Aiwen Lai 
email: aiwenlai@xmu.edu.cn
  
Sébastien Lahaye 
email: sebastien.lahaye@univ-angers.fr
  
Zhiwu Li 
  
Initial-State Detectability and Initial-State Opacity of Unambiguous Weighted Automata

Keywords: Weighted automaton, initial state estimation, initial-state detectability, initial-state opacity

In this paper, we investigate the verification problem of initial-state detectability (I-detectability) and initial-state opacity (Iopacity) in discrete event systems modeled by unambiguous weighted automata. An I-observer is constructed so as to derive necessary and sufficient conditions for checking strong I-detectability, weak I-detectability, and I-opacity, with exponential complexity. In addition, an approach based on diagnosability analysis is proposed for verifying strong I-detectability. Compared with an I-observer-based approach, the diagnosability-based approach has a lower complexity, and in the case where all the unobservable events in an unambiguous weighted automaton are represented by a unique symbol, the diagnosability-based approach has polynomial complexity.

1 Introduction I-detectability and I-opacity problems are tightly related to state estimation that has been extensively studied in discrete event systems (DESs) framework. In general, state estimation can be divided into two categories: current-state estimation, e.g., [START_REF] Shu | Generalized detectability for discrete event systems[END_REF], [START_REF] Keroglou | Verification of detectability in probabilistic finite automata[END_REF], [START_REF] Lai | State estimation of max-plus automata with unobservable events[END_REF] and initial-state estimation, e.g., [START_REF] Shu | I-detectability of discrete-event systems[END_REF], [START_REF] Saboori | Verification of initial-state opacity in security applications of discrete event systems[END_REF], [START_REF] Yin | Initial-state detectability of stochastic discrete-event systems with probabilistic sensor failures[END_REF]. In this paper, we focus on the problem of initial-state estimation and its applications to I-detectability and I-opacity. [START_REF] Shu | I-detectability of discrete-event systems[END_REF] formulate the initial-state estimation problem of non-deterministic finite state automata (NFAs) as I-detectability. It characterizes whether the initial state of an NFA can be uniquely determined after a finite number of labels have been observed. An exponential (resp. a polynomial-time) complexity algorithm is introduced for checking weak (resp. strong) I-detectability based on the construction of an I-observer (resp. I-detector). [START_REF] Yin | Initial-state detectability of stochastic discrete-event systems with probabilistic sensor failures[END_REF] introduces the notion of stochastic initial-state detectability (SI-detectability) by considering the probabilistic sensor failures. SIdetectability characterizes the convergence of the probability for determining the initial-state of a probabilistic finite state automaton. An algorithm with PSPACEcomplete complexity is proposed for verifying the SIdetectability.

A system is said to be initial-state opaque if the set of initial states estimated by an intruder for any observation contains at least one element that does not belong to the secret. In [START_REF] Saboori | Verification of initial-state opacity in security applications of discrete event systems[END_REF], an initial-state estimator is constructed, which can be used to verify I-opacity of an NFA for both invariant-secret and varying-secret. The initial-state estimator has up to 2 n 2 states, where n is the number of states in the NFA. In addition, when the secret is fixed, the complexity of verifying I-opacity is reduced to O(4 n ) by introducing the notion of verifier. Recently, [START_REF] Wu | Comparative analysis of related notions of opacity in centralized and coordinated architectures[END_REF] prove that the initial state of an NFA can be estimated by the observer of its reverse automaton, and as a result, the verification complexity of I-opacity is reduced to O(2 n ). More work on (initial-state) detectability or opacity can be found in [START_REF] Yin | A new approach for the verification of infinite-step and k-step opacity using two-way observers[END_REF], [START_REF] Shu | Delayed detectability of discrete event systems[END_REF], [START_REF] Zhang | The problem of determining the weak (periodic) detectability of discrete event systems is pspace-complete[END_REF], Masopust & Yin (2019a), [START_REF] Zhang | Opacity of nondeterministic transition systems: A (bi) simulation relation approach[END_REF], [START_REF] Yin | Infinite-step opacity and k-step opacity of stochastic discrete-event systems[END_REF], [START_REF] Masopust | Deciding detectability for labeled petri nets[END_REF], [START_REF] Bryans | Modelling opacity using Petri nets[END_REF], [START_REF] Sasi | Detectability of networked discrete event systems[END_REF], [START_REF] Ji | Enforcing opacity by insertion functions under multiple energy constraints[END_REF].

Weighted automata (WAs) represent a well studied class of DES models [START_REF] Gaubert | Performance evaluation of (max,+) automata[END_REF]. Unlike classical automata, transitions in WAs carry weights belonging to a semiring. The weight associated with a transition can model, e.g., the cost, the energy, the time needed for executing the transition. WAs have spurred much interest in Computer Science due to their elegant and sound algebraic framework as well as their relevance in practical applications, such as natural language processing, speech recognition and image compression [START_REF] Droste | Handbook of weighted automata[END_REF]. From a different perspective, in this paper, we investigate I-detectability and I-opacity verification problems for WAs, which are core problems with the control community. So far, we have found a formal approach to verify these properties for an important class of WAs, namely, unambiguous weighted automata (UWAs), where no two or more paths are labeled by a given string leading to the same state.

