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We prove a multidimensional version of the Yamada-Watanabe theorem, i.e., a theo-
rem giving conditions on coefficients of a stochastic differential equation for existence
and pathwise uniqueness of strong solutions. It implies an existence and uniqueness
theorem for the eigenvalue and eigenvector processes of matrix-valued stochastic pro-
cesses, called a “spectral” matrix Yamada-Watanabe theorem. The multidimensional
Yamada-Watanabe theorem is also applied to particle systems of squared Bessel pro-
cesses, corresponding to matrix analogues of squared Bessel processes, Wishart and
Jacobi matrix processes. The β-versions of these particle systems are also considered.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790507]

I. INTRODUCTION

In this paper, we prove a multidimensional analogue of the celebrated Yamada-Watanabe the-
orem, ensuring the existence and uniqueness of strong solutions of one-dimensional stochastic
differential equations (SDEs) with a Hölder coefficient in the Itô integral part. It is proved in Sec. II,
Theorem 2.

Consider the space Sp of symmetric p × p real matrices and a function g : R → R. Recall that
the function g acts spectrally on a matrix X ∈ Sp in the following way:

g(X ) = H diag[g(λ1), . . . , g(λp)] H T , (1.1)

where X = H�HT is a diagonalization of X, with an orthonormal matrix H and an eigenvalue matrix
� = diag[λ1, . . . , λp]. Consequently, g(�) = diag[g(λ1), . . . , g(λp)] and g(X) = Hg(�)HT.

In Sec. III, we derive a system of SDEs for the eigenvalues and the eigenvectors for a solution
of a matrix SDE of the form

d Xt = g(Xt )d Bt h(Xt ) + h(Xt )d BT
t g(Xt ) + b(Xt )dt,

where Bt is a Brownian matrix of dimension p × p, the matrix stochastic process Xt takes values in
the space of symmetric p × p matrices and the functions g, h, b : R → R act on the spectrum of Xt.
Under some mild conditions on the functions g, h, b it is shown in Theorem 5 that the eigenvalues
never collide. The β-versions and complex versions of the eigenvalue system are also considered
for the collision time problem (Corollaries 1 and 2).

If the functions g, h, b are such that gh is 1/2-Hölder continuous, and the symmetrized functions
g2⊗h2 and b are Lipschitz continuous, then we establish in Theorem 6 the existence and uniqueness
of a strong solution of the system of SDEs for the eigenvalues and the eigenvectors of Xt. We call
such a result “a spectral matrix Yamada-Watanabe theorem”.

a)E-mail: piotr.graczyk@univ-angers.fr.
b)E-mail: jacek.malecki@pwr.wroc.pl.
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Section IV contains interesting applications. We apply Theorems 2, 5, and 6 to
(i) noncolliding particle systems of squared Bessel processes which are intensely studied in

recent years in statistical and mathematical physics (Katori and Tanemura14–17).
(ii) The systems of SDEs for the eigenvalues of Wishart and Jacobi matrix processes, as well

as of the β-Wishart and β-Jacobi processes. We note the importance of the β-Wishart eigenvalues
systems in statistical physics: they are statistical mechanics models of “log -gases,” see the recent
book of Forrester.11

Surprisingly, the existence of strong solutions of SDEs for such Hölder-type noncolliding
particle systems was not established in general; only some cases of (ii) were treated by Demni6–8

and Lépingle.20 In Secs. IV A and IV D, we prove the existence and uniqueness of a strong solution
to these systems of SDEs, for the whole range of the drift parameter and β ≥ 1.

The spectral matrix Yamada-Watanabe theorem is applied in Secs. IV B and IV C to matrix
valued squared Bessel type processes, Wishart and Jacobi matrix processes. We improve the known
results of Bru,1–3 Mayerhofer et al.,22 and Doumerc,10 showing the existence and uniqueness of
strong solutions of the SDEs system for the eigenvalues and eigenvectors of Xt, for the whole range
of the drift parameter.

In the Wishart case, we contribute in this way to realization of a programme started by Donati-
Martin, Doumerc, Matsumoto and Yor,9 claiming that Wishart processes have similar properties as
classical one-dimensional squared Bessel processes.

II. A MULTIDIMENSIONAL YAMADA-WATANABE THEOREM

Let us recall the classical Yamada-Watanabe theorem see, e.g., Ref. 13, p. 168 and Ref. 28.

Theorem 1: Let B(t) be a Brownian motion on R. Consider the SDE,

d X (t) = σ (X (t))d B(t) + b(X (t))dt.

If |σ (x) − σ (y)|2 ≤ ρ(|x − y|) for a strictly increasing function ρ on R+ with ρ(0) = 0 and∫
0+ ρ−1(x)dx = ∞, and b is Lipschitz continuous, then the pathwise uniqueness of solutions holds;

consequently the equation has a unique strong solution.

No multidimensional versions of the Yamada-Watanabe theorem seem to be known, even if their
need is great (cf. Ref. 3, p. 738). We propose a useful generalization; however, we stress the fact that
the Hölder continuous functions σ i appearing in the following system of SDEs are one-dimensional.
The proof is based on the approach presented in Revuz, Yor,25 in particular on the results of Le
Gall.19 By ‖ · ‖ we mean the Euclidean norm ‖ · ‖2 on Rd .

Theorem 2: Let p, q, r ∈ N and the functions bi : Rp → R, i = 1, . . . , p and ck, d j : Rp+r

→ R, k = p + 1, . . . , p + q, j = p + 1, . . . , p + r, be bounded real-valued and continuous,
satisfying the following Lipschitz conditions: for a constant A > 0,

|bi (y1) − bi (y2)| ≤ A||y1 − y2||, i = 1, . . . , p,

|ck(y1, z1) − ck(y2, z2)| ≤ A||(y1, z1) − (y2, z2)||, k = p + 1, . . . , p + q,

|d j (y1, z1) − d j (y2, z2)| ≤ A||(y1, z1) − (y2, z2)||, j = p + 1, . . . , p + r,

for every y1, y2 ∈ Rp and z1, z2 ∈ Rr . Moreover, let σi : R → R, i = 1, . . . , p, be a set of bounded
Borel functions such that

|σi (x) − σi (y)|2 ≤ ρi (|x − y|), x, y ∈ R,

where ρ i: (0, ∞) → (0, ∞) are Borel functions such that
∫

0+ ρ−1
i (x)dx = ∞. Then the pathwise

uniqueness holds for the following system of stochastic differential equations:

dYi = σi (Yi )d Bi + bi (Y )dt, i = 1, . . . , p, (2.1)
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d Z j =
p+q∑

k=p+1

ck(Y, Z )d Bk + d j (Y, Z )dt, j = p + 1, . . . , p + r, (2.2)

where B1, . . . , Bp + q are independent Brownian motions.

