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BI-HAMILTONIAN ORDINARY DIFFERENTIAL EQUATIONS WITH

MATRIX VARIABLES

A. V. Odesskii,∗ V. N. Rubtsov,† and V. V. Sokolov‡

We consider a special class of Poisson brackets related to systems of ordinary differential equations with

matrix variables. We investigate general properties of such brackets, present an example of a compatible

pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which

generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.

Keywords: integrable ordinary differential equation with matrix unknowns, bi-Hamiltonian formalism,
Manakov model

1. Introduction

We consider systems of ordinary differential equations (ODEs) of the form

dxα

dt
= Fα(x), x = (x1, . . . , xN ), (1)

where xi are m×m matrices and Fα are (noncommutative) polynomials. There exist systems (1) that are
integrable for any m. For example, the system

ut = u2v − vu2, vt = 0 (2)

is integrable by the inverse scattering method for matrices u and v of any size m. If u is a matrix such that
uT = −u and v is a constant diagonal matrix, then (2) is equivalent to the m-dimensional Euler top. The
integrability of this model was established by Manakov [1].

Here, we construct an integrable generalization of system (2) to the case of arbitrary N using the bi-
Hamiltonian approach [2]. This approach is based on the notion of a pair of compatible Poisson brackets.
Two Poisson brackets { · , · }1 and { · , · }2 are said to be compatible if

{ · , · }λ = { · , · }1 + λ{ · , · }2 (3)

is a Poisson bracket for any λ.
If bracket (3) is degenerate for any λ, then a hierarchy of integrable Hamiltonian ODE systems can be

constructed using the following assertion.
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Theorem 1 [3], [4]. Let

C(λ) = C0 + λC1 + λ2C2 + . . . , C(λ) = C0 + λC1 + λ2C2 + · · ·

be the Taylor expansions of any two Casimir functions for the bracket { · , · }λ. Then the coefficients Ci

and Cj pairwise commute with respect to both the brackets { · , · }1 and { · , · }2.

In the opposite case where the bracket { · , · }1 is nondegenerate, for example, there is another way to
construct an integrable hierarchy. The ratio R = Π2Π−1

1 , where Πi is the Poisson tensor for { · , · }i, defines
a so-called recursion operator whose spectrum provides the set of functions in involution with respect to
both brackets. In this case, the formula Πk = RkΠ1 yields an infinite sequence of pairwise compatible
Poisson brackets.

For an important class of Poisson brackets related to systems (1), the corresponding Hamiltonian
operator can be expressed in terms of left and right multiplication operators given by polynomials in
x1, . . . , xN [5]. Such brackets have the following two properties:

1. They are GLm-adjoint invariant.

2. The bracket between the traces of any two matrix polynomials Pi(x1, . . . , xN ), i = 1, 2, is a trace of
some other matrix polynomial P3.

Such brackets have been called non-Abelian Poisson brackets.

We here consider compatible pairs of non-Abelian Poisson brackets where { · , · }1 is linear and { · , · }2

is quadratic.

2. Non-Abelian Poisson brackets

We consider Poisson brackets of the forms

{xj
i,α, xj′

i′,β}1 = bγ
α,βxj′

i,γδj
i′ − bγ

β,αxj
i′,γδj′

i (4)

{xj
i,α, xj′

i′,β}2 = rγε
αβxj′

i,γxj
i′,ε + aγε

αβxk
i,γxj′

k,εδ
j
i′ − aγε

βαxk
i′,γxj

k,εδ
j′

i , (5)

where xj
i,α are elements of the matrix xα and δj

i is the Kronecker delta. Summation over repeated indices is
assumed. Here and hereafter, we use Latin indices ranging from 1 to m for the matrix elements and Greek
indices ranging from 1 to N to label the matrices.

Theorem 2. Brackets of forms (4) and (5) are both invariant under the GLm-action xα → uxαu−1,

where u ∈ GLm. Moreover, these brackets have the property that the bracket between traces of any two

matrix polynomials is a trace of a matrix polynomial. Any linear or quadratic Poisson bracket with these

two properties has the respective form (4) or (5).

There are many publications devoted to quadratic Poisson brackets appearing in the classical version
of the inverse scattering method [6], but these brackets do not have the properties in Theorem 2.

