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Abstract

In this paper, we investigate the verification problem of initial-state detectability (I-detectability) and initial-state opacity (I-
opacity) in discrete event systems modeled by unambiguous weighted automata. An I-observer is constructed so as to derive
necessary and sufficient conditions for checking strong I-detectability, weak I-detectability, and I-opacity, with exponential
complexity. In addition, an approach based on diagnosability analysis is proposed for verifying strong I-detectability. Compared
with an I-observer-based approach, the diagnosability-based approach has a lower complexity, and in the case where all the
unobservable events in an unambiguous weighted automaton are represented by a unique symbol, the diagnosability-based
approach has polynomial complexity.

Key words: Weighted automaton; initial state estimation; initial-state detectability; initial-state opacity.

1 Introduction

I-detectability and I-opacity problems are tightly re-
lated to state estimation that has been extensively
studied in discrete event systems (DESs) framework.
In general, state estimation can be divided into two
categories: current-state estimation, e.g., Shu & Lin
(2011), Keroglou & Hadjicostis (2017), Lai et al. (2019)
and initial-state estimation, e.g., Shu & Lin (2013),
Saboori & Hadjicostis (2013), Yin (2017). In this paper,
we focus on the problem of initial-state estimation and
its applications to I-detectability and I-opacity.

Shu & Lin (2013) formulate the initial-state estimation
problem of non-deterministic finite state automata
(NFAs) as I-detectability. It characterizes whether the
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initial state of an NFA can be uniquely determined
after a finite number of labels have been observed.
An exponential (resp. a polynomial-time) complexity
algorithm is introduced for checking weak (resp. strong)
I-detectability based on the construction of an I-observer
(resp. I-detector). Yin (2017) introduces the notion of
stochastic initial-state detectability (SI-detectability)
by considering the probabilistic sensor failures. SI-
detectability characterizes the convergence of the prob-
ability for determining the initial-state of a probabilistic
finite state automaton. An algorithm with PSPACE-
complete complexity is proposed for verifying the SI-
detectability.

A system is said to be initial-state opaque if the
set of initial states estimated by an intruder for any
observation contains at least one element that does not
belong to the secret. In Saboori & Hadjicostis (2013), an
initial-state estimator is constructed, which can be used
to verify I-opacity of an NFA for both invariant-secret
and varying-secret. The initial-state estimator has up to

2n
2

states, where n is the number of states in the NFA.
In addition, when the secret is fixed, the complexity of
verifying I-opacity is reduced to O(4n) by introducing
the notion of verifier. Recently, Wu & Lafortune (2013)
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prove that the initial state of an NFA can be estimated by
the observer of its reverse automaton, and as a result, the
verification complexity of I-opacity is reduced to O(2n).
More work on (initial-state) detectability or opacity can
be found in Yin & Lafortune (2017), Shu & Lin (2012),
Zhang (2017), Masopust & Yin (2019a), Zhang et al.
(2019), Yin et al. (2019), Masopust & Yin (2019b),
Bryans et al. (2005), Sasi & Lin (2018), Ji et al. (2019).

Weighted automata (WAs) represent a well studied
class of DES models (Gaubert 1995). Unlike classical
automata, transitions in WAs carry weights belonging
to a semiring. The weight associated with a transition
can model, e.g., the cost, the energy, the time needed
for executing the transition. WAs have spurred much
interest in Computer Science due to their elegant and
sound algebraic framework as well as their relevance
in practical applications, such as natural language
processing, speech recognition and image compression
(Droste et al. 2009). From a different perspective, in
this paper, we investigate I-detectability and I-opacity
verification problems for WAs, which are core problems
with the control community. So far, we have found
a formal approach to verify these properties for an
important class of WAs, namely, unambiguous weighted
automata (UWAs), where no two or more paths are
labeled by a given string leading to the same state.

To explore the modeling power of UWAs, it is worth
mentioning that the relation between max-plus au-
tomata (MPAs) and timed Petri nets (TPNs) has been
investigated. From a safe TPN under the preselection
policy, it is possible to derive an MPA with the same
timed behaviour (Gaubert & Mairesse 1999, Lahaye
et al. 2015). If the race policy is considered, it has
been shown that bounded TPNs can be represented by
deterministic max-plus automata (DMPAs) (Komenda
et al. 2016, Triska & Moor 2020). Note that DMPAs
constitute a subclass of unambiguous MPAs and the
proposed I-detectability and I-opacity approach can be
applied. It should also be noted that determinization
procedures can be used to transform MPAs into DMPAs
with the same timed behavior (Gaubert 1995, Mohri
1997, Kirsten 2008, Lahaye et al. 2020). Using such
a transformation, a fairly large class of MPAs can be
considered, that is, at least the polynomially ambiguous
MPAs having the clones property.

Because of the influence of the transition weights, the
I-detectability and I-opacity of a UWA are different
from that of its support, i.e., the corresponding logical
automaton obtained by removing all the weights in the
UWA. For instance, considering the UWA G in Fig. 1,
its support is not strongly I-detectable. On the other
hand, taking into account quantitative information, it is
shown later that G is strongly I-detectable. Besides, if
we assume that the set of secret states is Qs = {1, 3}, it
can be shown that G is not initial-state opaque while its
support is initial-state opaque with respect to Qs.

The above aspects motivate the work in this paper,
i.e., the verification of I-detectability and I-opacity for
UWAs. The main contributions are as follows. 1) We
extend the notion of I-detectability and I-opacity from
logical DESs to the framework of WAs. Two types of
I-detectability, namely strong I-detectability and weak
I-detectability are defined. 2) Given a UWA, a formal
procedure is first proposed to construct its initial-
state estimator (called I-observer). Then, necessary and
sufficient conditions with exponential complexity are
developed for verifying I-detectability and I-opacity of
the studied UWA based on the constructed I-observer.
3) An approach based on diagnosablility analysis is
presented for checking strong I-detectability of a UWA.
In the case that the unobservable events are not
distinguished by an external agent, i.e., all unobservable
events in a UWA are represented by a single symbol, the
approach is of polynomial complexity.