Proof: Let (Y, Z) and (Ỹ , Z̃ ) be two solutions with respect to the same Brownian motion
B = (Bi)i ≤ p + q such that Y (0) = Ỹ (0) and Z (0) = Z̃ (0) a.s. For every i = 1, . . . , p, we have

Yi (t) − Ỹi (t) =
∫ t

0
(σi (Yi (s)) − σi (Ỹi (s)))d Bi (s) +

∫ t

0
(bi (Y (s)) − bi (Ỹ (s)))ds. (2.3)

Then we get∫ t

0

1{Yi (s)>Ỹi (s)}
ρi (Yi (s) − Ỹi (s))

d
〈
Yi − Ỹi , Yi − Ỹi

〉 =
∫ t

0

(σi (Yi (s)) − σi (Ỹi (s)))2

ρi (Yi (s) − Ỹi (s))
1{Yi (s)>Ỹi (s)}ds ≤ t.

Thus, applying Lemma 3.3 from Ref. 25, p. 389 , we get that the local time of Yi − Ỹi at 0
vanishes identically. Consequently, by Tanaka’s formula we get

|Yi (t) − Ỹi (t)| =
∫ t

0
sgn(Yi (s) − Ỹi (s))d(Yi (s) − Ỹi (s)) + L0

t (Yi − Ỹi )

=
∫ t

0
sgn(Yi (s) − Ỹi (s))d(Yi (s) − Ỹi (s)).

Since σ i is bounded, using (2.3), we state that

|Yi (t) − Ỹi (t)| −
∫ t

0
sgn(Yi (s) − Ỹi (s))(bi (Y (s)) − bi (Ỹ (s)))ds

is a martingale vanishing at 0. This together with the Lipschitz conditions satisfied by bi give

E|Yi (t) − Ỹi (t)| ≤ A
∫ t

0
E||Y (s) − Ỹ (s)||ds.

Summing up the above-given inequalities, we arrive at

E||Y (t) − Ỹ (t)|| ≤ C
∫ t

0
E||Y (s) − Ỹ (s)||ds

and Gronwall’s lemma shows that Y (t) = Ỹ (t) for every t > 0 a.s.
Using in a standard way the properties of the Itô integral and the Schwarz inequality, similarly

as in Ref. 13, p. 165, we get that for every t ∈ [0, T],

E|Z j (t) − Z̃ j (t)|2 ≤ C
p+q∑

k=p+1

E(
∫ t

0
(ck(Y (s), Z (s)) − ck(Ỹ (s), Z̃ (s))d Bk(s))2

+ CE(
∫ t

0
(d j (Y (s), Z (s)) − d j (Ỹ (s), Z̃ (s))ds)2

≤ C
p+q∑

k=p+1

E
∫ t

0
(ck(Y (s), Z (s)) − ck(Ỹ (s), Z̃ (s)))2ds

+ CT E
∫ t

0
(d j (Y (s), Z (s)) − d j (Ỹ (s), Z̃ (s)))2ds

≤ C A2(q + T )E
∫ t

0
(||Y (s) − Ỹ (s)||2 + ||Z (s) − Z̃ (s)||2)ds.
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Thus, using the previously proved fact that Y = Ỹ a.s. we get that

E||Z (t) − Z̃ (t)||2 ≤ C A2(q + T )r
∫ t

0
E||Z (s) − Z̃ (s)||2ds.

One more application of the Gronwall’s lemma ends the proof. �

III. EIGENVALUES AND EIGENVECTORS OF MATRIX STOCHASTIC PROCESSES

A. Real case

Consider the space Sp of symmetric p × p real matrices. Denote by Bt a Brownian p × p
matrix. Let Xt be a stochastic process with values in Sp satisfying the matrix SDE,

d Xt = g(Xt )d Bt h(Xt ) + h(Xt )d BT
t g(Xt ) + b(Xt )dt, (3.1)

where g, h, b : R → R, and X0 ∈ S̃p, the set of symmetric matrices with p different eigenvalues.
The spectral action of the functions g, h, b : R → R on a symmetric matrix X was explained in (1.1)
in the Introduction.

Let �t = diag[λi(t)] be the diagonal matrix of eigenvalues of Xt ordered increasingly: λ1(t)
≤ λ2(t) ≤ . . . ≤ λp(t) and Ht an orthonormal matrix of eigenvectors of Xt. Matrices � and H may
be chosen (Ref. 24) as smooth functions of X until the first collision time

τ = inf{t : λi (t) = λ j (t) for some i 	= j}.
We want to consider the SDEs satisfied by the processes of eigenvalues and eigenvectors of Xt.

In the sequel, we use the notation dYdZ = d〈Y, Z〉 for the quadratic variation process. Note that if Y,
Z are matrix valued processes, then dYdZ is a matrix process (see, e.g., Ref. 12).

Theorem 3: Suppose that an Sp-valued stochastic process Xt satisfies the following matrix
stochastic differential equation:

d Xt = g(Xt )d Bt h(Xt ) + h(Xt )d BT
t g(Xt ) + b(Xt )dt,

where g, h, b : R → R, and X0 ∈ S̃p.
Let G(x, y) = g2(x)h2(y) + g2(y)h2(x). Then, for t < τ the eigenvalues process �t and the

eigenvectors process Ht verify the following stochastic differential equations:

dλi = 2g(λi )h(λi )dνi +
⎛
⎝b(λi ) +

∑
k 	=i

G(λi , λk)

λi − λk

⎞
⎠ dt, (3.2)

dhi j =
∑
k 	= j

hik

√
G(λ j , λk)

λ j − λk
dβk j − 1

2
hi j

∑
k 	= j

G(λ j , λk)

(λk − λ j )2
dt, (3.3)

where (ν i)i and (βkj)k<j are independent Brownian motions and β jk = βkj.

