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By V. A. Dolgushev at Riverside, and V. N. Rubtsov at Angers and Moscow

Abstract. The formality theorem for Hochschild chains of the algebra of func-
tions on a smooth manifold gives us a version of the trace density map from the zeroth
Hochschild homology of a deformation quantization algebra to the zeroth Poisson homo-
logy. We propose a version of the algebraic index theorem for a Poisson manifold which is
based on this trace density map.

1. Introduction

Various versions [5], [6], [11], [13], [18], [19], [33] of the algebraic index theorem gen-
eralize the famous Atiyah-Singer index theorem [1] from the case of a cotangent bundle to
an arbitrary symplectic manifold. The first version of this theorem for Poisson manifolds
was proposed by D. Tamarkin and B. Tsygan in [43]. Unfortunately, the proof of this ver-
sion is based on the formality conjecture for cyclic chains [44] which is not yet established.
In this paper we use the formality theorem for Hochschild chains [15], [41] to prove another
version of the algebraic index theorem for an arbitrary Poisson manifold. This version is
based on the trace density map from the zeroth Hochschild homology of the deformation
quantization algebra to the zeroth Poisson homology of the manifold.

We denote by ðM; p1Þ a smooth real Poisson manifold and by OM the algebra of
smooth (real-valued) functions on M. TM (resp. T �M) stands for tangent (resp. cotangent)
bundle of M.

Let O�h
M ¼ ðOM ½½�h��; �Þ be a deformation quantization algebra of ðM; p1Þ in the sense

of [2] and [3] and let

p ¼ �hp1 þ �h2p2 þ � � � A �hGðM;d2TMÞ½½�h��ð1:1Þ

be a representative of Kontsevich’s class of O�h
M .

One of the versions of the algebraic index theorem for a symplectic manifold [11] de-
scribes a natural map (see [11], Eq. (31) and Theorem 4)

cl : K0ðO�h
MÞ ! H

top
DRðMÞðð�hÞÞ
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from the K-theory of the deformation quantization algebra O�h
M to the top degree De Rham

cohomology of M. This map is obtained by composing the trace density map [19]

trdsymp : O�h
M=½O�h

M ;O�h
M � ! H

top
DRðMÞðð�hÞÞð1:2Þ

from the zeroth Hochschild homology HH0ðO�h
MÞ ¼ O�h

M=½O�h
M ;O�h

M � of O�h
M to the top degree

De Rham cohomology of M with the lowest component of the Chern character (see [30],
Example 8.3.6)

ch0;0 : K0ðO�h
MÞ ! O�h

M=½O�h
M ;O�h

M �ð1:3Þ

from the K-theory of O�h
M to the zeroth Hochschild homology of O�h

M .

In the case of an arbitrary Poisson manifold one cannot construct the map (1.2). In-
stead, the formality theorem for Hochschild chains [15], [41] provides us with the map

trd : O�h
M=½O�h

M ;O�h
M � ! HP0ðM; pÞ;ð1:4Þ

from the zeroth Hochschild homology of O�h
M to the zeroth Poisson homology [7], [26] of p

(1.1).

According to J.-L. Brylinski [7], if ðM; p1Þ is a symplectic manifold then we have the
following isomorphism:

HP�ðM; pÞ½�h�1�GH dim M��
DR ðMÞðð�hÞÞ:

Thus, in the symplectic case the map (1.2) can be obtained from the map (1.4).

For this reason we also refer to (1.4) as the trace density map.

Composing (1.4) with (1.3) we get the map

ind : K0ðO�h
MÞ ! HP0ðM; pÞ:ð1:5Þ

Let us call this map the quantum index density.

On the other hand setting �h ¼ 0 gives us the obvious map

s : K0ðO�h
MÞ ! K0ðOMÞð1:6Þ

which we call the principal symbol map.

We recall that

Proposition 1 (J. Rosenberg, [39]). The map ind (1.5) factors through the map s (1.6).

The proof of this proposition is nice and transparent. For this reason we decided to
recall it here in the introduction.
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Proof. First, recall that for every associative algebra B a finitely generated projec-
tive module can be represented by an idempotent in the algebra MatðBÞ of finite size ma-
trices with entries in B.

Next, let us show that the map (1.6) is surjective. To do this, it su‰ces to show
that for every idempotent q in MatðOMÞ there exists an idempotent Q in MatðO�h

MÞ such
that

Qj�h¼0 ¼ q:

The desired idempotent is produced by the following equation (see [18], Eq. (6.1.4), p. 185):

Q ¼ 1

2
þ q� 1

2

� �
�
�
1þ 4ðq � q� qÞ

��1=2ð1:7Þ

where the last term in the right-hand side is understood as the expansion of the function
y ¼ x�1=2 in 4ðq � q� qÞ around the point ðx ¼ 1; y ¼ 1Þ. Since q is an idempotent in
MatðOMÞ

q � q� q ¼ 0 mod �h

and therefore the expansion in (1.7) makes sense.