To explore the modeling power of UWAs, it is worth mentioning that the relation between max-plus automata (MPAs) and timed Petri nets (TPNs) has been investigated. From a safe TPN under the preselection policy, it is possible to derive an MPA with the same timed behaviour [START_REF] Gaubert | Modeling and analysis of timed petri nets using heaps of pieces[END_REF][START_REF] Lahaye | Compositions of (max,+) automata[END_REF]. If the race policy is considered, it has been shown that bounded TPNs can be represented by deterministic max-plus automata (DMPAs) [START_REF] Komenda | Determinization of timed petri nets behaviors[END_REF][START_REF] Triska | Behaviour equivalent max-plus automata for a class of timed petri nets[END_REF]. Note that DMPAs constitute a subclass of unambiguous MPAs and the proposed I-detectability and I-opacity approach can be applied. It should also be noted that determinization procedures can be used to transform MPAs into DMPAs with the same timed behavior [START_REF] Gaubert | Performance evaluation of (max,+) automata[END_REF][START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF][START_REF] Kirsten | A burnside approach to the termination of mohri's algorithm for polynomially ambiguous min-plus-automata[END_REF], Lahaye et al. 2020). Using such a transformation, a fairly large class of MPAs can be considered, that is, at least the polynomially ambiguous MPAs having the clones property.

Because of the influence of the transition weights, the I-detectability and I-opacity of a UWA are different from that of its support, i.e., the corresponding logical automaton obtained by removing all the weights in the UWA. For instance, considering the UWA G in Fig. 1, its support is not strongly I-detectable. On the other hand, taking into account quantitative information, it is shown later that G is strongly I-detectable. Besides, if we assume that the set of secret states is Q s = {1, 3}, it can be shown that G is not initial-state opaque while its support is initial-state opaque with respect to Q s .

The above aspects motivate the work in this paper, i.e., the verification of I-detectability and I-opacity for UWAs. The main contributions are as follows. 1) We extend the notion of I-detectability and I-opacity from logical DESs to the framework of WAs. Two types of I-detectability, namely strong I-detectability and weak I-detectability are defined. 2) Given a UWA, a formal procedure is first proposed to construct its initialstate estimator (called I-observer). Then, necessary and sufficient conditions with exponential complexity are developed for verifying I-detectability and I-opacity of the studied UWA based on the constructed I-observer.

3) An approach based on diagnosablility analysis is presented for checking strong I-detectability of a UWA. In the case that the unobservable events are not distinguished by an external agent, i.e., all unobservable events in a UWA are represented by a single symbol, the approach is of polynomial complexity. This paper is organized as follows. Section 2 recalls some basics of WAs. Section 3 formulates the notion of I-detectability and I-opacity. In Section 4.1, the Iobserver based approach is proposed to verify strong and weak I-detectability of a UWA. Section 4.2 presents a diagnosability-based approach for verifying strong Idetectability of a UWA. In Section 5, a necessary and sufficient condition is presented for checking I-opacity of a UWA. Finally, conclusions are drawn in Section 6.

Preliminaries

In this section we recall some basics of weighted automata [START_REF] Droste | Handbook of weighted automata[END_REF], where transitions carry weights belonging to a semiring S = (D, ⊕, ⊗, ε, e), where ε (resp. e) denotes the neutral element for addition ⊕ (resp. multiplication ⊗). Typical examples are the tropical semiring (R ∪ {+∞} , min, +, +∞, 0) and maxplus semiring (R ∪ {-∞} , max, +, -∞, 0).

Let E be an alphabet, i.e., a non-empty set of labels, and E * be the set of all the finite strings over E including the empty string λ. The set of matrices with m rows and n columns over semiring S is denoted by S m×n .

Definition 1 A weighted automaton over a semiring

S = (D, ⊕, ⊗, ε, e) is equivalently defined by G = (Q, E, α, µ) or G = (Q, E, t, Q i , )
, where

• Q and E are respectively a non-empty finite set of states and an alphabet; • α ∈ S 1×|Q| is a row vector specifying the initial weights. A state q ∈ Q is said to be an initial state iff α q = ε, where α q is the initial weight of q. We denote by Q i the set of initial states, and : Q i → D is the function of initial weights (q) α q for q ∈ Q i ; • µ: E → S |Q|×|Q| is a morphism representing the state transitions given by the family of matrices µ (a) ∈ S |Q|×|Q| , a ∈ E. More precisely, we have µ(a) qq = ε 1 if, and only if, there is a transition labeled by a with a weight of µ(a) qq from state q to q . For any string

ω = e 1 • • • e k ∈ E * , we have µ(ω) = µ(e 1 ) ⊗ µ(e 2 ) ⊗ • • • ⊗ µ(e k ). t : Q × E × Q → D
is the transition function with t(q, a, q ) µ(a) qq , and for string ω = e 1 e 2 • • • e n ∈ E * , t(q, ω, q ) = µ(ω) qq .

Definition 2 Given a WA G, a path of length k is defined as a sequence of transitions π = (q 0 , e 1 , q 1 )(q 1 , e 2 , q 2 ) • • • (q k-1 , e k , q k ), where q j ∈ Q, j = 0, . . . , k, e j ∈ E and µ(e j ) qj-1qj = ε for j = 1, . . . , k.

Such a path π leads from state q 0 to q k , and is labeled by e 1 e 2 • • • e k ∈ E * . Besides, π is said to be a circuit if q 0 coincides with q k . We use p ω q to represent the set of paths labeled by string ω ∈ E * from state p to q. For P, R ⊆ Q, we denote by P ω R the union of p ω q for all p ∈ P and q ∈ R.

Definition 3 A WA G is said to be unambiguous if for all q ∈ Q, for all ω ∈ E * , |Q i ω {q} | ≤ 1.
In simple words, the unambiguity implies that for any state q of G and any string ω in E * , there is at most one path labeled by ω leading from an initial state to q.