Proof: The proof generalizes ideas of Bru1 in the case of Wishart processes. See also Ref. 15
for the SDEs for the eigenvalue processes of Xt. Following Ref. 10 in the case of matrix Jacobi
processes, it is handy to use the Stratonovich differential notation X ◦ dY = XdY + 1

2 d XdY . We
then write the Itô product formula

d(XY ) = d X ◦ Y + X ◦ dY.

We also have dX ◦ (YZ) = (dX ◦ Y) ◦ Z and (X ◦ dY)T = dYT ◦ XT.
Define A, a stochastic logarithm of H, by

d A = H−1 ◦ d H = H T ◦ d H.
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Observe that by Itô formula applied to HTH = I, the matrix A is skew-symmetric. By Itô formula
applied to � = HTXH, setting dN = HT ◦ dX ◦ H, we get

d� = d N + � ◦ d A − d A ◦ �.

The process � ◦ dA − dA ◦ � is zero on the diagonal. Consequently, dλi = dNii and 0 = dNij +
(λi − λj) ◦ dAij, when i 	= j . Thus

d Ai j = 1

λ j − λi
◦ d Ni j , i 	= j. (3.4)

For further computations, we need the quadratic variation dXijdXkm which is easily computed
from (3.1).

d Xi j d Xkm = (
g2(X )ikh2(X ) jm + g2(X )imh2(X ) jk + g2(X ) jkh2(X )im + g2(X ) jmh2(X )ik

)
dt.

The martingale part of dN equals the martingale part of HTdX H and by the last formula

d Ni j d Nkm = (
g2(�)ikh2(�) jm + g2(�)imh2(�) jk + g2(�) jkh2(�)im + g2(�) jmh2(�)ik

)
dt.
(3.5)

From (3.5) it follows that

d Nii d N j j = 4δi j g
2(λi )h

2(λi )dt. (3.6)

Now we compute the finite variation part dF of dN,

d F = H T b(X )Hdt + 1

2
(d H T d X H + H T d Xd H )

= b(�)dt + 1

2

(
(d H T H )(H T d X H ) + (H T d X H )(H T d H )

)
= b(�)dt + 1

2
(d Nd A + (d Nd A)T ).

Using (3.4) and (3.5) we find, writing G(x, y) = g2(x)h2(y) + g2(y)h2(x),

(d Nd A)i j =
∑
k 	= j

d Nikd Ak j = δi j

∑
k 	=i

G(λi , λk)

λi − λk
dt.

It follows that the matrix dNdA is diagonal, so also dF is diagonal and

d Fii = b(λi )dt +
∑
k 	=i

G(λi , λk)

λi − λk
dt.

Finally, using (3.6) and the last formula, there exist independent Brownian motions ν i, i = 1, . . . ,
m, such that (3.2) holds.

In order to find SDEs for Ht, we deduce from the definition of dA that

d H = H ◦ d A = Hd A + 1

2
d Hd A = Hd A + 1

2
Hd Ad A.

By (3.5), we find dNijdNij = g2(λi)h2(λj) + g2(λj)h2(λi) and dNijdNkm = 0 when the ordered pairs i
< j and k < m are different. We infer from (3.4) that

d Ai j =
√

G(λi , λ j )

λ j − λi
dβi j , (3.7)

where the Brownian motions (β ij)i<j are independent and β ji = β ij. Moreover, when k < m, we
have dλidAkm = dNiidNkm/(λm − λk) = 0 by (3.5), so the Brownian motions (β ij)i<j and (ν i)i are
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independent. From (3.7), we deduce that the matrix dAdA is diagonal and

(d Ad A)i i = −
∑
k 	=i

d Aikd Aik = −
∑
k 	=i

G(λi , λk)

(λk − λi )2
dt.

Now we can compute d H = Hd A + 1
2 Hd Ad A and prove (3.3). �

B. Complex case

In this subsection, we study the eigenvalues process for a process Xt with values in the space
Hp of Hermitian p × p matrices.

Theorem 4: Let Wt be a complex p × p Brownian matrix (i.e., Wt = B1
t + i B2

t where B1
t and

B2
t are two independent real Brownian p × p matrices).

Suppose that an Hp-valued stochastic process Xt satisfies the following matrix stochastic
differential equation:

d Xt = g(Xt )dWt h(Xt ) + h(Xt )dW ∗
t g(Xt ) + b(Xt )dt, (3.8)

where g, h, b : R → R, and X0 ∈ H̃p.
Let G(x, y) = g2(x)h2(y) + g2(y)h2(x). Then, for t < τ the eigenvalues process �t verifies the

following system of stochastic differential equations:

dλi = 2g(λi )h(λi )dνi +
⎛
⎝b(λi ) + 2

∑
k 	=i

G(λi , λk)

λi − λk

⎞
⎠ dt, (3.9)

where (ν i)i are independent Brownian motions.

Proof: We will need the following formula for the quadratic variation dXijdXkl which is computed
from (3.8), using the fact that for a complex Brownian motion wt , the quadratic variation processes
satisfy dwdw = 0 and dwdw̄ = 2dt ,

d Xi j d Xkl = 2
(
g2(X )il h

2(X ) jk + g2(X ) jkh2(X )il
)

dt. (3.10)

Define A, a stochastic logarithm of H, by

d A = H−1 ◦ d H = H∗ ◦ d H.

By Itô formula applied to H∗H = I, the matrix A is skew-Hermitian. In particular, the terms of
diag(A) are purely imaginary (recall that in the real case they were 0). By Itô formula applied to �

= H∗XH, we get, setting dN = H∗ ◦ dX ◦ H,

d� = d N + � ◦ d A − d A ◦ �.