This paper is organized as follows. Section 2 recalls
some basics of WAs. Section 3 formulates the notion
of I-detectability and I-opacity. In Section 4.1, the I-
observer based approach is proposed to verify strong
and weak I-detectability of a UWA. Section 4.2 presents
a diagnosability-based approach for verifying strong I-
detectability of a UWA. In Section 5, a necessary and
sufficient condition is presented for checking I-opacity of
a UWA. Finally, conclusions are drawn in Section 6.

2 Preliminaries

In this section we recall some basics of weighted
automata (Droste et al. 2009), where transitions carry
weights belonging to a semiring S = (D,⊕,⊗, ε, e),
where ε (resp. e) denotes the neutral element for addition
⊕ (resp. multiplication ⊗). Typical examples are the
tropical semiring (R ∪ {+∞} ,min,+,+∞, 0) and max-
plus semiring (R ∪ {−∞} ,max,+,−∞, 0).

Let E be an alphabet, i.e., a non-empty set of labels, and
E∗ be the set of all the finite strings over E including
the empty string λ. The set of matrices with m rows and
n columns over semiring S is denoted by Sm×n.

Definition 1 A weighted automaton over a semiring
S = (D,⊕,⊗, ε, e) is equivalently defined by G =
(Q,E, α, µ) or G = (Q,E, t,Qi, %), where

• Q and E are respectively a non-empty finite set of
states and an alphabet;

• α ∈ S1×|Q| is a row vector specifying the initial
weights. A state q ∈ Q is said to be an initial state iff
αq 6= ε, where αq is the initial weight of q. We denote
by Qi the set of initial states, and % : Qi → D is the
function of initial weights %(q) , αq for q ∈ Qi;

• µ: E → S|Q|×|Q| is a morphism representing the state
transitions given by the family of matrices µ (a) ∈
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S|Q|×|Q|, a ∈ E. More precisely, we have µ(a)qq′ 6= ε 1

if, and only if, there is a transition labeled by a with
a weight of µ(a)qq′ from state q to q′. For any string
ω = e1 · · · ek ∈ E∗, we have µ(ω) = µ(e1) ⊗ µ(e2) ⊗
· · · ⊗ µ(ek). t : Q × E × Q → D is the transition

function with t(q, a, q′) , µ(a)qq′ , and for string ω =
e1e2 · · · en ∈ E∗, t(q, ω, q′) = µ(ω)qq′ .

Definition 2 Given a WA G, a path of length
k is defined as a sequence of transitions π =
(q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk), where qj ∈ Q,
j = 0, . . . , k, ej ∈ E and µ(ej)qj−1qj 6= ε for j = 1, . . . , k.

Such a path π leads from state q0 to qk, and is labeled
by e1e2 · · · ek ∈ E∗. Besides, π is said to be a circuit if

q0 coincides with qk. We use p
ω
 q to represent the set

of paths labeled by string ω ∈ E∗ from state p to q. For

P,R ⊆ Q, we denote by P
ω
 R the union of p

ω
 q for

all p ∈ P and q ∈ R.

Definition 3 A WA G is said to be unambiguous if for

all q ∈ Q, for all ω ∈ E∗, |Qi
ω
 {q} | ≤ 1.

In simple words, the unambiguity implies that for any
state q of G and any string ω in E∗, there is at most one
path labeled by ω leading from an initial state to q.

Remark 1 If Qi = Q, a WA is unambiguous iff any
state has no two or more input transitions labeled by
the same symbol. In the case of Qi 6= Q, the above
characterization provides only a sufficient condition for
unambiguity. Besides, a WA is said to be deterministic if
it has a unique initial state and from any state, no two or
more output transitions are labeled by the same symbol.
Determinism implies unambiguity, but the reverse is not
true. 2

Example 1 Fig. 1 depicts a UWA G = (Q,E, α, µ),
where Q = {1, 2, 3, 4, 5, 6, 7}, E = {u, b, c, d}, µ(u)1,2 =
1, µ(u)4,5 = 2, µ(u)5,6 = 3, µ(b)2,3 = 6, µ(b)6,3 = 4,
µ(c)3,3 = 2, µ(c)7,7 = 2, µ(d)5,7 = 2, and α =
(e, ε, ε, e, ε, ε, ε). All the non-listed coefficients in µ(u),
µ(b), µ(c) and µ(d) are equal to ε, meaning that they do
not model possible transitions in the automaton. G is
not deterministic since it has two initial states. 2

Definition 4 Given an arbitrary path π =
(q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) of UWA G
with q0 ∈ Qi, the weighted sequence σ(π) ∈
(E × D)∗ generated by π is defined as: σ(π) =
(e1, τ1)(e2, τ2) · · · (ek, τk) where τ1 = αq0 ⊗ µ(e1)q0q1 ,
τj = τj−1 ⊗ µ(ej)qj−1qj for j = 2, . . . , k.

1 We assume that the states of G are ordered by positive
integers, and by a slight abuse of notation, αq (resp. µ(a)qq′)

is used to denote the qth element of α (resp. the element in
the qth row and q′th column of matrix µ(a)).

1 2 3

4 5 7

6

/ 1u

/ 2u

/ 4b

/ 6b
/ 2c

/ 2c

/ 2d

e

e

/ 3u

Fig. 1. An unambiguous weighted automaton G.