A direct computation shows that the element Q defined by (1.7) is indeed an idempo-
tent in MatðO�h

MÞ.

Thus, it su‰ces to show that if two idempotents P and Q in MatðO�h
MÞ have the same

principal part then indð½P�Þ ¼ indð½Q�Þ. Here ½P� (resp. ½Q�) denotes the class in K0ðO�h
MÞ re-

presented by P (resp. Q).

For this, we first show that if

Pj�h¼0 ¼ Qj�h¼0ð1:8Þ

then P can be connected to Q by a smooth path Pt of idempotents in MatðO�h
MÞ.

Indeed if we define the following smooth path

P0
t ¼

�
ð1� tÞPþ tQ

�
in the algebra MatðO�h

MÞ and plug P0
t into Equation (1.7) instead of q we get the path of

idempotents in the algebra MatðO�h
MÞ

Pt ¼
1

2
þ P0

t �
1

2

� �
�
�
1þ 4ðP0

t � P0
t � P0

t Þ
��1=2

;ð1:9Þ

which connects P with Q. Due to Equation (1.8) the right-hand side of (1.9) is well defined
as a formal power series in �h.
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Let us now show that P and Q represent the same class in K0ðO�h
MÞ. Since

dtPt ¼ ðdtPtÞ � Pt þ Pt � ðdtPtÞ;

Pt � ðdtPtÞ � Pt ¼ 0:

Hence, for Pt we have

dtPðtÞ ¼
�
PðtÞ;PðtÞ �

�
dtPðtÞ

�
�
�
dtPðtÞ

�
� PðtÞ

�
:

Therefore, since Pt connects P and Q, ½P� ¼ ½Q� in K0ðO�h
MÞ and the proposition follows.

r

In this paper we propose a version of the algebraic index theorem which describes
how the quantum index density (1.5) factors through the principal symbol map (1.6).

More precisely, using the generalization [4], [16] of the formality theorem for Hoch-
schild chains [15], [41] to the algebra of endomorphisms of a vector bundle, we construct
the map

indc : K0ðOMÞ ! HP0ðM; pÞ;ð1:10Þ

which makes the following diagram

K0ðO�h
MÞ �����������!ind

HP0ðM; pÞ
s indc

K0ðOMÞ
ð1:11Þ �����! �����!

commutative.

In this paper we refer to the map indc as the classical index density.

The organization of the paper is as follows. In the next section we fix notation and
recall some results we are going to use in this paper. In section 3 we prove some useful facts
about the twisting procedure of DGLAs and DGLA modules by Maurer-Cartan elements.
In section 4 we construct trace density map (1.4), quantum (1.5) and classical (1.10) index
densities. In section 5 we formulate and prove the main result of this paper (see Theorem
1). The concluding section consists of two parts. In the first part we describe the relation of
our result to the Tamarkin-Tsygan version [43] of the algebraic index theorem. In the sec-
ond part we propose a conjectural version of our index theorem in the context of Rie¤el’s
strict deformation quantization [28] of dual bundle of a Lie algebroid.

Acknowledgment. We would like to thank P. Bressler, M. Kontsevich, B. Feigin, G.
Halbout, D. Tamarkin, and B. Tsygan for useful discussions. We would like to thank the
referee for useful remarks and constructive suggestions. The results of this paper were pre-
sented in the seminar on quantum groups and Poisson geometry at Ecole Polytechnique.
We would like to thank the participants of this seminar and especially D. Sternheimer for
questions and useful comments. V.D. started this project when he was a Lifto¤ Fellow of
Clay Mathematics Institute and he thanks this Institute for the support. Bigger part of this
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2. Preliminaries

In this section we fix notation and recall some results we are going to use in this
paper.

For an associative algebra B we denote by MatNðBÞ the algebra of N �N matrices
over B. The notation C�ðBÞ is reserved for the normalized Hochschild chain complex of B

with coe‰cients in B

C�ðBÞ ¼ C�ðB;BÞð2:1Þ

and the notation C�ðBÞ is reserved for the normalized Hochschild cochain complex of B

with coe‰cients in B and with shifted grading

C�ðBÞ ¼ C�þ1ðB;BÞ:ð2:2Þ

The Hochschild coboundary operator is denoted by q and the Hochschild boundary oper-
ator is denoted by b. We denote by HH �ðBÞ the cohomology of the complex

�
C�ðBÞ; q

�
and by HH�ðBÞ the homology of the complex

�
C�ðBÞ; b

�
.