We have

d N = H∗d X H + 1

2
(d H∗d X H + H∗d Xd H ),

so the process N takes values in Hp. In particular, its diagonal entries are real. The process � ◦ dA
− dA ◦ � is zero on the diagonal, so dλi = dNii. Moreover, when i 	= j , we have 0 = dNij + (λi

− λj) ◦ dAij and

d Ai j = 1

λ j − λi
◦ d Ni j , i 	= j. (3.11)

The martingale part of dN equals the martingale part of H∗dX H and by formula (3.10), we obtain

d Ni j d Nkm = 2
(
g2(�)imh2(�) jk + g2(�) jkh2(�)im

)
dt. (3.12)
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From (3.12) it follows that

d Nii d N j j = 4δi j g
2(λi )h

2(λi )dt. (3.13)

Now we compute the finite variation part dF of dN,

d F = H∗b(X )Hdt + 1

2
(d H∗d X H + H∗d Xd H )

= b(�)dt + 1

2

(
(d H∗ H )(H∗d X H ) + (H∗d X H )(H∗d H )

)
= b(�)dt + 1

2
(d Nd A + (d Nd A)∗).

Recall that G(x, y) = g2(x)h2(y) + g2(y)h2(x). We get

(d Nd A)i j =
∑

k

d Nikd Ak j = 2δi j

∑
k 	=i

G(λi , λk)

λi − λk
dt + d Ni j d A j j .

When i = j, the term dNii is real and d Aii ∈ iR. It follows that

d Fii = b(λi )dt + 2
∑
k 	=i

G(λi , λk)

λi − λk
dt.

Finally, using (3.13) and the last formula, there exist independent Brownian motions ν i, i = 1, . . . ,
m, such that (3.9) holds. �

Theorem 4 may be applied in a special case g(x) = √
x , h(x) = 1, and b(x) = 2δ > 0, when

Eq. (3.8) is the SDE for the complex Wishart process, called also a Laguerre process. This process
and its eigenvalues were studied by König-O’Connell18 and Demni.5

Remark 1: The SDEs for the eigenvectors matrix Ht remain an open problem in the complex
Hermitian case and a complex analogue of equations (3.3) will be treated in a forthcoming paper.
Also, similar problems for more general functions G, H, B : Rp → R, acting spectrally on Sp by
G(X) = HG(�)HT, should be investigated. Note that in this paper, we consider the case when
G = g⊗p is a pth tensor power of a function g : R → R.

C. Collision time

In this subsection, we show that under some mild conditions on the functions g, h, and b in the
matrix SDE (3.1), the eigenvalues of the process Xt never collide.

Theorem 5: Let � = (λi)i=1. . . p be a process starting from λ1(0) < . . . < λp(0) and satisfying
(3.2) with functions b, g, h : R → R such that b, g2, h2 are Lipschitz continuous and g2h2 is convex
or in class C1,1. Then the first collision time τ is infinite a.s.

Proof: We define U = − ∑
i<jlog (λj − λi) on t ∈ [0, τ ]. Applying Itô formula, using (3.2) and

the fact that dλidλj = δij4g2(λi)h2(λi)dt, we obtain

dU =
∑
i< j

dλi − dλ j

λ j − λi
+ 1

2

d 〈λi , λi 〉 + d
〈
λ j , λ j

〉
(λ j − λi )2

= d M + d A(1) + d A(2) + d A(3),
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where

d M = 2
∑
i< j

g(λi )h(λi )dνi − g(λ j )h(λ j )dν j

λ j − λi
,

d A(1) =
∑
i< j

b(λi ) − b(λ j )

λ j − λi
dt,

d A(2) = 2
∑
i< j

(g2(λ j ) − g2(λi ))(h2(λ j ) − h2(λi ))

(λ j − λi )2
dt,

d A(3) =
∑
i< j

1

λ j − λi

∑
k 	=i,k 	= j

(
G(λi , λk)

λi − λk
− G(λ j , λk)

λ j − λk

)
dt

=
∑

i< j<k

G(λ j , λk)(λk − λ j ) − G(λi , λk)(λk − λi ) + G(λi , λ j )(λ j − λi )

(λ j − λi )(λk − λi )(λk − λ j )
dt.

We will show that the finite variation part of U is bounded on any interval [0, t]. Lipschitz continuity
of b, g2, and h2 implies that |A(1)

t | ≤ K p(p − 1)t/2 and |A(2)
t | ≤ K 2 p(p − 1)t , where K is a constant

appearing in the Lipschitz condition. Observe also that if for every x, y, z, we set

H (x, y, z) = [(g2(x) − g2(z))(h2(y) − h2(z)) + (g2(y) − g2(z))(h2(x) − h2(z))](y − x),

then H(x, y, z) = (G(x, y) − G(x, z) − G(y, z) + G(z, z))(y − x) and

H (x, y, z) + H (y, z, x) − H (x, z, y) = 2(z − y)G(y, z) − 2(z − x)G(x, z)

+ 2(y − x)G(x, y) + G(x, x)(z − y) − G(y, y)(z − x) + G(z, z)(y − x).

Using the last equality and the fact that |H(x, y, z)| ≤ 2K2|(y − x)(z − y)(z − x)|, we can write
2dA(3) = dA(4) + dA(5), where 0 ≤ A(4)

t ≤ K 2 p(p − 1)(p − 2)t/6 and

d A(5)
t =

∑
i< j<k

G(λ j , λ j )(λk − λi ) − G(λi , λi )(λk − λ j ) − G(λk, λk)(λ j − λi )

(λ j − λi )(λk − λi )(λk − λ j )
dt

=
∑

i< j<k

(
G(λ j , λ j ) − G(λi , λi )

λ j − λi
− G(λk, λk) − G(λ j , λ j )

λk − λ j

)
1

λk − λi
dt.