Here, σ(π) specifies a sequence of labels and their

occurrence weights. We use q0
σ(π)
 qk to represent

that weighted sequence σ(π) leads from q0 to qk. In
the rest of this paper, we focus on semirings where ⊗
represents the usual addition, which fits with WAs where
weights represent the durations or consumed energy of
state transitions. In other words, the weights along an
evolution of a WA are interpreted as time or energy
accumulated by addition, and an external agent observes
this value in addition to events occurrences.

Definition 5 Given a UWA G = (Q,E, α, µ), the
generated weighted language L(G) of G is defined as:

L(G) = {y ∈ (E ×D)
∗ | ∃q ∈ Q,

∃ω ∈ E∗,∃π ∈ Qi
ω
 {q} : σ(π) = y}.

(1)

For any sequence σ ∈ L(G), we denote by labf (σ) ∈ E
the last label in σ.

Example 2 Consider path π = (1, u, 2)(2, b, 3)(3, c, 3)
in UWA G in Fig. 1. By Def. 4, we have σ(π) = (u, e⊗
µ(u)1,2)(b, e⊗µ(u)1,2⊗µ(b)2,3)(c, e⊗µ(u)1,2⊗µ(b)2,3⊗
µ(c)3,3) = (u, e ⊗ 1)(b, e ⊗ 1 ⊗ 6)(d, e ⊗ 1 ⊗ 6 ⊗ 2) =
(u, 1)(b, 7)(c, 9), and labf (σ(π)) = c. 2

In this paper, alphabet E is partitioned into two disjoint
parts: the unobservable partEuo and the observable part
Eo. The projection operator P : E∗ → E∗o is defined as:
P (λ) = λ, where λ represents the empty string; for each
a ∈ E,ω ∈ E∗, P (ωa) = P (ω)a if a ∈ Eo, otherwise,
P (ωa) = P (ω). We extend P : E∗ → E∗o to weighted
sequences P : (E ×D)

∗ → (Eo ×D)
∗
. We denote by

P (L(G)) the set of all observable weighted sequences for
G, and by σ1σ2 the concatenation of weighted sequences
σ1 and σ2. In addition, σ2 is a prefix of σ1 if there exists
another sequence σ3 such that σ1 = σ2σ3.

3 Notion of I-Detectability and I-Opacity

As in Lai et al. (2020), without loss of generality, we
restrict our attention to a WA G = (Q,E, α, µ), where
the weights of all initial states are equal to e. We make
the following assumptions on the studied WAG: (1)G is
unambiguous; (2)G is deadlock free, that is, for any state
of the system, there exists at least one output transition,
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i.e., (∀q ∈ Q)(∃a ∈ E, q′ ∈ Q)µ(a)qq′ 6= ε; (3) There is
no circuit labeled only by unobservable labels in G.

(2) implies that the length of a generated weighted
sequence becomes infinite as the system evolves in-
definitely. (3) implies that the generated sequences
of unobservable labels have finite length. Besides, as
mentioned in the introductory section, (1) defines the
broadest class of WAs for which we have been so far able
to handle I-detectability and I-opacity verification.

3.1 Initial-State Detectability

Definition 6 Given a UWAG, the set of possible initial
states after observing σo ∈ P (L(G)) is defined as

I(σo) = {q ∈ Qi | ∃q′ ∈ Q,
∃σ ∈ L(G) : P (σ) = σo, q

σ
 q′}.

(2)

Lemma 1 Consider a non-empty observation σo ∈
P (L(G)). Let

I ′(σo) = {q ∈ Qi | ∃q′ ∈ Q,∃σ ∈ L(G) :

P (σ) = σo, q
σ
 q′, labf (σ) = labf (σo)}.

(3)

Then I(σo) = I ′(σo).

Proof: Let qi be an initial state with qi ∈ I ′(σo).
According to Eqs. (2) and (3), qi ∈ I(σo). On the
other hand, consider an initial state q0 ∈ I(σo). By
Eq. (2), there must exist a path π from q0 ending
with labf (σo) or an unobservable label such that
P (σ(π)) = σo. If π ends with labf (σo), then it
is trivial that q0 ∈ I ′(σo). When π ends with an
unobservable label, we assume that it can be represented
as π = (q0, v1e1, q1) · · · (qn−1, vnen, qn)(qn, vn+1, qn+1),
where v1, . . . , vn+1 ∈ E∗uo. Let π′ =
(q0, v1e1, q1) · · · (qn−1, vnen, qn). Then π′ satisfies Eq.
(3). Hence, q0 belongs to I ′(σo). 2

As in a logical DES (Shu & Lin 2013), in this paper,
a possible trajectory of a WA G is represented by an
infinite sequence of (label, weight) pairs that G may
generate. The set of all possible trajectories of G defines
the ω-language Lω(G). For any sequence σ ∈ Lω(G), we
denote by Pre(σ) the set of all its prefixes.

Definition 7 (Strong (Weak) I-Detectability)
Given a UWA G = (Q,E, α, µ), where the set of initial
states Qi ⊆ Q is not empty, i.e., Qi 6= ∅, G is strongly
(resp. weakly) I-detectable with respect to projection
P if, for all (resp. some) trajectories, the set of possible
initial states shrinks to a singleton after a finite number
of observations, i.e.,

(∃n ∈ N)(∀σ (resp. ∃σ) ∈ Lω(G))(∀σ′ ∈ Pre(σ))

|P (σ′)| > n⇒ |I(P (σ′))| = 1.

From the above definition, we know that if a UWA is
strongly I-detectable, then it is weakly I-detectable.

3.2 Initial-State Opacity

The generated weighted language of a UWA G =
(Q,E, α, µ) from an initial state qi ∈ Qi is defined as

L(G, qi) = {y ∈ (E ×D)
∗ | ∃q ∈ Q,

∃ω ∈ E∗,∃π ∈ qi
ω
 q : σ(π) = y}.

