H2SO4 solution and the absorbance was measured at 450 
nm. The calibration curve was generated with appropriate Kit standard 
solution.

Bioactivity assay: In order to quantify bioactive TGF-β1 released 
from nanoparticles, a bioassay was performed as previously described 
by Tesseur et al. [48]. This bioassay relies on the use of mouse 
fibroblasts isolated from TGF-β1-/-mice (MFB-F11) stably transfected 
with a reporter plasmid consisting of TGF-β responsive Smad-binding 
elements coupled to the secreted alkaline phosphatase (SEAP) reporter 
gene. Briefly, MFB-F11 fibroblasts were seeded in 96-well flat bottom 
plates at a density of 3×104 cells/well in 200 µl of DMEM with 4.5 g/L 
glucose and 10% fetal bovine serum (FBS). After an overnight incubation 
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at 37°C and 5% CO2, cells were washed twice with PBS and 100 µl of 
serum-free DMEM was added to each well. After 2 h of incubation, 100 
µl of the sample containing TGF-β1 released from nanoparticles was 
added to the wells. To determine the standard curve, serial dilutions of 
TGF-β1 were added to additional wells. After 24 h at 37°C and 5% CO2, 
50 µl of supernatant was collected for each well in order to measure the 
SEAP activity using the SEAP Reporter Gene Assay, chemiluminescent 
kit according to the manufacturer’s procedure (Roche Applied Science, 
Mannheim, Germany). The chemiluminescence was measured using a 
plate reader (Multiskan Ascent®, Labsystems, USA). 

Structural integrity of lysozyme after encapsulation: Different 
spectroscopic techniques were used to reveal any changes in the 
protein structure after encapsulation. Due to the detection limit of 
these methods (0.06 mg/ml), only structure integrity of lysozyme was 
assessed.

Circular dichroism spectroscopy: Circular dichroism (CD) 
spectra were recorded on a J-810 CD spectrometer (Jasco, Japan) in step 
mode (bandwidth: 2 nm; interval: 0.1 nm; response time: 0.125 s). The 
CD data were collected from 200 to 260 nm using a mini-quartz cell 
(Hellma, Germany) with 0.2 cm path length and averaged over 5 scans 
to increase the signal to noise ratio. The temperature of measurement 
was controlled with a Peltier-effect temperature controller, and was 
usually 20°C. At least three CD spectra were monitored for each sample 
and were scaled in units of milli-degrees (mdeg). The spectra were then 
averaged and smoothed using a 13-point fast fourier transform (FFT) 
algorithm (spectra manager software).

UV-spectroscopy in the fourth derivative mode: Baseline-
corrected absorbance spectra in the range of 260-330 nm were 
recorded at 37°C using a V-530 Jasco UV/Vis spectrophotometer. Data 
acquisition was in steps of 1 nm with an acquisition time of 1s per 
data point. The fourth derivatives of the UV spectra were calculated 
with Spectra Manager analysis software (Jasco, Japan) to improve the 
low resolution of zero-order spectra and provide information about 
structural changes of proteins in the local environment of tyrosine and 
tryptophan residues.

Fluorescence spectroscopy: Spectra were recorded on a FP-6500 
spectrofluorometer (Jasco, Japan) equipped with a Peltier temperature 
controller. The emission spectra were measured (bandwidth: 5 nm: 
response time: 0.5 s; scan rate: 100 nm/min; data pitch: 0.1 nm) in a 0.2 
x 1 cm mini cell (Hellma, Germany) at 25°C. The excitation wavelength 
was 295 nm for selective excitation of the tryptophan residue. The 
spectra were measured three times from 310 to 450 nm and the data 
were averaged to increase the signal-to-noise ratio. All the spectra were 
corrected for the Raman signal and background by subtracting the 
spectrum of the vehicle solution.