Remark 1 If Q i = Q, a WA is unambiguous iff any state has no two or more input transitions labeled by the same symbol. In the case of Q i = Q, the above characterization provides only a sufficient condition for unambiguity. Besides, a WA is said to be deterministic if it has a unique initial state and from any state, no two or more output transitions are labeled by the same symbol. Determinism implies unambiguity, but the reverse is not true.
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Example 1 Fig. 1 depicts a UWA G = (Q, E, α, µ), where Q = {1, 2, 3, 4, 5, 6, 7}, E = {u, b, c, d}, µ(u) 1,2 = 1, µ(u) 4,5 = 2, µ(u) 5,6 = 3, µ(b) 2,3 = 6, µ(b) 6,3 = 4, µ(c) 3,3 = 2, µ(c) 7,7 = 2, µ ( 
= (q 0 , e 1 , q 1 )(q 1 , e 2 , q 2 ) • • • (q k-1 , e k , q k ) of UWA G with q 0 ∈ Q i , the weighted sequence σ(π) ∈ (E × D) * generated by π is defined as: σ(π) = (e 1 , τ 1 )(e 2 , τ 2 ) • • • (e k , τ k ) where τ 1 = α q0 ⊗ µ(e 1 ) q0q1 , τ j = τ j-1 ⊗ µ(e j ) qj-1qj for j = 2, . . . , k.
1 We assume that the states of G are ordered by positive integers, and by a slight abuse of notation, αq (resp. µ(a) qq ) is used to denote the q th element of α (resp. the element in the q th row and q th column of matrix µ(a)). Here, σ(π) specifies a sequence of labels and their occurrence weights. We use q 0 σ(π) q k to represent that weighted sequence σ(π) leads from q 0 to q k . In the rest of this paper, we focus on semirings where ⊗ represents the usual addition, which fits with WAs where weights represent the durations or consumed energy of state transitions. In other words, the weights along an evolution of a WA are interpreted as time or energy accumulated by addition, and an external agent observes this value in addition to events occurrences.

Definition 5 Given a UWA G = (Q, E, α, µ), the generated weighted language L(G) of G is defined as:

L(G) = {y ∈ (E × D) * | ∃q ∈ Q, ∃ω ∈ E * , ∃π ∈ Q i ω {q} : σ(π) = y}. (1) 
For any sequence σ ∈ L(G), we denote by

lab f (σ) ∈ E the last label in σ. Example 2 Consider path π = (1, u, 2)(2, b, 3)(3, c, 3) in UWA G in Fig. 1. By Def. 4, we have σ(π) = (u, e ⊗ µ(u) 1,2 )(b, e ⊗ µ(u) 1,2 ⊗ µ(b) 2,3 )(c, e ⊗ µ(u) 1,2 ⊗ µ(b) 2,3 ⊗ µ(c) 3,3 ) = (u, e ⊗ 1)(b, e ⊗ 1 ⊗ 6)(d, e ⊗ 1 ⊗ 6 ⊗ 2) = (u, 1)(b, 7)(c, 9), and lab f (σ(π)) = c. 2 
In this paper, alphabet E is partitioned into two disjoint parts: the unobservable part E uo and the observable part E o . The projection operator P : E * → E * o is defined as: P (λ) = λ, where λ represents the empty string; for each a ∈ E, ω ∈ E * , P (ωa) = P (ω)a if a ∈ E o , otherwise, P (ωa) = P (ω). We extend P :

E * → E * o to weighted sequences P : (E × D) * → (E o × D) * .
We denote by P (L(G)) the set of all observable weighted sequences for G, and by σ 1 σ 2 the concatenation of weighted sequences σ 1 and σ 2 . In addition, σ 2 is a prefix of σ 1 if there exists another sequence σ 3 such that σ 1 = σ 2 σ 3 .

Notion of I-Detectability and I-Opacity

As in [START_REF] Lai | Verification of detectability for unambiguous weighted automata[END_REF], without loss of generality, we restrict our attention to a WA G = (Q, E, α, µ), where the weights of all initial states are equal to e. We make the following assumptions on the studied WA G: (1) G is unambiguous; (2) G is deadlock free, that is, for any state of the system, there exists at least one output transition, i.e., (∀q ∈ Q)(∃a ∈ E, q ∈ Q)µ(a) qq = ε; (3) There is no circuit labeled only by unobservable labels in G.

(2) implies that the length of a generated weighted sequence becomes infinite as the system evolves indefinitely. (3) implies that the generated sequences of unobservable labels have finite length. Besides, as mentioned in the introductory section, (1) defines the broadest class of WAs for which we have been so far able to handle I-detectability and I-opacity verification.

Initial-State Detectability

Definition 6 Given a UWA G, the set of possible initial states after observing σ o ∈ P (L(G)) is defined as

I(σ o ) = {q ∈ Q i | ∃q ∈ Q, ∃σ ∈ L(G) : P (σ) = σ o , q σ q }. (2)
Lemma 1 Consider a non-empty observation σ o ∈ P (L(G)). Let

I (σ o ) = {q ∈ Q i | ∃q ∈ Q, ∃σ ∈ L(G) : P (σ) = σ o , q σ q , lab f (σ) = lab f (σ o )}. ( 3 
) Then I(σ o ) = I (σ o ).
Proof: Let q i be an initial state with q i ∈ I (σ o ). According to Eqs. ( 2) and ( 3), q i ∈ I(σ o ). On the other hand, consider an initial state q 0 ∈ I(σ o ). By Eq. ( 2), there must exist a path π from q 0 ending with lab f (σ o ) or an unobservable label such that P (σ(π)) = σ o . If π ends with lab f (σ o ), then it is trivial that q 0 ∈ I (σ o ). When π ends with an unobservable label, we assume that it can be represented as π = (q 0 , v 1 e 1 , q 1 ) • • • (q n-1 , v n e n , q n )(q n , v n+1 , q n+1 ), where v 1 , . . . , v n+1 ∈ E * uo . Let π = (q 0 , v 1 e 1 , q 1 ) • • • (q n-1 , v n e n , q n ). Then π satisfies Eq.