(4)

In addition, given a subset X ⊆ Qi, we define the
weighted language generated from X as L(G,X) =⋃
qi∈X L(G, qi). Due to unambiguity, if Qi = Q1

i ∪ Q2
i ,

then the generated weighted language of G can be
represented by L(G) =

⋃
qi∈Qi

L(G, qi) = L(G,Q1
i ) ∪

L(G,Q2
i ), and P (L(G)) = P (L(G,Q1

i )) ∪ P (L(G,Q2
i )).

Given a UWA G = (Q,E, α, µ), an intruder can only
observe the projection of the generated language, i.e.,
P (L(G)). Assume that the intruder has full knowledge
of the structure of G, and that the secret is described by
an arbitrary subset of Q.

Definition 8 (Initial-state opacity) Given a UWA
G = (Q,E, α, µ), projection P : E∗ → E∗o , and a
set of secret states Qs ⊆ Q, G is initial-state opaque
with respect to Qs and P , if for all q ∈ Qi ∩ Qs
and for all σ ∈ L(G, q), there exist q′ ∈ Qi \ Qs
and σ′ ∈ L(G, q′) such that P (σ′) = P (σ), that is,
P (L(G,Qi ∩ Qs)) ⊆ P (L(G,Qi \ Qs)), or equivalently,
P (L(G)) = P (L(G,Qi \Qs)).

Example 3 Consider again the UWA G in Fig. 1. We
assume that the set of secret states is Qs = {3, 4},
and u is the only unobservable label. (1) Detectability
analysis: Initially, G can be in state 1 and/or state
4. Once an observation is obtained, i.e., (b, 7), (b, 9)
or (d, 4), we can uniquely determine the initial state,
from which the system starts. Therefore, G is strongly
I-detectable and weakly I-detectable. If the weight of
transition (5, u, 6) is now changed from 3 to 1, then G
is not strongly I-detectable. It can be found that for
infinite weighted sequence (b, 7)(c, 9)(c, 11)(c, 13) · · · , we
have I((b, 7)(c, 9)(c, 11)(c, 13) · · · ) = {1, 4}. (2) Opacity
analysis: Consider the secret initial state 4 and σ =
(u, 2)(d, 4) ∈ L(G, 4). No weighted sequence can be
generated by G from non-secret initial state 1 such that
its projection is equal to P (σ). ThereforeG is not initial-
state opaque with respect to secret Qs. 2

4 Verification of I-Detectability

4.1 I-observer for Strong and Weak I-Detectability

We show that the strong and weak I-detectability
of a UWA G can be checked using an I-observer
of an augmented automaton obtained from G. The
construction of the I-observer extends the approach
in Shu & Lin (2013) by using a weighted alphabet
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that captures the quantitative information associated to
observations.

The I-observer Gaugobs = (Qaugobs , E
aug
obs , δ

aug
obs , q

aug
i,obs) of a

UWA G = (Q,E, t,Qi, %) is constructed by Algorithm
1, which contains two steps. Step 1 extends G to its
augmented version Gaug = (Qaug, E, taug, Qaugi , %aug),
in which each state qaug ∈ Qaug is a pair (qc, qi),
representing that state qc can be reached in G from
initial state qi. Step 2 computes the observer Gaugobs for
the augmented automaton Gaug by the approach that
is first presented in our recent work Lai et al. (2020).
Observer Gaugobs is a deterministic finite state automaton
over a weighted alphabet Eaugobs ⊆ Eo×D. That is, Gaugobs
has only one initial state, and from a given state no two
transitions of Gaugobs are labeled by the same weighted
label (a, ta) ∈ Eaugobs .

Algorithm 1 Construction of the I-observer of a UWA

Input: A UWA G = (Q,E, t,Qi, %).
Output: An I-observer Gaugobs =

(Qaugobs , E
aug
obs , δ

aug
obs , q

aug
i,obs) of G.

1: Construct an augmented automaton Gaug of G as
follows:
• Qaugi = {(q, q) | q ∈ Qi} is the set of initial states;
• %aug : Qaugi → D is the function of initial weights

defined as: %aug((q, q)) = %(q);
• Qaug1 = {(q, qi) | q ∈ Q, qi ∈ Qi};
• taug : Qaug1 × E × Qaug1 → D is the transition

function, where taug((qc, qi), a, (q
′
c, q
′
i)) is defined

as: taug((qc, qi), a, (q
′
c, q
′
i)) = t(qc, a, q

′
c) if qi = q′i;

otherwise, taug((qc, qi), a, (q
′
c, q
′
i)) = ε;

• Let Gaug = (Qaug, E, taug, Qaugi , %aug) =
Ac(Qaug1 , E, taug, Qaugi , %aug) 2 .

2: Compute the observer Gaugobs of Gaug, i.e., the I-
observer of G as follows:
• qaugi,obs = Qaugi ;

• Eaugobs consists of all weighted labels (a, τ) ∈ Eo ×
(D \ {ε}) for which ∃q ∈ Q1 ∪ Qaugi , ∃q′ ∈ Qaug,
∃v ∈ E∗uo, s.t. taug(q, va, q′) = τ , where Q1 =
{q ∈ Qaug | ∃q′ ∈ Qaug,∃a ∈ Eo : taug(q′, a, q) 6= ε}
is the set of states in Gaug that have at least one
input transition marked by an observable label;
• δaugobs : 2Q

aug×Eaugobs → 2Q
aug

is the state transition
function. δaugobs (qaugobs , (a, τ)) is defined as:

δaugobs (qaugobs , (a, τ)) = {q′ ∈ Qaug | ∃q ∈ qaugobs ,

∃v ∈ E∗uo : taug(q, va, q′) = τ}.