Residual glycofurol quantification: Residual glycofurol content 
was analyzed in blank PLGA nanoparticles using a previously described 
protocol [41]. The entire batch was first dissolved in 1 ml of acetone (3 
batches, 3 experiments per batch). The polymer was then precipitated 
by 4 ml of distilled water. Afterwards, the suspension was centrifuged 
at 10,000 g for 30 min, and the supernatant was collected for further 
analysis. Four millimeters of an ammonium cobaltothiocyanate reagent 
solution and 4 ml of methylene chloride were added to the sample. 
Thereafter, this mixture was centrifuged, and the methylene chloride 
phase was extracted to quantify residual glycofurol by measuring the 
absorbance at 620 nm on a spectrophotometer (Shimadzu, Japan).

Protein release study: Protein-loaded nanoparticle suspension of 
an entire batch was put inside a dialysis bag with a 1,000 kDa molecular 

weight cut-off  (Spectrum laboratories, Inc., Rancho Dominguez, CA) 
and placed in a beaker containing 80 ml of 0.05 M Tris-HCl buffer, pH 
7.4, 0.1% w/v BSA in the case of lysozyme and 80 ml of PBS buffer, pH 
7.4, 1% w/v BSA in the case of TGF-β1. The beaker was closed and placed 
in a water bath at 37°C under stirring. At specific time intervals, samples 
from release medium were withdrawn and the whole medium was 
replaced with fresh one. Due to the detection limit of the quantification 
method, only bioactive lysozyme released from nanoparticles over 15 
days was assessed. In the contrary, released TGF-β1 was quantified 
by ELISA and bioassay over 30 days. The experiments were made in 
triplicate. The ratio of cumulative release was calculated based on the 
amount of protein obtained from the encapsulation efficiency.

In vitro cytocompatibility of unloaded PLGA nanoparticles: 
Cytotoxicity evaluation of unloaded nanoparticles was performed using 
MTS assay which measures the reduction of tetrazolium salts caused by 
mitochondrial dehydrogenases of viable cells to water-soluble formazan 
product. Briefly, NIH3T3 mouse cell line, HS68 human fibroblasts 
and human adipose tissue stem cells (hATSC) were seeded in 24-well 
plates at 37°C in a 5% CO2 incubator with a final cell density of 15 × 103 

cells/cm2. After 24 h, the culture medium was changed with unloaded 
nanoparticle suspension in stabilizer solution (Lutrol® F68) after 
dilution with culture medium to an appropriate concentration (0.1-20 
mg/ml). As a control, cells were cultured in the absence of nanoparticle 
suspension. The cultures were further incubated for 48 h, and then NP 
suspension in the culture medium was entirely removed by several 
PBS washes followed by the addition of MTS reagent solution to each 
well for 1 h. The absorbance of resulting blue formazan was measured 
with a plate reader at 490 nm (MultiskanAscent®, Labsystems, USA). 
Each experiment was realized in triplicate. The relative cell viability was 
calculated as the ratio of the mean of optical density obtained for the 
sample to that of the control. Furthermore, the viability assay was used 
to assess the cytotoxicity of the stabilizer used for the preparation of 
nanoparticles suspension. Stabilizer solutions in cell culture medium 
were appropriately diluted to a concentration corresponding to the 
amount present in the Nanoparticle suspension. Values are expressed in 
mean ± standard deviation (SD). The differences between treated and 
untreated cells were evaluated using one-way ANOVA test.

Results and Discussion
Encapsulation of the proteins into PLGA nanoparticles

Many studies showed that protein stability in contact with organic 
solvents is enhanced when the protein is in a solid-state because of 
the decrease in its conformational mobility in the absence of water 
[3,46]. Therefore, in this paper proteins were first precipitated to 
ensure their stability using non-toxic injectable solvents GF and DMI 
[38]. The protein precipitates were then encapsulated within PLGA 
nanoparticles by a phase separation method called nanoprecipitation. 
During the encapsulation step, the pH of dispersing phase was 
buffered to be near to the protein isoelectric point (Pi). In our previous 
study, we have demonstrated the impact of aqueous phase pH on the 
protein encapsulation efficiency [38]. Govender et al. also reported 
the influence of aqueous phase pH on the drug entrapment [49]. It 
is hypothesized that the protein is less ionized at pH near its Pi and 
therefore less soluble in the aqueous phase than in the organic phase. 
This may reduce the protein leakage into the aqueous phase and thus 
increase the encapsulation efficiency. The mean encapsulation efficiency 
was 76 ± 5%; 73 ± 6% for total and active lysozyme respectively. These 
results emphasize high preserved activity (96%) of the total amount of 
lysozyme encapsulated by our process. In the case of the therapeutic 