(3). Hence, q 0 belongs to I (σ o ).
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As in a logical DES [START_REF] Shu | I-detectability of discrete-event systems[END_REF], in this paper, a possible trajectory of a WA G is represented by an infinite sequence of (label, weight) pairs that G may generate. The set of all possible trajectories of G defines the ω-language L ω (G). For any sequence σ ∈ L ω (G), we denote by P re(σ) the set of all its prefixes.

Definition 7 (Strong (Weak) I-Detectability) Given a UWA G = (Q, E, α, µ), where the set of initial states Q i ⊆ Q is not empty, i.e., Q i = ∅, G is strongly (resp.
weakly) I-detectable with respect to projection P if, for all (resp. some) trajectories, the set of possible initial states shrinks to a singleton after a finite number of observations, i.e.,

(∃n ∈ N)(∀σ (resp. ∃σ) ∈ L ω (G))(∀σ ∈ P re(σ)) |P (σ )| > n ⇒ |I(P (σ ))| = 1.
From the above definition, we know that if a UWA is strongly I-detectable, then it is weakly I-detectable.

Initial-State Opacity

The generated weighted language of a UWA G = (Q, E, α, µ) from an initial state q i ∈ Q i is defined as

L(G, q i ) = {y ∈ (E × D) * | ∃q ∈ Q, ∃ω ∈ E * , ∃π ∈ q i ω q : σ(π) = y}. (4) 
In addition, given a subset X ⊆ Q i , we define the weighted language generated from X as L(G, X) = qi∈X L(G, q i ). Due to unambiguity, if

Q i = Q 1 i ∪ Q 2 i , then the generated weighted language of G can be represented by L(G) = qi∈Qi L(G, q i ) = L(G, Q 1 i ) ∪ L(G, Q 2 i ), and P (L(G)) = P (L(G, Q 1 i )) ∪ P (L(G, Q 2 i )).
Given a UWA G = (Q, E, α, µ), an intruder can only observe the projection of the generated language, i.e., P (L(G)). Assume that the intruder has full knowledge of the structure of G, and that the secret is described by an arbitrary subset of Q.

Definition 8 (Initial-state opacity) Given a UWA G = (Q, E, α, µ), projection P : E * → E * o , and a set of secret states Q s ⊆ Q, G is initial-state opaque with respect to Q s and P , if for all q ∈ Q i ∩ Q s and for all σ ∈ L(G, q), there exist q ∈ Q i \ Q s and σ ∈ L(G, q ) such that P (σ ) = P (σ), that is,

P (L(G, Q i ∩ Q s )) ⊆ P (L(G, Q i \ Q s )), or equivalently, P (L(G)) = P (L(G, Q i \ Q s )).
Example 3 Consider again the UWA G in Fig. 1. We assume that the set of secret states is Q s = {3, 4}, and u is the only unobservable label. (1) Detectability analysis: Initially, G can be in state 1 and/or state 4. Once an observation is obtained, i.e., (b, 7), (b, 9) or (d, 4), we can uniquely determine the initial state, from which the system starts. Therefore, G is strongly I-detectable and weakly I-detectable. If the weight of transition (5, u, 6) is now changed from 3 to 1, then G is not strongly I-detectable. It can be found that for infinite weighted sequence (b, 7)(c, 9)(c, 11)(c, 13)

• • • , we have I((b, 7)(c, 9)(c, 11)(c, 13) • • • ) = {1, 4}.
(2) Opacity analysis: Consider the secret initial state 4 and σ = (u, 2)(d, 4) ∈ L(G, 4). No weighted sequence can be generated by G from non-secret initial state 1 such that its projection is equal to P (σ). Therefore G is not initialstate opaque with respect to secret Q s . 2

4 Verification of I-Detectability

I-observer for Strong and Weak I-Detectability

We show that the strong and weak I-detectability of a UWA G can be checked using an I-observer of an augmented automaton obtained from G. The construction of the I-observer extends the approach in Shu & Lin (2013) by using a weighted alphabet that captures the quantitative information associated to observations.

The I-observer G aug obs = (Q aug obs , E aug obs , δ aug obs , q aug i,obs ) of a UWA G = (Q, E, t, Q i , ) is constructed by Algorithm 1, which contains two steps.

Step 1 extends G to its augmented version G aug = (Q aug , E, t aug , Q aug i , aug ), in which each state q aug ∈ Q aug is a pair (q c , q i ), representing that state q c can be reached in G from initial state q i . Step 2 computes the observer G aug obs for the augmented automaton G aug by the approach that is first presented in our recent work [START_REF] Lai | Verification of detectability for unambiguous weighted automata[END_REF]. Observer G aug obs is a deterministic finite state automaton over a weighted alphabet E aug obs ⊆ E o × D. That is, G aug obs has only one initial state, and from a given state no two transitions of G aug obs are labeled by the same weighted label (a, t a ) ∈ E aug obs .