If G(x, x) = 2g2(x)h2(x) is convex, then obviously the expression under the last sum and A(5) is
non-positive. When G(x, x) is C1,1 (i.e., |G′(x, x) − G′(y, y)| ≤ C|x − y|) then it is bounded by C
and |A(5)

t | ≤ Ct .
Since finite-variation part of U is finite whenever t is bounded, applying McKean argument

(see Refs. 21 and 22) we obtain that U cannot explode in finite time with positive probability and
consequently τ = ∞ a.s. �

Remark 2: Note that if p = 2, then the assumptions on g2h2 can be dropped since in that case
dA(3) ≡ 0.

In the modern theory of particle systems it is important to consider and to study β-versions of
a particle system given by the SDEs system (3.2), i.e., the solutions of the SDEs system

dλi = 2g(λi )h(λi )dνi + β

⎛
⎝b(λi ) +

∑
k 	=i

G(λi , λk)

λi − λk

⎞
⎠ dt, β > 0. (3.14)
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Note that the system (3.14) is for β 	= 1 no longer of the form (3.2), because βG(x, y)
	= g2(x)h2(y) + g2(y)h2(x). However, we have the following.

Corollary 1: Let � = (λi)i = 1. . . p be a process starting from λ1(0) < . . . < λp(0) and satisfying
(3.14) with functions b, g, h : R → R such that b, g2, h2 are Lipschitz continuous and g2h2 is convex
or in class C1,1. If β ≥ 1, then the first collision time τ is infinite a.s.

Proof: The proof is similar to the proof of Theorem 5, with the decomposition dU = dM
+ dA(1) + dA(2) + dA(3) given by

d M = 2
∑
i< j

g(λi )h(λi )dνi − g(λ j )h(λ j )dν j

λ j − λi
,

d A(1) = β
∑
i< j

b(λi ) − b(λ j )

λ j − λi
dt,

d A(2) = 2
∑
i< j

(g2(λ j ) − g2(λi ))(h2(λ j ) − h2(λi ))

(λ j − λi )2
dt + 2(1 − β)

∑
i< j

G(λi , λ j )

(λ j − λi )2
,

d A(3) = β
∑
i< j

1

λ j − λi

∑
k 	=i,k 	= j

(
G(λi , λk)

λi − λk
− G(λ j , λk)

λ j − λk

)
dt.

The estimates of M, A(1), A(3) and of the first term of A(2) are identical as in the proof of
Theorem 5. The term 2(1 − β)

∑
i< j

G(λi ,λ j )
(λ j −λi )2 is less or equal 0 for β ≥ 1, so A(2) cannot explode to

+ ∞ and neither can U.

Remark 3: The condition β ≥ 1 is optimal in Corollary 1. It is known (Refs. 16 and 26) that the
Dyson Brownian motion defined as a solution of the SDEs system

dYi = dνi + β
∑
k 	=i

1/2

Yi − Yk
dt, i = 1, . . . , p

has collisions for β < 1. Note that taking g(x) = 1/2, h(x) = 1, b(x) = 0, and β = 1 the Dyson SDEs
system is of the form (3.2) and a general Dyson SDEs system is the β-version of the β = 1 case.

Observe that Theorem 5 holds also in the complex case. The β-version of Eq. (3.9) is defined
by

dλi = 2g(λi )h(λi )dνi + β

2

⎛
⎝b(λi ) + 2

∑
k 	=i

G(λi , λk)

λi − λk

⎞
⎠ dt. (3.15)

Corollary 2. Under the hypotheses of Theorem 5, the solutions of the SDEs system (3.9), i.e.,
the eigenvalues of the process Xt on Hp, verify τ = ∞ a.s. It is also true for their β-versions (3.15)
with β ≥ 1.

Proof: Note that the system (3.9) is equal to the system (3.14) with the same g and h, b/2 instead
of b, and β = 2. �

D. Spectral matrix Yamada-Watanabe theorem

Theorem 6: Consider the matrix SDE (3.1) on Sp,

d Xt = g(Xt )d Bt h(Xt ) + h(Xt )d BT
t g(Xt ) + b(Xt )dt,

where g, h, b : R → R and X0 ∈ S̃p. Suppose that

|g(x)h(x) − g(y)h(y))|2 ≤ ρ(|x − y|), x, y ∈ R, (3.16)
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where ρ: (0, ∞) → (0, ∞) is a Borel function such that
∫

0+ ρ−1(x)dx = ∞, that the function G(x,
y) = g2(x)h2(y) + g2(y)h2(x) is locally Lipschitz and strictly positive on {x 	= y} and that b is
locally Lipschitz. Then, for t < τ , the pathwise uniqueness holds for the eigenvalue and eigenvector
processes of Xt, solutions of the SDEs system (3.2) and (3.3).

Remark 4: The hypothesis in Theorem 6 on the strict positivity of G(x, y) off the diagonal {x
= y} is equivalent to the condition that g and h have not more than one zero and their zeros are not
common.

Remark 5: In the matrix SDE (3.1), the functions g and h appear only in the martingale part,
whereas in Eqs. (3.2) and (3.3) they intervene also in the finite variation part. That is why a Lipschitz
condition on the symmetrized function g2 ⊕ h2 cannot be avoided in a spectral matrix Yamada-
Watanabe theorem on Sp.

Proof: We diagonalize X0 = h0λ0hT
0 . We will show that Eqs. (3.2) and (3.3) have unique strong

solutions when �0 = λ0 and H0 = h0. The functions

bi (λ1, . . . , λp) = b(λi ) +
∑
k 	=i

G(λi , λk)

λi − λk
,

ci j (λ1, . . . , λp, h11, h12, . . . , h pp) = δk j hik

√
G(λ j , λk)

λ j − λk
,

di j (λ1, . . . , λp, h11, h12, . . . , h pp) = −1

2
hi j

∑
k 	= j

G(λ j , λk)

(λk − λ j )2

are locally Lipschitz continuous on D = {0 ≤ λ1 < λ2 < . . . < λp} × [ − 1, 1]r, r = p2. Thus, they
can be extended from the compact sets

Dm = {0 ≤ λ1 < λ2 < . . . < λp < m, λi+1 − λi ≥ 1/m} × [−1, 1]r

to bounded Lipschitz continuous functions on Rp+r . We will denote by bm
i , cm

ik , and dm
i j such

extensions for m = 1, 2, . . . .
We consider the following system of SDE (recall that βkj = β jk):

dλm
i = 2g(λm

i )h(λm
i )dνi + bm

i (�m)dt, i = 1, . . . , p,

dhi j =
∑
k 	= j

cm
i j (�

m, H ) dβk j (t) + dm
i j (�m, H ) dt, 1 ≤ i, j ≤ p.