Theorem 3. 1. Formula (4) defines a Poisson bracket iff

bμ
αβbσ

μγ = bσ
αμbμ

βγ . (6)

2. Formula (5) defines a Poisson bracket iff

rσε
αβ = −rεσ

βα, rλσ
αβrμν

στ + rμσ
βτ rνλ

σα + rνσ
ταrλμ

σβ = 0, (7)

aσλ
αβaμν

τσ = aμσ
ταaνλ

σβ , aσλ
αβaμν

στ = aμσ
αβrλν

τσ + aμν
ασrσλ

βτ , aλσ
αβaμν

τσ = aσν
αβrλμ

στ + aμν
σβrσλ

τα. (8)
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Formula (6) means that bσ
αβ are structure constants of an associative algebra. Similar Poisson brackets

were considered in [7], [8].
We consider quadratic Poisson brackets (5). The tensors r and a transform standardly under the

change of basis xα → gβ
αxβ :

rγσ
αβ → gλ

αgμ
βhγ

νhσ
ε rνε

λμ, aγσ
αβ → gλ

αgμ
βhγ

νhσ
ε aνε

λμ, (9)

where gβ
αhγ

β = δγ
α.

System of identities (7), (8) admits the discrete involution

rγσ
αβ → rσγ

βα, aγσ
αβ → aσγ

βα. (10)

This involution corresponds to the matrix transposition xα → xT
α . Two brackets related by transforma-

tions (9), (10) are said to be equivalent.

There is one more discrete involution:

rγσ
αβ → rαβ

γσ , aγσ
αβ → aαβ

γσ . (11)

Brackets related by (11) can have completely different properties (e.g., different numbers of Casimir func-
tions).

Let V be a vector space with a basis vα, α = 1, . . . , N . We define linear operators r and a on the space
V ⊗ V by

rvα ⊗ vβ = rσε
αβvσ ⊗ vε, avα ⊗ vβ = aσε

αβvσ ⊗ vε.

Identities (7) and (8) can then be rewritten in the form

r12 = −r21, r23r12 + r31r23 + r12r31 = 0,

a12a31 = a31a12, σ23a13a12 = a12r23 − r23a12, a32a12 = r13a12 − a32r13.

Here, all operators act in V ⊗ V ⊗ V , σij denotes the transposition of the ith and jth components of the
tensor product, and aij and rij denote the operators a and r acting in the product of the ith and jth
components.

Involution (11) corresponds to a → a∗ and r → r∗, where a∗ and r∗ act in the dual space V ∗;
involution (10) corresponds to a → σaσ and r → σr, where σ acts by permuting the vector spaces in
V ⊗ V . Equivalence transformation (9) corresponds to a → GaG−1 and r → GrG−1, where G = g ⊗ g and
g ∈ GL(V ).

There is a subclass of brackets (5) corresponding to the case where the tensor a equals zero. Rela-
tions (7) mean that r is a constant solution of the associative Yang–Baxter equation [9], [10]. Such tensors
r can be constructed algebraically as follows.

An anti-Frobenius algebra is an associative algebra A (not necessarily with unity) with a nondegenerate
antisymmetric bilinear form ( · , · ) satisfying the relation

(x, yz) + (y, zx) + (z, xy) = 0 (12)

for all x, y, z ∈ A. In other words, the form ( · , · ) defines a cyclic cocycle on A.

Theorem 4. There exists a one-to-one correspondence between solutions of (7) up to an equivalence

and exact representations of anti-Frobenius algebras up to an isomorphism.
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Proof. The tensor r can be written as rγσ
αβ =

∑p
i,j=1 gijyγ

α,iy
σ
β,j, where gij = −gji, the matrix G = (gij)

is nondegenerate, and p is the least possible. Substituting this representation in (7), we find that there exists
a tensor φk

ij such that yα
γ,iy

γ
β,j = φk

ijy
α
β,k. Let A be the associative algebra with the basis y1, . . . , yp and

the product yiyj = φk
ijyk. We define the antisymmetric bilinear form by (yi, yj) = gij , where (gij) = G−1.

Then (7) is equivalent to the anti-Frobenius property.

Example 1 (cf. [11]). Let A be the associative algebra of N×N matrices with a zero Nth row. For
a generic element l of A∗, the bilinear form (x, y) = l([x, y]) is nondegenerate and antisymmetric and
satisfies (12). It can be written as (x, y) = tr([x, y]kT), where k ∈ A. We choose kαβ = 0 for α �= β,
kαα = μα, and kαN = 1, where α, β = 1, . . . , N − 1. The corresponding solutions of Eqs. (7) are

rαα
Nα = −rαα

αN = 1, rαβ
αβ = rβα

αβ = rαα
βα = −rαα

αβ =
1

μα − μβ
,

α �= β, α, β = 1, . . . , N − 1.

The remaining elements of the tensor r and all elements of the tensor a are assumed to be zero. We note
that this tensor r is antisymmetric under involution (10). It is equivalent to the tensor

rαβ
αβ = rβα

αβ = rαα
βα = −rαα

αβ =
1

λα − λβ
, α �= β, α, β = 1, . . . , N, (13)

where λ1, . . . , λN are arbitrary pairwise distinct parameters. Formula (5) with a zero tensor a defines the
corresponding Poisson bracket for the elements of matrices x1, . . . , xN of arbitrary size m. For m = 1, we
have the scalar Poisson bracket

{xα, xβ} =
(xα − xβ)2

λβ − λα
, α �= β, α, β = 1, . . . , N.