Algorithm 1 Construction of the I-observer of a UWA

Input: A UWA G = (Q, E, t, Q i , ). Output: An I-observer G aug obs = (Q aug
obs , E aug obs , δ aug obs , q aug i,obs ) of G. 1: Construct an augmented automaton G aug of G as follows:

• Q aug i = {(q, q) | q ∈ Q i } is the set of initial states; • aug : Q aug i → D
is the function of initial weights defined as: aug ((q, q)) = (q);

• Q aug 1 = {(q, q i ) | q ∈ Q, q i ∈ Q i }; • t aug : Q aug 1 × E × Q aug 1
→ D is transition function, where t aug ((q c , q i ), a, (q c , q i )) is defined as: t aug ((q c , q i ), a, (q c , q i )) = t(q c , a, q c ) if q i = q i ; otherwise, t aug ((q c , q i ), a, (q c , q i )) = ε;

• Let G aug = (Q aug , E, t aug , Q aug i , aug ) = Ac(Q aug 1 , E, t aug , Q aug i , aug ) 2 . 2:
Compute the observer G aug obs of G aug , i.e., the Iobserver of G as follows:

• q aug i,obs = Q aug i ; • E aug obs consists of all weighted labels (a, τ ) ∈ E o × (D \ {ε}) for which ∃q ∈ Q 1 ∪ Q aug i , ∃q ∈ Q aug , ∃v ∈ E * uo , s.t. t aug (q, va, q ) = τ , where Q 1 = {q ∈ Q aug | ∃q ∈ Q aug , ∃a ∈ E o : t aug (q , a, q) =
ε} is the set of states in G aug that have at least one input transition marked by an observable label; • δ aug obs : 2 Q aug ×E aug obs → 2 Q aug is the state transition function. δ aug obs (q aug obs , (a, τ )) is defined as:

δ aug obs (q aug obs , (a, τ )) = {q ∈ Q aug | ∃q ∈ q aug obs , ∃v ∈ E * uo : t aug (q, va, q ) = τ }.
• Let G aug obs = (Q aug obs , E aug obs , δ aug obs , q aug i,obs ) = Ac(2 Q aug , E aug obs , δ aug obs , q aug i,obs ).

Example 4 Consider again the UWA G in Fig. 1.

2 In this paper, we denote by the Ac(G) the automaton obtained by removing all the states that are not accessible as well as transitions associated with such states in G.

By applying Algorithm 1, we obtain the augmented automaton G aug and I-observer G aug obs visualized in Figs. 2 and3, respectively. 2 Let (E aug obs ) * be the set of all the finite strings over weighted alphabet E aug obs including (λ, e). The language generated by the I-observer is L(G aug obs ) = {ω ∈ (E aug obs ) * | ∃q aug obs ∈ Q aug obs : δ aug obs (q aug i,obs , ω) = q aug obs }, which is a subset of (E aug obs ) * , i.e., L(G aug obs ) ⊆ (E aug obs ) * . For any observed weighted sequence

/ 1 u / 6 b / 2 u / 2 c / 2 c / 4 b / 2 c / 2 d ( ) 1,1 ( ) 2,1 ( ) 3,1 ( ) 4, 4
σ o = (a 1 , τ 1 )(a 2 , τ 2 ) • • • (a n , τ n ) ∈ P (L(G)), we define σ elem o = (a 1 , τ 1 )(a 2 , τ 2 -τ 1 ) • • • (a n , τ n -τ n-1
) to denote its equivalent notation in (E aug obs ) * . Note that τ k -τ k-1 represents the weight for the elementary transition according to a k for k = 2, 3, . . . , n. We denote by P (L(G))

elem the equivalent notation of P (L(G)), that is,

P (L(G)) elem = {σ ∈ (E o × D) * | ∃σ o ∈ P (L(G)) : σ elem o = σ}.
The following lemma states the relationship between the languages generated by G and G aug obs . The proof follows immediately from the construction process of G aug obs , and hence here it is omitted.

Lemma 2 The language L(G aug obs ) generated by Iobserver G aug obs coincides with P (L(G)) elem , that is,

L(G aug obs ) = P (L(G)) elem .
Lemma 3 The possible initial states of UWA G after observing a non-empty weighted sequence

σ o = (a 1 , τ 1 )(a 2 , τ 2 ) • • • (a k , τ k ) ∈ P (L(G)
) is given by

I(σ o ) = {q i ∈ Q i | ∃q c ∈ Q : (q c , q i ) ∈ δ aug obs (q aug i,obs , (a 1 , τ 1 )(a 2 , τ 2 -τ 1 ) • • • (a k , τ k -τ k-1 ))}.
Proof:

I(σ o ) = I (σ o ) (by Lemma 1) = {q i ∈ Q i | ∃q c ∈ Q, ∃σ ∈ L(G) : P (σ) = σ o , q i σ q c , lab f (σ) = lab f (σ o )} = {q i ∈ Q i | ∃q c ∈ Q, ∃σ ∈ L(G aug ) : P (σ) = σ o , (q i , q i ) σ (q c , q i ), lab f (σ) = lab f (σ o )} (by step 1 in Algorithm 1) = {q i ∈ Q i | ∃q c ∈ Q : (q c , q i ) ∈ δ aug obs (q aug i,obs , (a 1 , τ 1 )(a 2 , τ 2 -τ 1 ) • • • (a k , τ k -τ k-1
))} (by Proposition 1 in [START_REF] Lai | Verification of detectability for unambiguous weighted automata[END_REF]) 2

Now we introduce the criteria for checking strong Idetectability and weak I-detectability for UWA G based on its I-observer G aug obs . We denote by S ci the set of all elementary circuits of G aug obs as:

S ci = {(q aug obs , s) ∈ Q aug obs × (E aug obs ) * | δ aug obs (q aug obs , s) = q aug obs ∧ |s| ≥ 1 ∧ [∀s ∈ P re(s) s.t. s = s ∧ |s | ≥ 1 : δ aug obs (q aug obs , s ) = q aug obs ]}.
Besides, we use q aug obs ∈ (q aug obs , s) to represent that node q aug obs is visited by circuit (q aug obs , s). Let Q aug I,obs be a subset of Q aug obs consisting of states with the same second element (initial state of G), that is,

Q aug I,obs = {q aug obs ∈ Q aug obs | ∃q ∈ Q i , ∀(q c , q i ) ∈ q aug obs : q i = q}.
Theorem 1 (Criterion for Checking Strong I-Detectability) A UWA G is strongly I-detectable with respect to projection P iff any node belonging to an elementary circuit of G aug obs is in Q aug I,obs . Formally, ∀q aug obs ∈ Q aug obs , if ∃(q aug obs , s) ∈ S ci such that q aug obs ∈ (q aug obs , s), then q aug obs ∈ Q aug I,obs .