Since |g(x)h(x) − g(y)h(y))|2 ≤ ρ(|x − y|) and
∫

0+ ρ(x)−1dx = ∞, by Theorem 2 with q
= 1

2 p(p − 1), we obtain that there exists a unique strong solution of the above-given system of
SDEs. Using the fact that Dm⊂Dm + 1, limm→∞Dm = D and the standard procedure we get that there
exists a unique strong solution (�t, Ht) of the systems (3.2) and (3.3) up to the first exit time from
the set D. This time is almost surely equal to τ , the first collision time of the eigenvalues. �

Theorems 6 and 5 imply the following global strong existence result for eigenvalues and
eigenvectors of a matrix SDE on the space Sp.

Corollary 3: Suppose that b, g2, h2 are Lipschitz continuous, g2h2 is convex or in class C1,1 and
that G(x, y) is strictly positive on {x 	= y}. Then the system of SDEs (3.2) and (3.3) for eigenvalue
and eigenvector processes of the matrix process on Sp given by (3.1) admits a unique strong solution
on [0, ∞).

Proof: Recall that if a non-negative function F is Lipschitz continuous, then
√

F is 1/2-Hölder
continuous. Observe that if g2 and h2 are Lipschitz continuous, then g2h2 is locally Lipschitz and
gh is 1/2-Hölder. Thus (3.16) is verified and Theorem 6 applies on [0, τ ). By Theorem 5, τ = ∞
almost surely. �
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Remark 6. Theorem 6 and Corollary 3 establish the pathwise uniqueness and strong existence
of eigenvalue and eigenvector processes �t and Ht of the process Xt. It is an open question whether
the pathwise uniqueness and strong existence hold for the matrix SDE (3.1) itself. Note that the
process Xt takes values in the space Sp of dimension p(p + 1)/2, whereas the Brownian matrix in the
SDE (3.1) contains p2 independent Brownian motions. Thus, we have a redundance phenomenon
in the matrix SDE (3.1). The SDEs system (3.2) and (3.3) for (�t, Ht) has the advantage to be
non-redundant, because it contains exactly p(p + 1)/2 independent Brownian motions.

In the light of Theorem 6 and Corollary 3, it is natural to conjecture the pathwise uniqueness
and strong existence for the matrix SDE (3.1). Otherwise, the most precise description of the matrix
process Xt would be given by the SDEs for its eigenvalue and eigenvector processes (3.2) and (3.3)
and not by the matrix SDE (3.1), despite its simplicity and because of the redundance described
above.

IV. APPLICATIONS

A. Noncolliding particle systems of squared Bessel processes

In a recent paper by Katori and Tanemura,17 particle systems of squared Bessel processes
BESQ(ν), ν > − 1, interacting with each other by long ranged repulsive forces are studied. If there
are N particles, their positions X (ν)

i are given by the following system of SDEs, see Ref. 17, p. 593,

d X (ν)
i (t) = 2

√
X (ν)

i (t)d Bi (t) + 2(ν + 1)dt + 4X (ν)
i (t)

∑
j 	=i

dt

X (ν)
i (t) − X (ν)

j (t)

= 2
√

X (ν)
i (t)d Bi (t) + 2(ν + N )dt + 2

∑
j 	=i

X (ν)
i (t) + X (ν)

j (t)

X (ν)
i (t) − X (ν)

j (t)
dt, i = 1, . . . , N

with a collection of independent standard Brownian motions {Bi(t), i = 1, . . . , N} and, if − 1
< ν < 0, with a reflection wall at the origin. Theorem 4 implies that the processes X (ν)

i (t) are the
eigenvalues of a complex Wishart (or Laguerre) process, with shape parameter δ = ν + N, see the
end of Sec. III B. It may be also seen as a β-version of the real Wishart eigenvalue process, with
β = 2.

Theorem 7: The system of SDEs for a particle system of N squared Bessel processes BESQ(ν),
with 0 ≤ X (ν)

i (0) < X (ν)
2 (0) < . . . < X (ν)

N (0) admits a unique strong solution on [0, ∞) for ν ≥ − 1.

Proof: Like for a Squared Bessel process on R+, one must start with the following system of
SDEs:

dY (ν)
i (t) = 2

√
|Y (ν)

i (t)|d Bi (t) + 2(ν + N )dt + 2
∑
j 	=i

|Y (ν)
i (t)| + |Y (ν)

j (t)|
Y (ν)

i (t) − Y (ν)
j (t)

, i = 1, . . . , N ,

which is well defined on RN up to the first collision time τ . We suppose that 0 ≤ Y (ν)
1 (0) < Y (ν)

2 (0)
< . . . < Y (ν)

N (0). It follows from Corollary 2 that the collision time for the processes (Y (ν)
i (t)),

i = 1, . . . , N is τ = ∞ a.s.
First suppose that ν > − 1. Theorem 2 applied to the last system, with a standard use of

localization techniques as in the proof of Theorem 6, gives the existence of a pathwise unique strong
solution (Y (ν)

i (t)). It remains to show that Y (ν)
1 (t) ≥ 0 for all t > 0.

Denote

b1(t) = ν + N +
∑
j 	=1

|Y (ν)
1 (t)| + |Y (ν)

j (t)|
Y (ν)

1 (t) − Y (ν)
j (t)

.
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We define two stopping times

ϑ = inf{t > 0| Y (ν)
1 (t) < 0};

κ = inf{t > ϑ | b1(t) = 0}.
Suppose that P(ϑ < ∞) > 0. Then there exists T > 0 such that P(ϑ < T ) > 0. As Y (ν)

1 (ϑ) = 0 and
b1(ϑ) = ν + N − (N − 1) = ν + 1 > 0, we see that if ϑ < ∞, then κ > ϑ .