• Let Gaugobs = (Qaugobs , E
aug
obs , δ

aug
obs , q

aug
i,obs) =

Ac(2Q
aug

, Eaugobs , δ
aug
obs , q

aug
i,obs).

Example 4 Consider again the UWA G in Fig. 1.

2 In this paper, we denote by the Ac(G) the automaton
obtained by removing all the states that are not accessible
as well as transitions associated with such states in G.

By applying Algorithm 1, we obtain the augmented
automaton Gaug and I-observer Gaugobs visualized in Figs.
2 and 3, respectively. 2

/ 1u / 6b

/ 2u

/ 2c

/ 2c

/ 4b

/ 2c
/ 2d

( )1,1 ( )2,1 ( )3,1

( )4,4 ( )5,4 ( )6,4 ( )3,4

( )7,4

e

e / 3u

Fig. 2. Augmented automaton Gaug of G in Fig. 1.

Fig. 3. I-observer Gaug
obs of G in Fig. 1.

Let (Eaugobs )
∗

be the set of all the finite strings over
weighted alphabet Eaugobs including (λ, e). The language
generated by the I-observer is

L(Gaugobs ) = {ω ∈ (Eaugobs )
∗ | ∃qaugobs ∈ Q

aug
obs :

δaugobs (qaugi,obs, ω) = qaugobs },

which is a subset of (Eaugobs )
∗
, i.e., L(Gaugobs ) ⊆

(Eaugobs )
∗
. For any observed weighted sequence

σo = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ P (L(G)), we define
σelemo = (a1, τ1)(a2, τ2− τ1) · · · (an, τn− τn−1) to denote
its equivalent notation in (Eaugobs )

∗
. Note that τk − τk−1

represents the weight for the elementary transition
according to ak for k = 2, 3, . . . , n. We denote by

P (L(G))
elem

the equivalent notation of P (L(G)), that
is,

P (L(G))
elem

= {σ ∈ (Eo ×D)
∗ | ∃σo ∈ P (L(G)) :

σelemo = σ}.

The following lemma states the relationship between the
languages generated by G and Gaugobs . The proof follows
immediately from the construction process of Gaugobs , and
hence here it is omitted.

Lemma 2 The language L(Gaugobs ) generated by I-

observer Gaugobs coincides with P (L(G))
elem

, that is,

L(Gaugobs ) = P (L(G))
elem

.

Lemma 3 The possible initial states of UWA G
after observing a non-empty weighted sequence σo =
(a1, τ1)(a2, τ2) · · · (ak, τk) ∈ P (L(G)) is given by

I(σo) = {qi ∈ Qi | ∃qc ∈ Q : (qc, qi) ∈
δaugobs (qaugi,obs, (a1, τ1)(a2, τ2 − τ1) · · · (ak, τk − τk−1))}.
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Proof:

I(σo) = I ′(σo) (by Lemma 1)

= {qi ∈ Qi | ∃qc ∈ Q,∃σ ∈ L(G) : P (σ) = σo, qi
σ
 qc,

labf (σ) = labf (σo)}
= {qi ∈ Qi | ∃qc ∈ Q,∃σ ∈ L(Gaug) :

P (σ) = σo, (qi, qi)
σ
 (qc, qi), labf (σ) = labf (σo)}

(by step 1 in Algorithm 1)

= {qi ∈ Qi | ∃qc ∈ Q : (qc, qi) ∈
δaugobs (qaugi,obs, (a1, τ1)(a2, τ2 − τ1) · · · (ak, τk − τk−1))}

(by Proposition 1 in Lai et al. (2020)) 2

Now we introduce the criteria for checking strong I-
detectability and weak I-detectability for UWA G based
on its I-observer Gaugobs . We denote by Sci the set of all
elementary circuits of Gaugobs as:

Sci = {(qaugobs , s) ∈ Q
aug
obs × (Eaugobs )

∗ | δaugobs (qaugobs , s) = qaugobs

∧ |s| ≥ 1 ∧ [∀s′ ∈ Pre(s) s.t. s′ 6= s ∧ |s′| ≥ 1 :

δaugobs (qaugobs , s
′) 6= qaugobs ]}.

Besides, we use qaugobs ∈ (qaugobs
′
, s) to represent that node

qaugobs is visited by circuit (qaugobs
′
, s). Let QaugI,obs be a subset

ofQaugobs consisting of states with the same second element
(initial state of G), that is,

QaugI,obs = {qaugobs ∈ Q
aug
obs | ∃q ∈ Qi,

∀(qc, qi) ∈ qaugobs : qi = q}.

Theorem 1 (Criterion for Checking Strong I-
Detectability) A UWA G is strongly I-detectable with
respect to projection P iff any node belonging to an
elementary circuit ofGaugobs is inQaugI,obs. Formally, ∀qaugobs ∈
Qaugobs , if ∃(qaugobs

′
, s) ∈ Sci such that qaugobs ∈ (qaugobs

′
, s),

then qaugobs ∈ Q
aug
I,obs.

Proof: (If) By Algorithm 1, we know that once G
reaches a state belonging to QaugI,obs, it will stay in QaugI,obs

forever. Suppose ∀qaugobs ∈ Q
aug
obs , if ∃(qaugobs

′
, s) ∈ Sci such

that qaugobs ∈ (qaugobs
′
, s), then qaugobs ∈ QaugI,obs. Then, I-

observerQaugobs will eventually reach a state inQaugI,obs after
a finite number of observations for all trajectories of G.
Hence, by combining Lemma 3, the set of possible initial
states is a singleton for all possible continuations, that
is, G is strongly I-detectable. (Only If) Assume ∃qaugobs ∈
Qaugobs , ∃(qaugobs

′
, s) ∈ Sci such that qaugobs ∈ (qaugobs

′
, s) and

qaugobs ∈ Q
aug
obs \Q

aug
I,obs. Then a possible evolution of G can

iterate indefinitely circuit (qaugobs
′
, s). That is, we cannot

determine the initial state of G for such a trajectory
forever. Hence, G is not strongly I-detectable. 2

Theorem 2 (Criterion for Checking Weak I-
Detectability) A UWA G is weakly I-detectable with

respect to P iff QaugI,obs 6= ∅.