Proof: (If) By Algorithm 1, we know that once G reaches a state belonging to Q aug I,obs , it will stay in Q aug I,obs forever. Suppose ∀q aug obs ∈ Q aug obs , if ∃(q aug obs , s) ∈ S ci such that q aug obs ∈ (q aug obs , s), then q aug obs ∈ Q aug I,obs . Then, Iobserver Q aug obs will eventually reach a state in Q aug I,obs after a finite number of observations for all trajectories of G. Hence, by combining Lemma 3, the set of possible initial states is a singleton for all possible continuations, that is, G is strongly I-detectable. (Only If) Assume ∃q aug obs ∈ Q aug obs , ∃(q aug obs , s) ∈ S ci such that q aug obs ∈ (q aug obs , s) and q aug obs ∈ Q aug obs \ Q aug I,obs . Then a possible evolution of G can iterate indefinitely circuit (q aug obs , s). That is, we cannot determine the initial state of G for such a trajectory forever. Hence, G is not strongly I-detectable.

2

Theorem 2 (Criterion for Checking Weak I-Detectability) A UWA G is weakly I-detectable with respect to P iff Q aug I,obs = ∅.

Proof: (If) If Q aug I,obs is not empty, then I-observer Q aug obs can reach a state in Q aug I,obs after a finite number of observations for some trajectories of G. In this case, we can determine the only possible initial state of G for trajectories corresponding to continuations of these observations. Hence, G is weakly I-detectable. (Only If) If Q aug I,obs = ∅, then the set of possible initial states does not shrink to a singleton whatever the trajectory is, i.e., G is not weakly I-detectable.

2

Example 5 Consider the I-observer G aug obs in Fig. 3 of UWA G in Fig. 1. There are four states in G aug obs , i.e., {(1, 1), (4, 4)}, {(3, 1)}, {(3, 4)}, {(7, 4)}, and we have

Q aug I,obs = {{(3, 1)} , {(3, 4)} , {(7, 4)}}.
It can be checked that all elementary circuits have all their nodes in Q aug I,obs . Therefore, by Theorem 1, G is strongly I-detectable (hence weakly I-detectable).

2

Remark 2 For checking strong I-detectability of UWA G = (Q, E, α, µ), we have to find out all states that belong to an elementary circuit in its I-observer G aug obs = (Q aug obs , E aug obs , δ aug obs , q aug i,obs ). This can be done by finding all the strongly connected components in G aug obs , whose complexity is linear in the number of states and transitions of G We present an approach that has lower complexity (compared with the I-observer-based method), but is still exponential, to verify the strong I-detectability of a UWA G. We show that this verification can be done by means of diagnosability analysis of a new UWA G obtained from G. To perform the diagnosability analysis, we extend the algorithm in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF] to build an automaton denoted by G d from G with a weighted alphabet.

Definition 9 Given a UWA G = (Q, E, t, Q i , )
, where

Q i = {q 1 , q 2 , . . . , q n } is the set of n initial states, a modified UWA G = (Q , E , t , Q i , ) obtained from G is defined by adding a new state q w / ∈ Q and |Q i | new labels f 1 , f 2 , . . . , f |Qi| ∩ E = ∅ as follows. • Q = Q ∪ {q w } is the finite set of states; • E = E ∪ f 1 , f 2 , . . . , f |Qi| ; • t : Q × E × Q → D
is the transition function defined as: t (q w , f i , q i ) = e for i = 1, 2, . . . , |Q i |; t (q, a, q ) = t (q, a, q ) if q, q ∈ Q and a ∈ E; otherwise, t (q, a, q ) = ε;

• Q i = {q w } is the set of initial states; • : Q i → D is the initial weights function: (q w ) = e.
In simple words, G is a UWA obtained from G by adding a new state q w to become the unique initial state, and by introducing new state transitions (q w , f i , q i ) with identity weights for i = 1, 2, . . . , |Q i |.

Example 6 Consider the UWA G in Fig. 1. The modified automaton G is depicted in Fig. 4. 
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Let f i , i = 1, 2, . . . , |Q i |, be unobservable labels belonging to |Q i | different types of faults, i.e., E f = E f 1 ∪ E f 2 ∪ • • • ∪ E f |Qi| = {f 1 } ∪ {f 2 } ∪ • • • ∪ f |Qi| ,
and suppose that all labels in E represent normal behavior. We denote by

E uo = E uo ∪ E f the set of unobservable labels in G . For any weighted sequence s = (e 1 , τ 1 )(e 2 , τ 2 ) • • • (e n , τ n ) ∈ (E × D) * or any logical sequence s = e 1 e 2 • • • e n ∈ (E )
* , we denote by lab i (s) = e 1 the first label in s. As in logical automata [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], the diagnosability of UWA G = (Q , E , t , Q i , ) can be defined as follows.

Definition 10 (Diagnosability) The UWA G = (Q , E , t , Q i , ) is diagnosable with respect to projection P : (E ) * → E * o and |Q i | different types of faults E f = f 1 , f 2 , . . . , f |Qi| if the following holds:

(∀f i ∈ E f )(∃n i ∈ N)(∀v = (f i , e)t ∈ L(G ), |t| ≥ n i ) ⇒ (∀ω ∈ L(G ), P (ω) = P (v))(lab i (ω) = f i ).
In simple words, diagnosability requires that when a fault label f i occurs in G , after a finite number of observations, one can detect its occurrence. The following lemma follows immediately from the construction process of G given in Def. 9, and the relationship between diagnosability and strong I-detectability.