It follows from Ref. 25, Lemma 3.3, p. 389 that the local time L0(Y (ν)
1 ) = 0. Using Tanaka’s

formula,25 VI (1.2) we obtain for t ≥ 0,

E(Y (ν)
1 ((ϑ + t) ∧ κ ∧ T ))− = −E

∫ (ϑ+t)∧κ∧T

ϑ∧T
1{Y (ν)

1 (s)≤0}dY (ν)}
1 (s)

= −2E
∫ (ϑ+t)∧κ∧T

ϑ∧T
1{Y (ν)

1 (s)≤0}b1(s)ds ≤ 0.

In the last inequality, we used the fact that b1(s) > 0 when ϑ ≤ s < κ . Thus,

Y (ν)
1 ((ϑ + t) ∧ κ ∧ T ) ≥ 0

for t > 0 which contradicts the definition of ϑ . We deduce that ϑ = ∞ almost surely.
In the case ν = − 1, let T0 = inf{t > 0| Y (ν)

1 (t) = 0}. Observe that if T0 < ∞, then b1(T0) = 0.
Define Ỹ (ν)

1 (t) = Y (ν)
1 (t) when t < T0 and Ỹ (ν)

1 (t) = 0 when t ≥ T0. Then (Ỹ (ν)
1 , Y (ν)

2 , . . . , Y (ν)
N ) is a

solution of the same SDE system as (Y (ν)
1 , Y (ν)

2 , . . . , Y (ν)
N ). Consequently, by Theorem 2, we have

Y (ν)
1 = Ỹ (ν)

1 ≥ 0. �

B. Wishart stochastic differential equations

Wishart processes on S+
p are matrix analogues of Squared Bessel processes on R+. Wishart

processes with shape parameter n (which corresponds to the dimension of a BESQ on R+) are simply
constructed as Xt = N T

t Nt , where Nt is an n × p Brownian matrix. Let α > 0 and B = (Bt)t≥0

be a Brownian p × p matrix. We write
√

Xt in the spectral action sense of g(Xt) with g(x) = √
x ,

explained in (1.1).
√

Xt is the symmetric matrix such that its square equals Xt. The Wishart stochastic
differential equation for a Wishart process with a shape parameter α is{

d Xt = √
Xt d Bt + d BT

t

√
Xt + α I dt

X0 = x0.
(4.1)

It was introduced by Bru3 by first writing the SDE for Xt = N T
t Nt and next replacing the parameter

n by α. It was shown in Ref. 3 that if x0 ∈ S+
p and α > p − 1, then there exists a unique weak

solution of (4.1). Also according to Ref. 3, the conditions α ≥ p + 1 and x0 ∈ S+
p imply that (4.1)

has a unique strong solution. We reinforce considerably these results.
Our methods apply to the following matrix stochastic differential equation:

dYt =
√

|Yt |d Bt + d BT
t

√
|Yt | + α I dt, (4.2)

where α ∈ R, Y0 = y0 ∈ S̃p, and |Yt| is defined in the spectral action sense of f(Yt) with f(x) = |x|,
explained in (1.1).

We have g(x) = √|x |, h(x) = 1, and G(x, y) = |x| + |y| for x, y ∈ R. These functions satisfy
the hypotheses of Theorems 5 and 6.

By Theorem 3, the eigenvalues of the generalized Wishart process Yt verify the following system
of SDEs:

dλi = 2
√

|λi |dνi +
⎛
⎝α +

∑
k 	=i

|λi | + |λk |
λi − λk

⎞
⎠ dt.

First, using Theorem 5 we obtain the following.
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Corollary 4: For α ∈ R and λ1(0) < λ2(0) < . . . < λp(0), the eigenvalues λi(t) never collide,
i.e., the first collision time τ = ∞ almost surely.

Next, Theorem 6 implies the following.

Corollary 5: The SDEs system for the eigenvalues and eigenvectors (�t, Ht) corresponding to
the generalized Wishart SDE (4.2) with Y0 = y0 ∈ S̃p has a unique strong solution on [0, ∞) for
any α ∈ R.

In order to consider Eq. (4.1), we must prove the non-negativity of the smallest eigenvalue of
the process Yt, when starting from a non-negative value.

Proposition 1: If α ≥ p − 1 and λ1(0) ≥ 0, then the process λ1(t) remains non-negative.

Proof: We argue as in the proof of Theorem 7. �

Consequently, using the unicity of solutions in Theorem 6, we obtain the following.

Corollary 6: Consider the Wishart SDE (4.1) with x0 such that 0 ≤ λ1(0) < λ2(0) < . . .
< λp(0). Then the corresponding system of SDEs for eigenvalue and eigenvector processes (�t, Ht)
has a unique strong solution on [0, ∞) for α ≥ p − 1.

Remark 7: Bru3 showed that for α > p − 1 the Wishart processes have the absolutely con-
tinuous Wishart laws which are very important in multivariate statistics, see, e.g., the monograph
of Muirhead.23 The singular Wishart processes corresponding to α = 1, . . . p − 1 are obtained
as Xt = N T

t Nt , where Nt is an α × p Brownian matrix. Then X0 = N T
0 N0 has eigenvalue 0 of

multiplicity p − α so x0 	∈ S̃p.

Remark 8: An important perturbation of the Wishart SDE (4.1) is the equation for the Wishart
process with constant drift c > 0, which may be also viewed as a squared matrix Ornstein-Uhlenbeck
process

d Xt =
√

Xt d Bt + d BT
t

√
Xt + α I dt + cXt dt, X0 ∈ S̃p. (4.3)

This equation has the form (3.1) with g(x) = √
x, h(x) = 1 and b(x) = α + cx. By Theorems 5 and

6, the SDEs system for its eigenvalue and eigenvector processes has a unique strong solution with t
∈ [0, ∞) for any α ≥ p − 1, c > 0 and 0 ≤ λ1(0) < λ2(0) < . . . < λp(0). More general squared
matrix Ornstein-Uhlenbeck processes were first studied by Bru3 and recently by Mayerhofer et al.22

Our spectral strong existence and uniqueness result for (4.3) is not covered by these papers.