http://dx.doi.org/10.4172/2157-7439.1000241


Citation: Swed A, Cordonnier T, Fleury F, Boury F (2014) Protein Encapsulation into PLGA Nanoparticles by a Novel Phase Separation Method Using 
Non-Toxic Solvents. J Nanomed Nanotechnol 5: 241. doi: 10.4172/2157-7439.1000241

Page 4 of 8

Volume 5 • Issue 6 • 1000241
J Nanomed Nanotechnol
ISSN: 2157-7439 JNMNT, an open access journal

protein (TGF-β1) the encapsulation efficiency determined by ELISA 
was 50 ± 7% (Table 1).

Characterization of protein-loaded nanoparticles
The results of the TEM observation showed that the prepared 

nanoparticles were spherical in shape and of submicron size (Figure 
1). This was further confirmed by nanoparticle size analysis using 
Nanosizer, which showed that the average size is about 345-381 nm 
with satisfactory polydispersity index (Table 1). These results are in 
agreement with those obtained by Bilati et al. in which non-volatile 
water-miscible solvents like DMSO were used to dissolve PLGA. 
Nanoparticles were also formed by a nanoprecipitation process when 
polymer solution was mixed with a non-solvent such as water, propanol 
or ethanol [4]. Zeta potential measurements showed that PLGA 
nanoparticles had a negative surface charge of about -28 mV (Table 1) 
which could be attributed to the presence of terminal carboxylic groups 
of the polymer on the nanoparticle surface. Comparable results were 
reported in several other studies [50,51].

Lysozyme structural integrity study
Different spectroscopic methods were performed to assess the 

structural integrity of the lysozyme after encapsulation. The structure 
of released lysozyme from the nanoparticles was compared to that 
of the native protein prepared in the same conditions (free protein 
as reference). Generally, if a protein becomes denatured during 
the encapsulation step, it will remain in the same state during the 
release step. Therefore, samples of lysozyme released within 24 h 
from nanoparticles into a PBS solution containing 0.1% w/v Lutrol 
F68® (pH 7.4, 37°C) was collected and concentrated using Amicon® 
ultra centrifugal filters (Ultracel®-3 KDa, Germany) to obtain the 
concentration of 0.06 mg/ml. Secondary structure of each protein 
was analyzed by CD measurement. The comparison between released 
and free lysozyme CD spectra was performed. The Figure 2A showed 
that the secondary structure of both proteins was unchanged and thus 
preserved upon and after encapsulation.

Fluorescence spectroscopy spectra showed a reduced level of 
fluorescence intensity without change in peak maximum which is 
possibly due to a quenching of the fluorescence rather than changes in 
the protein integrity (Figure 2B). These results were confirmed with the 
fourth derivative UV-visible spectra which did not show any shift of 
maxima in the area corresponding to tyrosine and tryptophan residues 

Batch EE ± SD (%) Size ± SD (nm) PI ± SD Zeta potential ± SD (mV)
Lysozyme-loaded NPs 76 ± 5 381 ± 68 0.14 ± 0.05 -29 ± 2.6
TGF-β1-loaded NPs 50 ± 7 345 ± 35 0.13 ± 0.03 -28 ± 1.3

*EE: encapsulation efficiency; SD: standard deviation; PI: mean polydispersity index expressed using a 0-1 scale (n=3)
Table 1: Characterization of PLGA nanoparticles prepared by the phase separation method*.