Lemma 4 A UWA G is strongly I-detectable iff the modified UWA G given in Def. 9 is diagnosable with respect to P :

(E ) * → E * o and |Q i | different types of faults E f = f 1 , f 2 , . . . , f |Qi| .
Inspired by the work in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF], we present an approach for determining if G is diagnosable with respect to a single fault type

E f i = {f i }, i ∈ {1, 2, . . . , |Q i |}, based on the construction of a finite state automaton G d = (Q d , E d , δ d , q d w ) over a weighted alphabet E d ⊆ E o × D, as defined in Algorithm 2. Algorithm 2 Construction of G d for E fi = {f i } Input: UWA G = (Q , E , t , Q i , ). Output: NFA G d = (Q d , E d , δ d , q d w )
. 1: Construct an NFA G o from G as follows:

• q o w = (q w , N );

• Q o = {(q, f ) | q ∈ Q 1 ∪ {q w } , f ∈ {N, F i }} where Q 1 = {q ∈ Q | ∃q ∈ Q , ∃a ∈ E o : t (q , a, q) = ε}
is the set of states in G that have at least one input transition marked by an observable label;

• E d consists of all weighted labels (a, τ ) ∈ E o × (D \ {ε}) for which ∃q ∈ Q 1 ∪ {q w }, ∃q ∈ Q , ∃v ∈ (E uo ) * , s.t. t (q, va, q ) = τ ; • δ o ⊆ Q o × E d × Q o is the set of state transitions. ((q, f ), (a, τ ), (q , f )) ∈ δ o iff ∃v ∈ (E uo ) * s.t. 1) t (q, va, q ) = τ ; 2) (f = f ) ∧ (|v| = 0 ∨ (|v| ≥ 1 ∧ lab i (v) = f i )) or (f = F i ) ∧ (|v| ≥ 1 ∧ lab i (v) = f i ). • Let G o = (Q o , E d , δ o , q o w ) = Ac(Q o , E d , δ o , q o w ). 2: Compute automaton G d = G o
G o , the parallel composition of G o with itself, as follows:

• q d w = (q o w , q o w ) = ((q w , N ), (q w , N )); Let S cd be the set of all elementary circuits of G d . Besides, for q d ∈ Q d and (q d , s) ∈ S cd , we use q d ∈ (q d , s) to represent that node q d is visited by circuit (q d , s).

• Q d = (q 1 o , q 2 o ) | q 1 o , q 2 o ∈ Q o ; • δ d ⊆ Q d × E d × Q d is the set of state transitions. ((p 1 o , p 2 o ), (a, τ ), (q 1 o , q 2 o )) ∈ δ d iff (p 1 o , (a, τ ), q 1 o ) ∈ δ o and (p 2 o , (a, τ ), q 2 o ) ∈ δ o . • Let G d = (Q d , E d , δ d , q d w ) = Ac(Q d , E d , δ d , q d w ).
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Theorem 3 UWA G is diagnosable with respect to fault type

E f i = {f i }, i ∈ {1, 2, . . . , |Q i |}, iff for every node ((q 1 d , f 1 ), (q 2 d , f 2 )) ∈ Q d that belongs to an elementary circuit in G d , we have f 1 = f 2 . Formally, ∀((q 1 i , f 1 ), (q 2 i , f 2 )) ∈ Q d , if ∃(q d , s) ∈ S cd such that ((q 1 i , f 1 ), (q 2 i , f 2 )) ∈ (q d , s), then f 1 = f 2 . Proof: (If)
We suppose that G is not diagnosable with respect to f i , i ∈ {1, 2, . . . , |Q i |}. According to Def. 10 on diagnosability, this implies that there exist two infinite weighted sequences in G such that they have equal projection, one contains f i and the other one does not contain f i . Since G d is finite, by considering the relationship between G d and G , there must exist an elementary circuit (q d , s), where the labels of all the first elements of all nodes are N , and the labels of all the second elements of all nodes are F i . Hence, ∃((

q 1 i , f 1 ), (q 2 i , f 2 )) ∈ Q d , ∃(q d , s) ∈ S cd such that ((q 1 i , f 1 ), (q 2 i , f 2 )) ∈ (q d , s) and f 1 = f 2 . (Only If) We assume that ∃((q 1 i , f 1 ), (q 2 i , f 2 )) ∈ Q d , ∃(q d , s) ∈ S cd such that ((q 1 i , f 1 ), (q 2 i , f 2 )) ∈ (q d , s
) and f 1 = f 2 . We can further assume that f 1 = N and f 2 = F i . According to the construction of G d , the above assumptions imply that for any ((q 1 j , f 1 j ), (q 2 j , f 2 j )) ∈ (q d , s), we have f 1 j = f 1 = N and f 2 j = f 2 = F i . Since elementary circuit (q d , s) can be repeated infinitely, by considering the relationship between G d and G , there are two infinite weighted sequences γ 1 and γ 2 in G with the same projection, γ 1 contains fault f i , and γ 2 does not contain f i . More precisely, γ 1 and γ 2 lead from the initial state q d w to the entry point q d of circuit (q d , s) and repeat this circuit infinitely. Assume that q d is reached by v, i.e., q d ∈ δ d (q d w , v). Then we have P (γ 1 ) elem = P (γ 2 ) elem = sv j , where j is a large enough integer. Therefore, by Def. 10 of diagnosability, G is not diagnosable.

2

Remark 3 Similar to Remark 2, the necessary and sufficient condition in Theorem 3 can be verified by finding all the strongly connected components in In this section, we show that the I-observer constructed in Section 4.1 can be used to check I-opacity of UWAs.