Remark 9: The existence and pathwise unicity of strong solutions for the Wishart SDE (4.1) for
α ≥ p − 1 remains an open problem. The difficulty of proving it is related to a redundance in the
SDE (4.1), cf. Remark 6. On the other hand, our result on the strong existence and pathwise unicity
of eigenvalues and eigenvectors of Xt supports the conjecture of the existence and pathwise unicity
of strong solutions for the Wishart SDE (4.1) for α ≥ p − 1.

C. Matrix Jacobi processes

Let 0p and Ip be zero and identity p × p matrices. Define Sp[0, I ] = {X ∈ Sp| 0p ≤ X ≤ Ip}.
Denote by Ŝp[0, I ] = {X ∈ Sp| 0p < X < Ip} and by S̃p[0, I ], the set of matrices in Sp[0, I ] with
distinct eigenvalues. A matrix Jacobi process of dimensions (q, r), with q ∧ r > p − 1, and with
values in Sp[0, I ], was defined and studied by Doumerc10 as a solution of the following matrix SDE,
with respect to a p × p Brownian matrix Bt,{

d Xt = √
Xt d Bt

√
Ip − Xt + √

Ip − Xt d BT
t

√
Xt + (q Im − (q + r )Xt )dt

X0 = x0 ∈ Sp[0, I ].
(4.4)
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In Ref. 10, Theorem 9.3.1, p. 135, it was shown that if q ∧ r ≥ p + 1 and x0 ∈ Ŝp[0, I ], then (4.4)
has a unique strong solution in Ŝp[0, I ]. In the case q ∧ r ∈ (p − 1, p + 1) and x0 ∈ S̃p[0, I ], the
existence of a unique solution in law was proved in Ref. 10. Our methods allow one to strengthen
the results of Doumerc.

Corollary 7: Let q ∧ r ≥ p − 1 and x0 ∈ S̃p[0, I ]. Then the SDEs system for the eigenvalue
and eigenvector processes for the matrix SDE (4.4) has a unique strong solution for t ∈ [0, ∞).

Proof: We apply Theorems 5 and 6 with g(x) = √|x |, h(x) = √|1 − x | and b(x) = q − (q
+ r)x. Next we prove similarly as in the proof of Theorem 7 that 0 ≤ λ1(t) < . . . < λp(t) ≤ 1.

D. β-Wishart and β-Jacobi processes

Let β > 0. One calls a β-Wishart process a solution of the system of SDEs,

dλi = 2
√

λi dνi + β

⎛
⎝α +

∑
k 	=i

λi + λk

λi − λk

⎞
⎠ dt. (4.5)

The β-Wishart processes were studied by Demni.7 In the theory of random matrices and its phys-
ical applications, the β-Wishart processes are related to Chiral Gaussian Ensembles, which were
introduced as effective (approximation) theoretical models describing energy spectra of quantum
particle systems in high energy physics. Usually, a symmetry of Hamiltonian is imposed and it fixes
the value of β to be 1, 2, or 4, respectively, in real symmetric, Hermitian and symplectic cases. On
the other hand, from the point of view of statistical physics, β is regarded as the inverse temperature,
β = 1/(kBT), and should be treated as a continuous positive parameter. In this sense, the β-Wishart
systems are statistical mechanics models of “log -gases” (The strength of the force between particles
is proportional to the inverse of distances. Then the potential, which is obtained by integrating
the force, is logarithmic function of the distance. So the system is called a “log -gas”). For more
information on log -gases, see the recent monograph of Forrester.11

In Ref. 7, the existence and uniqueness of strong solutions of the SDE system (4.5) was
established for β > 0 and α > p − 1 + 1

β
. Lépingle20 observed the last result in the classical

Wishart case β = 1. Our Theorem 2 and Corollary 1, together with comparison techniques like in
the proof of Theorem 7, imply the following result, not covered by results of Demni and Lépingle.

Corollary 8: The SDE system (4.5) with 0 ≤ λ1(0) < λ2(0) < . . . < λp(0) has a unique strong
solution for t ∈ [0, ∞), for any α ≥ p − 1 and β ≥ 1.

The β-Jacobi processes (λi), i = 1, . . . , p are [0, 1]p-valued processes generalizing processes
of eigenvalues of matrix Jacobi processes defined by (4.4),

dλi = 2
√

λi (1 − λi )dνi + β

⎛
⎝q − (q + r )λi +

∑
k 	=i

λi (1 − λk) + λk(1 − λi )

λi − λk

⎞
⎠ dt. (4.6)

Indeed, for β = 1 the formula (4.6) was shown in Ref. 10 and it follows directly from Theorem 3.
β-Jacobi processes were recently studied by Demni in Ref. 8. He showed that the system (4.6) has
a unique strong solution for all time t when β > 0 and q ∧ r > p − 1 + 1/β. As an application of
Theorem 2, Theorem 5 and the comparison techniques like in the proof of Theorem 7, we improve
this result when β ≥ 1.

Corollary 9: The SDE system (4.6) with 0 ≤ λ1(0) < λ2(0) < . . . < λp(0) ≤ 1 has a unique
strong solution for t ∈ [0, ∞), for any β ≥ 1 and q ∧ r ≥ p − 1.

Remark 10: It would be interesting to extend our generalization of the Yamada-Watanabe
theorem to the SDEs considered by Cépa-Lépingle.4
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The Wishart eigenvalue processes are radial Dunkl processes. Existence and unicity problems
for SDEs for important classes of radial Dunkl processes were studied by Demni,6 using Ref. 4.

The natural counterpart of the Dunkl theory in the negatively curved setting is the theory
of hypergeometric Laplacians of Heckman and Opdam, connected with the Cherednik operators,
which are the analogues of the Dunkl operators in the flat case. The stochastic processes generated
by Laplacians of Heckman and Opdam were studied in Ref. 27 and are called Heckman–Opdam or
Cherednik processes.

The Jacobi eigenvalues processes being an important example of the radial Cherednik processes,
we conjecture that the strong existence and unicity would hold for radial Cherednik processes.
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