 
Figure 1: TEM images of nanoparticles (A), and at high magnification (B).
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Figure 2: Results of spectroscopic studies of native lysozyme (solid curve) and encapsulated lysozyme (dotted curve).The far-UV CD, fluorescence and fourth 
derivative of UV spectra are shown in panel A, B and C respectively.
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(284 and 290 nm respectively) indicating no change in the secondary 
structure after encapsulation (Figure 2C).

Residual glycofurol content

Residual glycofurol content is of 14.2 ± 1.3 mg per 100 mg 
nanoparticles. In our previous paper [38], the presence of residual 
glycofurol was assessed using DSC analysis (Differential scanning 
calorimetry) by the decrease of PLGA transition temperatures from 
around 45°C to around 27.5°C. Comparable results were found by 
Allhenn et al. [41]. Non-volatile solvents are generally more difficult 
to extract compared to volatile ones. In spite of the incomplete solvent 
extraction, no loss of protein integrity or bioactivity was detected 
as described above. Furthermore, lysozyme stability was tested in 
glycofurol at 24°C by Aubert-Pougëssel et al. and results showed that 
100% of biologically active protein was recovered [52].

In vitro release study of the protein from nanoparticles

The release profiles of lysozyme and TGF-β1 from nanoparticles 
are shown in Figures 3A and 4A. Both proteins were released in a 
biphasic mode. The first phase is characterized by a fast release which 
probably results from the solubilization of protein that usually exists 
near the surface. The second phase is characterized by a slow release 
which could be attributed to the degradation of polymer matrix leading 
to the diffusion of the entrapped protein. Similar profiles of protein 
release are found in the literature for such nano-sized systems [53-55]. 

The extents of lysozyme and TGF-β1, released in the first day, were 
about 44% and 7% respectively (Figures 3B and 4B). These results are 
believed to be related to the fact that lysozyme has a higher quantity 
of loaded protein than TGF-β1 (50 µg and 5 µg respectively for 36 mg 
of PLGA theoretically) and thus a higher initial release. Probably, with 
the increase in drug loading, a large protein gradient is formed within 
particles toward release medium which induces a faster drug release 
and consequently a higher burst effect [56]. On the other hand, the 
release rate of lysozyme from nanoparticles was higher than that of 
TGF-β1 over 15 days (64% and 18% respectively, Figures 3A and 4A), 
which indicates that release kinetics of the proteins from nanoparticles 
are influenced by the physicochemical characteristic of each protein 
(Lysozyme: pi=11, MW=14 kDa, TGF-β1: pi=8.6, MW=25 kDa). Due 
to its higher molecular weight, TGF-β1 has likely less diffusion rate and 
more interaction with the polymer matrix than lysozyme and thus a 
lower release rate. Interestingly, the amount of total TGF-β1 released 
after 24 h quantified by ELISA is equal to that of active protein quantified 
by bioassay (Figure 4B). This result confirms that the biological activity 
of TGF-β1 was preserved after encapsulation. Similar results were also 
obtained for lysozyme as previously described indicating the versatility 
of our method for protein encapsulation. After 24 h of release study, 
PLGA nanoparticles were recovered and freeze-dried to quantify the 
remaining active lysozyme. 56% of active lysozyme was found to be 
remaining in each sample. While the released active lysozyme added 
to the remaining active protein is equal to 100% after 24 h, it is not 
the case after 15 days where about 12% of active lysozyme was found 
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to be remaining inside the nanoparticles, which means that 24% of 
the total amount of active lysozyme was denatured. Similar results 
were observed for TGF-β1 quantified by ELISA. After 24 h, the total 
amount of TGF-β1 (released amount added to remaining amount) is 
equal to 100% whilst after 15 days, about 36% of the total amount was 
denatured. Thus, we believe that protein denaturation occurs inside 
the nanoparticles during the release step since we have proven in a 
preliminary study that both proteins are stable in the release medium. 
However, over the whole time of release study, bioactive released 
TGF-β1 quantified by bioassay represented 84% of the total amount 
of released TGF-β1 quantified by ELISA which is also supposed to be 
related to the protein denaturation inside the nanoparticles during the 
release step. It should be noted that Lutrol® F68 was used during the 
precipitation step in the case of TGF-β1 to enhance its stability in the 
polymer matrix and thus improving its release as described in many 
studies [57,58]. However, an incomplete release was observed for each 
protein. These findings was reported earlier in the literature [59,60] 
and could be prone to many denaturation mechanisms such as non-
specific adsorption onto the polymer, acid-induced aggregation due 
to polymer degradation, and moisture-induced aggregation [61,62]. 
Many strategies have been proposed by different authors to improve 
protein stability within PLGA particles during the release step [63,64]. 
In order to minimize protein adsorption and to enhance water uptake 
and thereby promoting the release rate, pegylated PLGA or a blend of 
PEG and PLGA were used [16,65]. Basic salts such as zinc carbonate 
and magnesium compounds were proposed to inhibit acid-induced 
protein degradation inside the polymeric particles during the release 
[66,67]. Other additives like ammonium sulphate were also used to 
minimize moisture-induced protein aggregation during slow PLGA 
particles hydration [68]. These approaches are now under investigation 
and would be considered in a future work.