G d = (Q d , E d , δ d , q d ω ), whose complexity is O(|Q d | + |Q d | × |E d | × |Q d |). From Algorithm 2, the number of states in G o is bounded by 2 × (|Q| + 1) = 2|Q| + 2. Due to G d = G o G o , |Q d | is bounded by (2|Q| + 2) 2 = 4|Q| 2 +8|Q|+4.
Lemma 5 Given a UWA G = (Q, E, α, µ), projection P : E * → E * o , and a set of secret states Q s ⊆ Q, G is initial-state opaque with respect to Q s and P iff for all σ o ∈ P (L(G)), I(σ o ) Q s holds.

Proof:

(∀σ o ∈ P (L(G)))I(σ o ) Q s ⇔ (∀σ o ∈ P (L(G)))(∃q ∈ I(σ o ))q / ∈ Q s ⇔ (∀σ o ∈ P (L(G)))(∃q ∈ Q i \ Q s )(∃q ∈ Q) (∃σ ∈ L(G))P (σ ) = σ o ∧ q σ q
(by the definition of I(σ o ) in Equation ( 2)) ⇔ (∀σ o ∈ P (L(G)))(∃q

∈ Q i \ Q s )(∃σ ∈ L(G, q )) P (σ ) = σ o (according to Equation (4)) ⇔ (∀σ o ∈ P (L(G, Q i ∩ Q s )))(∃q ∈ Q i \ Q s )
(∃σ ∈ L(G, q ))P (σ ) = σ o (by P (L(G)) = P (L(G,

Q i ∩ Q s )) ∪ P (L(G, Q i \ Q s )) 3 ) ⇔ (∀q ∈ Q i ∩ Q s )(∀σ ∈ L(G, q))(∃q ∈ Q i \ Q s )
(∃σ ∈ L(G, q ))P (σ ) = P (σ) which is consistent with Def. 8 on I-opacity. 2

For any q aug obs ∈ Q aug obs , we define I(q aug obs ) = {q i ∈ Q i | ∃(q c , q i ) ∈ q aug obs } as the initial states of automaton G that it contains. The following theorem illustrates that the I-observer G aug obs can be used to verify the I-opacity for UWA G.

Theorem 4 Given a UWA G = (Q, E, α, µ), projection P : E * → E * o , and a set of secret states Q s ⊆ Q, G is initial-state opaque with respect to Q s and P iff (∀q aug obs ∈ Q aug obs )I(q aug obs ) Q s where Q aug obs is the set of states in I-observer G aug obs of G. Proof: It follows from Lemmas 3 and 5.

2

Example 9 Consider the I-observer G aug obs in Fig. 3 of UWA G in Fig. 1. It can be checked that G is always nonopaque with respect to P and an arbitrary secret Q s so long as Q s ∩ Q i = ∅. In fact, among the states of G aug obs , we have I({3, 1}) = {1} and I({3, 4}) = I({7, 4}) = {4}. Therefore, for a secret Q s containing initial state 1 and/or 4, there necessarily exist one state q aug obs ∈ Q aug obs such that I(q aug obs ) ⊆ Q s . 2

Conclusion

In this paper, an I-observer is constructed to verify the strong I-detectability, weak I-detectability and I-opacity of UWAs. Besides, a diagnosability-based approach, with a lower complexity, is proposed for checking strong I-detectability. Our future work is to explore new techniques that can handle the I-detectability and Iopacity problem for more general classes of WAs.

Definition 4

 4 d) 5,7 = 2, and α =(e, ε, ε, e, ε, ε, ε). All the non-listed coefficients in µ(u), µ(b), µ(c) and µ(d) are equal to ε, meaning that they do not model possible transitions in the automaton. G is not deterministic since it has two initial states.2 Given an arbitrary path π
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 75 Fig. 5. Diagram of Go of G with respect to fault f1.
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 6 Fig. 6. Diagram of G d with respect to fault f1.

  aug obs , i.e., O(|Q aug obs | + |Q aug obs | × |E aug obs | × |Q aug obs |). By Algorithm 1, |Q aug obs | is bounded by 2 |Q| 2 -1. Hence, the complexity of verifying strong and weak Idetectability using I-observer is O(2 2|Q| 2 ×|E aug obs |), where |E aug obs | is usually exponential in |Q|.

	2
	4.2 Diagnosability-based Approach for Strong I-
	Detectability

  Algorithm 2 should be applied |Q i | times for testing the diagnosability of G with respect to |Q i | different fault types. Therefore, by combining Lemma 4, the complexity of verifying strong I-detectability based on diagnosability for UWA G is O(|Q| 4 × |E d | × |Q i |), where |E d | is exponential in |Q| in general. Note that under the assumption that all the unobservable events of UWA G are represented by a unique symbol, |E d | is bounded by |Q| 3 × |E o |, and the above exponential complexity is reduced to polynomial. 2 Example 8 Consider G d presented in Fig. 6. According to Theorem 3, we know that the corresponding UWA G in Fig. 4 is diagnosable with respect to fault f 1 . Similarly, it can be checked that G is diagnosable with respect to fault f 2 by constructing another G d on f 2 (here G d is omitted). Therefore, according to Lemma 4, the original system G in Fig. 1 is strongly I-detectable, which is consistent with the result in Example 5. 2 5 Verification of Initial-State Opacity

More precisely, (⇒) holds true simply because P (L(G, Qi∩ Qs)) ⊆ P (L(G)). In order to prove the correctness of (⇐), we have to prove that for all σo ∈ P (L(G, Qi \ Qs)), there exist q ∈ Qi \ Qs and σ ∈ L(G, q ) such that P (σ ) = σo, which is self-evident.
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