Proof: (If) If QaugI,obs is not empty, then I-observer Qaugobs

can reach a state in QaugI,obs after a finite number of
observations for some trajectories of G. In this case,
we can determine the only possible initial state of G
for trajectories corresponding to continuations of these
observations. Hence, G is weakly I-detectable. (Only If)
If QaugI,obs = ∅, then the set of possible initial states does
not shrink to a singleton whatever the trajectory is, i.e.,
G is not weakly I-detectable. 2

Example 5 Consider the I-observer Gaugobs in Fig. 3 of
UWA G in Fig. 1. There are four states in Gaugobs , i.e.,
{(1, 1), (4, 4)}, {(3, 1)}, {(3, 4)}, {(7, 4)}, and we have
QaugI,obs = {{(3, 1)} , {(3, 4)} , {(7, 4)}}. It can be checked

that all elementary circuits have all their nodes inQaugI,obs.
Therefore, by Theorem 1, G is strongly I-detectable
(hence weakly I-detectable). 2

Remark 2 For checking strong I-detectability of UWA
G = (Q,E, α, µ), we have to find out all states
that belong to an elementary circuit in its I-observer
Gaugobs = (Qaugobs , E

aug
obs , δ

aug
obs , q

aug
i,obs). This can be done by

finding all the strongly connected components in Gaugobs ,
whose complexity is linear in the number of states and
transitions of Gaugobs , i.e., O(|Qaugobs | + |Q

aug
obs | × |E

aug
obs | ×

|Qaugobs |). By Algorithm 1, |Qaugobs | is bounded by 2|Q|
2 −1.

Hence, the complexity of verifying strong and weak I-

detectability using I-observer isO(22|Q|
2×|Eaugobs |), where

|Eaugobs | is usually exponential in |Q|. 2

4.2 Diagnosability-based Approach for Strong I-
Detectability

We present an approach that has lower complexity
(compared with the I-observer-based method), but is
still exponential, to verify the strong I-detectability of
a UWA G. We show that this verification can be done
by means of diagnosability analysis of a new UWA G′

obtained fromG. To perform the diagnosability analysis,
we extend the algorithm in Jiang et al. (2001) to build
an automaton denoted by Gd from G′ with a weighted
alphabet.

Definition 9 Given a UWA G = (Q,E, t,Qi, %), where
Qi = {q1, q2, . . . , qn} is the set of n initial states, a
modified UWA G′ = (Q′, E′, t′, Q′i, %

′) obtained from G
is defined by adding a new state qw /∈ Q and |Qi| new
labels

{
f1, f2, . . . , f|Qi|

}
∩ E = ∅ as follows.

• Q′ = Q ∪ {qw} is the finite set of states;
• E′ = E ∪

{
f1, f2, . . . , f|Qi|

}
;

• t′ : Q′ × E′ × Q′ → D is the transition function
defined as: t′(qw, fi, qi) = e for i = 1, 2, . . . , |Qi|;
t′(q, a, q′) = t′(q, a, q′) if q, q′ ∈ Q and a ∈ E;
otherwise, t′(q, a, q′) = ε;
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• Q′i = {qw} is the set of initial states;
• %′ : Q′i → D is the initial weights function: %′(qw) = e.

In simple words, G′ is a UWA obtained from G by
adding a new state qw to become the unique initial state,
and by introducing new state transitions (qw, fi, qi) with
identity weights for i = 1, 2, . . . , |Qi|.

Example 6 Consider the UWA G in Fig. 1. The
modified automaton G′ is depicted in Fig. 4. 2

1/u

ef /
1

2/u
ef /

2

3/u

4/b

6/b

2/d

2/c

2/c

0

1 2 3

4 5

6

7

e

Fig. 4. Modified automaton G′ of G in Fig. 1.

Let fi, i = 1, 2, . . . , |Qi|, be unobservable labels
belonging to |Qi| different types of faults, i.e., Ef =
Ef1 ∪ Ef2 ∪ · · · ∪ Ef |Qi| = {f1} ∪ {f2} ∪ · · · ∪

{
f|Qi|

}
,

and suppose that all labels in E represent normal
behavior. We denote by E′uo = Euo ∪ Ef the set of
unobservable labels in G′. For any weighted sequence
s = (e1, τ1)(e2, τ2) · · · (en, τn) ∈ (E′ ×D)

∗
or any

logical sequence s = e1e2 · · · en ∈ (E′)
∗
, we denote by

labi(s) = e1 the first label in s. As in logical automata
(Sampath et al. 1995), the diagnosability of UWA G′ =
(Q′, E′, t′, Q′i, %

′) can be defined as follows.

Definition 10 (Diagnosability) The UWA G′ =
(Q′, E′, t′, Q′i, %

′) is diagnosable with respect to
projection P : (E′)∗ → E∗o and |Qi| different types of
faults Ef =

{
f1, f2, . . . , f|Qi|

}
if the following holds:

(∀fi ∈ Ef )(∃ni ∈ N)(∀v = (fi, e)t ∈ L(G′), |t| ≥ ni)⇒
(∀ω ∈ L(G′), P (ω) = P (v))(labi(ω) = fi).

In simple words, diagnosability requires that when a
fault label fi occurs in G′, after a finite number of
observations, one can detect its occurrence. The follow-
ing lemma follows immediately from the construction
process of G′ given in Def. 9, and the relationship
between diagnosability and strong I-detectability.