Cytocompatibility study

The safety of PLGA particles as drug delivery systems is very 
important for medical applications. However, PLGA nanoparticles are 
well known to be biodegradable and biocompatible in vitro and in vivo 
compared to other nanoparticles of a similar size range such as zinc 
oxide, ferrous oxide and fumed silica which exhibit toxic effects when 
applied in the field of nanomedicine [69,70].

An in vitro cytotoxicity study was conducted to assess the cell 
viability following exposure to the unloaded PLGA nanoparticles, NIH-
3T3, HS68 and hATSC cells were cultured in the presence of unloaded 
PLGA nanoparticles. MTS assay showed excellent cell viability even at 
high nanoparticles concentration (20 mg/ml) (Figure 5). Furthermore, 

the cells viability in NP suspension was comparable to that in stabilizer 
solution (Lutrol® F68) at a concentration corresponding to the amount 
present in the nanoparticle suspension (data not shown). These 
results confirm the cytocompatibility of PLGA nanoparticles which 
are in agreement with data obtained earlier in the literature [71-73]. 
It should be noted that the proliferation of cells was observed after 48 
h of incubation with unloaded NPs starting from concentration of 5 
mg/ml. Various parameters might affect the cell proliferation such as 
the methodology of NP formulation, residual solvent and cell lines 
type. However, more specific assays on cell proliferation, such as assays 
based on DNA quantification, should be considered in future work in 
order to confirm this effect. In this experiment, our goal was to assess 
the cytocompatibility of obtained nanoparticles which will be used for 
tissue engineering applications where the effect on cell proliferation 
might be of interest.

Conclusion
In this study, protein-loaded nanoparticles were prepared using 

non-toxic solvents by a novel phase separation method based on a 
preliminary step of protein precipitation. Interestingly, structural 
integrity and biological activity of the encapsulated proteins were 
preserved and good encapsulation efficiencies were also achieved. 
Sustained released of the proteins from the prepared nanoparticles was 
assessed. Nevertheless, the optimization of protein release is still in 
progress. This work can serve as an alternative for classic encapsulation 
methods which use volatile toxic solvents. Further efforts will be 
provided for the development of the final product in the form of 
hybrid biomaterials for regenerative medicine application. Therefore, 
the potential of these polymeric systems to allow proliferation and 
differentiation of chondrocytes in vitro will be firstly assessed in a future 
work. Then, TGF-β1-loaded PLGA nanoparticles could be combined 
to a hydrogel containing adult stem cells as an implantable synthetic 
extracellular matrix for cartilage regeneration. In addition to the interest 
of obtained nanoparticles for tissue engineering, their application can 
be extended to any domain requiring protein encapsulation. 
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