If N is even, then Poisson structure (13) is nondegenerate, i.e., the rank of the Poisson tensor Π is equal to
Nm2. In the odd case, rankΠ = (N − 1)m2.

It can be verified that the conditions for the compatibility of linear and quadratic brackets (4) and (5)
are given by

bs
αγavu

sβ − bs
γβavu

αs + bu
sβavs

αγ − bv
αsa

su
γβ = 0,

bs
βαruv

sγ − bu
βsr

sv
αγ − bv

sαrus
βγ − bv

γsa
us
βα + bu

sγasv
βα = 0.

(14)

There is the following way (the so-called argument shift method) to construct a linear Poisson bracket
compatible with a quadratic bracket. A vector κ = (κ1, . . . , κm) is said to be admissible if for any α and β,

(aσε
αβ − aεσ

βα + rσε
αβ)κσκε = 0.

For any admissible vector, the argument shift xα → xα + κα1 yields linear Poisson bracket (4) with

bσ
αβ = (aεσ

αβ + aσε
αβ + rσε

αβ)κε

compatible with the quadratic bracket. In Example 1, any admissible vector is proportional to (1, 1, . . . , 1),
and the corresponding linear bracket is trivial.

445



Example 2. Applying involution (11) to (13), we obtain one more example with a zero tensor a:

rαβ
αβ = rαβ

βα = rβα
αα = −rαβ

αα =
1

λα − λβ
, α �= β, α, β = 1, . . . , N. (15)

It is easy to verify that any vector (κ1, . . . , κN ) is admissible in this case. All elements of the matrix
∑N

α=1 xα

are Casimir functions for both quadratic Poisson bracket { · , · }2 given by (15) and for the corresponding
linear bracket { · , · }1. We can therefore fix

N∑

α=1

xα = C,

where C is a constant matrix. Hamiltonians of the hierarchy commuting with respect to both { · , · }2 and
{ · , · }1 are given by

tr xk
α, trxk

α

∑

β �=α

xβ

λα − λβ
, k = 1, 2, . . . .

The Casimir functions of { · , · }1 belong to this set, which allows obtaining the entire hierarchy construc-
tively. The linear Casimir functions for { · , · }1 are tr xα, where α = 1, . . . , N . The dynamical system
corresponding to the simplest Hamiltonian tr xN and the Poisson structure { · , · }2 has the form

dxα

dt
=

xNxα − xαxN

λN − λα
, α = 1, . . . , N − 1.

There exists the quadratic Casimir function of the linear bracket

H =
1
2

N∑

α=1

1
cα

tr x2
α,

where cα are arbitrary constants. The system corresponding to this Hamiltonian and the Poisson bracket
{ · , · }2 is given by

dxα

dt
=

∑

β �=α

xαx2
β − x2

βxα

(λα − λβ)cβ
+

∑

β �=α

xβx2
α − x2

αxβ

(λα − λβ)cα
. (16)

This system can be written in the bi-Hamiltonian form

dx
dt

= {x, grad(tr H)}2 = {x, grad(tr K)}1,

where

K =
1
3

N∑

α=1

1
c2
α

tr x3
α.

If N = 2, then system (16) is equivalent to (2).

3. Conclusion

We have constructed some examples of linear and quadratic Poisson brackets naturally related to
matrix ODEs. Similar Poisson, symplectic, and many other interesting algebro-geometric structures were
recently considered in a series of works developing the ideas of M. Kontsevich’s approach to construct-
ing noncommutative symplectic geometry [12]. In this connection, we mention the books and papers of
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P. Etingof, V. Ginzburg, W. Crawley-Boevey, L. Le Bryun, M. Van den Bergh, and many others devoted to
Calogero–Moser spaces, the symplectic and Poisson geometry of quiver path algebras, necklace and double
Poisson structures, Leibniz–Loday algebras, Rota–Baxter operators and their generalizations, etc.

In our next paper (currently being finished), we will establish the role and place of our non-Abelian
structures in the framework of the (non)commutative algebro-geometric notions listed above. We will
discuss the relations of our quadratic Poisson structures to the Poisson geometry of the affine varieties that
are the coordinate rings of representation spaces (modulo the adjoint GL-action), describe the classification
of the quadratic brackets for free associative algebras and its relation to the classification of “quadratic”
double Poisson structures. We will describe the symplectic foliations and the Casimir functions of our
brackets and also their relation to noncommutative integrable systems.

Another interesting problem of great importance is to construct a quantization of the non-Abelian
brackets and the corresponding integrable equations and to clarify their relations to the dynamical Yang–
Baxter equation and its different versions. These issues are not discussed in the present paper, but we hope
to consider them elsewhere.
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