Lemma 4 A UWA G is strongly I-detectable iff the
modified UWA G′ given in Def. 9 is diagnosable with
respect to P : (E′)∗ → E∗o and |Qi| different types of
faults Ef =

{
f1, f2, . . . , f|Qi|

}
.

Inspired by the work in Jiang et al. (2001), we present
an approach for determining if G′ is diagnosable with
respect to a single fault type Efi = {fi}, i ∈
{1, 2, . . . , |Qi|}, based on the construction of a finite
state automaton Gd = (Qd, Ed, δd, q

d
w) over a weighted

alphabet Ed ⊆ Eo ×D, as defined in Algorithm 2.

Algorithm 2 Construction of Gd for Efi = {fi}
Input: UWA G′ = (Q′, E′, t′, Q′i, %

′).
Output: NFA Gd = (Qd, Ed, δd, q

d
w).

1: Construct an NFA Go from G′ as follows:
• qow = (qw, N);
• Q′o = {(q, f) | q ∈ Q1 ∪ {qw} , f ∈ {N,Fi}} where
Q1 = {q ∈ Q′ | ∃q′ ∈ Q′,∃a ∈ Eo : t′(q′, a, q) 6= ε}
is the set of states inG′ that have at least one input
transition marked by an observable label;
• Ed consists of all weighted labels (a, τ) ∈ Eo ×

(D \ {ε}) for which ∃q ∈ Q1 ∪ {qw}, ∃q′ ∈ Q′,
∃v ∈ (E′uo)

∗, s.t. t′(q, va, q′) = τ ;
• δo ⊆ Q′o × Ed ×Q′o is the set of state transitions.

((q, f), (a, τ), (q′, f ′)) ∈ δo iff ∃v ∈ (E′uo)
∗ s.t.

1) t′(q, va, q′) = τ ;
2) (f ′ = f)∧ (|v| = 0∨ (|v| ≥ 1∧ labi(v) 6= fi)) or

(f ′ = Fi) ∧ (|v| ≥ 1 ∧ labi(v) = fi).
• Let Go = (Qo, Ed, δo, q

o
w) = Ac(Q′o, Ed, δo, q

o
w).

2: Compute automaton Gd = Go ‖ Go, the parallel
composition of Go with itself, as follows:
• qdw = (qow, q

o
w) = ((qw, N), (qw, N));

• Q′d =
{

(q1o , q
2
o) | q1o , q2o ∈ Qo

}
;

• δd ⊆ Q′d × Ed ×Q′d is the set of state transitions.
((p1o, p

2
o), (a, τ), (q1o , q

2
o)) ∈ δd iff (p1o, (a, τ), q1o) ∈ δo

and (p2o, (a, τ), q2o) ∈ δo.
• Let Gd = (Qd, Ed, δd, q

d
w) = Ac(Q′d, Ed, δd, q

d
w).

Example 7 Consider the UWA G′ in Fig. 4. Assuming
that f1 is the unique fault, by applying Algorithm 2,
we can obtain Go and Gd shown in Figs. 5 and 6,
respectively. 2

( ),4d

( ),2c
( ),7b

( ),9b

( ),2c

( )0,N

( )13,F

( )3,N

( )7,N

( ),2c

Fig. 5. Diagram of Go of G′ with respect to fault f1.

( ),4d
( ),2c

( ),7b

( ),9b
( ),2c

( ),2c

( ) ( )( )0, , 0,N N

( ) ( )( )1 1
3, , 3,F F

( ) ( )( )7, , 7,N N

( ) ( )( )3, , 3,N N

Fig. 6. Diagram of Gd with respect to fault f1.

Let Scd be the set of all elementary circuits of Gd.
Besides, for q′d ∈ Qd and (qd, s) ∈ Scd, we use q′d ∈ (qd, s)
to represent that node q′d is visited by circuit (qd, s).
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Theorem 3 UWA G′ is diagnosable with respect to
fault type Efi = {fi}, i ∈ {1, 2, . . . , |Qi|}, iff for
every node ((q1d, f

1), (q2d, f
2)) ∈ Qd that belongs to an

elementary circuit in Gd, we have f1 = f2. Formally,
∀((q1i , f1), (q2i , f

2)) ∈ Qd, if ∃(qd, s) ∈ Scd such that
((q1i , f

1), (q2i , f
2)) ∈ (qd, s), then f1 = f2.

Proof: (If) We suppose that G′ is not diagnosable with
respect to fi, i ∈ {1, 2, . . . , |Qi|}. According to Def.
10 on diagnosability, this implies that there exist two
infinite weighted sequences in G′ such that they have
equal projection, one contains fi and the other one
does not contain fi. Since Gd is finite, by considering
the relationship between Gd and G′, there must exist
an elementary circuit (qd, s), where the labels of all
the first elements of all nodes are N , and the labels
of all the second elements of all nodes are Fi. Hence,
∃((q1i , f1), (q2i , f

2)) ∈ Qd, ∃(qd, s) ∈ Scd such that
((q1i , f

1), (q2i , f
2)) ∈ (qd, s) and f1 6= f2.

(Only If) We assume that ∃((q1i , f1), (q2i , f
2)) ∈ Qd,

∃(qd, s) ∈ Scd such that ((q1i , f
1), (q2i , f

2)) ∈ (qd, s) and
f1 6= f2. We can further assume that f1 = N and
f2 = Fi. According to the construction of Gd, the above
assumptions imply that for any ((q1j , f

1
j ), (q2j , f

2
j )) ∈

(qd, s), we have f1j = f1 = N and f2j = f2 = Fi. Since
elementary circuit (qd, s) can be repeated infinitely, by
considering the relationship between Gd and G′, there
are two infinite weighted sequences γ1 and γ2 in G′

with the same projection, γ1 contains fault fi, and γ2
does not contain fi. More precisely, γ1 and γ2 lead
from the initial state qdw to the entry point qd of circuit
(qd, s) and repeat this circuit infinitely. Assume that
qd is reached by v, i.e., qd ∈ δd(q

d
w, v). Then we have

P (γ1)elem = P (γ2)elem = svj , where j is a large enough
integer. Therefore, by Def. 10 of diagnosability, G′ is not
diagnosable. 2

Remark 3 Similar to Remark 2, the necessary and
sufficient condition in Theorem 3 can be verified by
finding all the strongly connected components in Gd =
(Qd, Ed, δd, q

d
ω), whose complexity is O(|Qd| + |Qd| ×

|Ed| × |Qd|). From Algorithm 2, the number of states
in Go is bounded by 2 × (|Q| + 1) = 2|Q| + 2. Due
to Gd = Go ‖ Go, |Qd| is bounded by (2|Q| + 2)2 =
4|Q|2+8|Q|+4. Algorithm 2 should be applied |Qi| times
for testing the diagnosability of G′ with respect to |Qi|
different fault types. Therefore, by combining Lemma 4,
the complexity of verifying strong I-detectability based
on diagnosability for UWA G is O(|Q|4 × |Ed| × |Qi|),
where |Ed| is exponential in |Q| in general. Note that
under the assumption that all the unobservable events
of UWA G are represented by a unique symbol, |Ed|
is bounded by |Q|3 × |Eo|, and the above exponential
complexity is reduced to polynomial. 2

Example 8 ConsiderGd presented in Fig. 6. According
to Theorem 3, we know that the corresponding UWA G′

in Fig. 4 is diagnosable with respect to fault f1. Similarly,
it can be checked that G′ is diagnosable with respect to
fault f2 by constructing another Gd on f2 (here Gd is
omitted). Therefore, according to Lemma 4, the original
system G in Fig. 1 is strongly I-detectable, which is
consistent with the result in Example 5. 2

5 Verification of Initial-State Opacity

In this section, we show that the I-observer constructed
in Section 4.1 can be used to check I-opacity of UWAs.

Lemma 5 Given a UWA G = (Q,E, α, µ), projection
P : E∗ → E∗o , and a set of secret states Qs ⊆ Q, G is
initial-state opaque with respect to Qs and P iff for all
σo ∈ P (L(G)), I(σo) * Qs holds.

Proof:

(∀σo ∈ P (L(G)))I(σo) * Qs

⇔ (∀σo ∈ P (L(G)))(∃q′ ∈ I(σo))q
′ /∈ Qs

⇔ (∀σo ∈ P (L(G)))(∃q′ ∈ Qi \Qs)(∃q ∈ Q)

(∃σ′ ∈ L(G))P (σ′) = σo ∧ q′
σ′

 q

(by the definition of I(σo) in Equation (2))

⇔ (∀σo ∈ P (L(G)))(∃q′ ∈ Qi \Qs)(∃σ′ ∈ L(G, q′))

P (σ′) = σo
(according to Equation (4))

⇔ (∀σo ∈ P (L(G,Qi ∩Qs)))(∃q′ ∈ Qi \Qs)
(∃σ′ ∈ L(G, q′))P (σ′) = σo

(by P (L(G)) = P (L(G,Qi ∩Qs)) ∪ P (L(G,Qi \Qs)) 3 )

⇔ (∀q ∈ Qi ∩Qs)(∀σ ∈ L(G, q))(∃q′ ∈ Qi \Qs)
(∃σ′ ∈ L(G, q′))P (σ′) = P (σ)

which is consistent with Def. 8 on I-opacity. 2

For any qaugobs ∈ Qaugobs , we define I(qaugobs ) =
{qi ∈ Qi | ∃(qc, qi) ∈ qaugobs } as the initial states of
automaton G that it contains. The following theorem
illustrates that the I-observer Gaugobs can be used to verify
the I-opacity for UWA G.

Theorem 4 Given a UWAG = (Q,E, α, µ), projection
P : E∗ → E∗o , and a set of secret states Qs ⊆ Q, G is
initial-state opaque with respect to Qs and P iff

(∀qaugobs ∈ Q
aug
obs )I(qaugobs ) * Qs

where Qaugobs is the set of states in I-observer Gaugobs of G.

Proof: It follows from Lemmas 3 and 5. 2

3 More precisely, (⇒) holds true simply because P (L(G,Qi∩
Qs)) ⊆ P (L(G)). In order to prove the correctness of (⇐),
we have to prove that for all σo ∈ P (L(G,Qi \ Qs)), there
exist q′ ∈ Qi \ Qs and σ′ ∈ L(G, q′) such that P (σ′) = σo,
which is self-evident.
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Example 9 Consider the I-observer Gaugobs in Fig. 3 of
UWAG in Fig. 1. It can be checked thatG is always non-
opaque with respect to P and an arbitrary secret Qs so
long as Qs ∩Qi 6= ∅. In fact, among the states of Gaugobs ,
we have I({3, 1}) = {1} and I({3, 4}) = I({7, 4}) =
{4}. Therefore, for a secret Qs containing initial state 1
and/or 4, there necessarily exist one state qaugobs ∈ Q

aug
obs

such that I(qaugobs ) ⊆ Qs. 2

6 Conclusion

In this paper, an I-observer is constructed to verify the
strong I-detectability, weak I-detectability and I-opacity
of UWAs. Besides, a diagnosability-based approach,
with a lower complexity, is proposed for checking strong
I-detectability. Our future work is to explore new
techniques that can handle the I-detectability and I-
opacity problem for more general classes of WAs.
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