It is well known that the Hochschild cochain complex (2.2) carries the structure of a
di¤erential graded Lie algebra. The corresponding Lie bracket (see [17], Eq. (3.2), p. 45)
was originally introduced by M. Gerstenhaber in [22]. We will denote this bracket by ½ ; �G.

The Hochschild chain complex (2.1) carries the structure of a di¤erential graded Lie
algebra module over the DGLA C�ðBÞ. We will denote the action (see [17], Eq. (3.5), p. 46)
of cochains on chains by R.

The trace map tr [30] is the map from the Hochschild chain complex C�
�
MatNðBÞ

�
of

the algebra MatNðBÞ to the Hochschild chain complex C�ðBÞ of the algebra B. This map is
defined by the formula

trðM0 nM1 n � � �nMkÞ ¼
P

i0;...; ik

ðM0Þi0i1
n ðM1Þi1i2

n � � �n ðMkÞik i0
;ð2:3Þ

where M0; . . . ;Mk are matrices in MatNðBÞ and ðMaÞij are the corresponding entries.

Dually, the cotrace map [30]

cotr : C�ðBÞ ! C�
�
MatNðBÞ

�
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is defined by the formula

�
cotrðPÞðM0;M1; . . . ;MkÞ

�
ij
¼

P
i1;...; ik

P
�
ðM0Þii1 ; ðM1Þi1i2

; . . . ; ðMkÞik j

�
;ð2:4Þ

where P A C kðBÞ and M0; . . . ;Mk are, as above, matrices in MatNðBÞ.

‘‘DGLA’’ always means a di¤erential graded Lie algebra. The arrow �! denotes an
Ly-morphism of DGLAs, the arrow ��! denotes a morphism of Ly-modules, and the
notation

L???ymod

M

means that M is a DGLA module over the DGLA L. The symbol � always stands for the
composition of morphisms. �h denotes the formal deformation parameter.

Throughout this paper M is a smooth real manifold. For a smooth real vector bundle
E over M, we denote by EndðEÞ the algebra of endomorphisms of E. For a sheaf G of
OM -modules we denote by GðM;GÞ the vector space of global sections of G and by W�ðGÞ
the graded vector space of exterior forms on M with values in G. In few cases, by abuse of
notation, we denote by W�ðGÞ the sheaf of exterior forms with values in G. Similarly, we
sometimes refer to EndðEÞ as the sheaf of endomorphisms of a vector bundle E. We specif-
ically clarify the notation when it is not clear from the context.

T �poly is the vector space of polyvector fields with shifted grading

T �poly ¼ GðM;5�þ1
OM

TMÞ; T�1
poly ¼ OM ;

and A� is the graded vector space of exterior forms:

A� ¼ GðM;5�OM
T �MÞ:

T �poly is the graded Lie algebra with respect the so-called Schouten-Nijenhuis bracket
½ ; �SN (see [17], Eq. (3.20), p. 50) and A� is the graded Lie algebra module over T �poly with
respect to Lie derivative L (see [17], Eq. (3.21), p. 51). We will regard T �poly (resp. A�) as the
DGLA (resp. the DGLA module) with the zero di¤erential.

Given a Poisson structure p (1.1) one may introduce non-zero di¤erentials on the
graded Lie algebra T �poly½½�h�� and on the graded Lie algebra module A�½½�h��. Namely,
T �poly½½�h�� can be equipped with the Lichnerowicz di¤erential ½p; �SN [29] and A�½½�h�� can
be equipped with the Koszul di¤erential Lp [26], where L denotes the Lie derivative. The
cohomology of the complex ðT �poly½½�h��; ½p; �SNÞ is called the Poisson cohomology of p. For
these cohomology groups we reserve the notation HP�ðM; pÞ. Similarly, the homology of
the complex ðA�½½�h��;LpÞ is called the Poisson homology of p and for the homology groups
of ðA�½½�h��;LpÞ we reserve notation HP�ðM; pÞ.
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We denote by xi local coordinates on M and by yi fiber coordinates in the tangent
bundle TM. Having these coordinates yi we can introduce another local basis of exterior
forms fdyig. We will use both bases fdxig and fdyig. In particular, the notation W�ðGÞ is
reserved for the dy-exterior forms with values in the sheaf G while A� is reserved for the
dx-exterior forms.

We now briefly recall the Fedosov resolutions (see [17], Chapter 4) of polyvector
fields, exterior forms, and Hochschild (co)chains of OM . This construction has various in-
carnations and it is referred to as the Gelfand-Fuchs trick [20] or formal geometry [21] in
the sense of Gelfand and Kazhdan, or mixed resolutions [45] of Yekutieli.

We denote by SM the formally completed symmetric algebra of the cotangent bun-
dle T �ðMÞ. Sections of the sheaf SM can be viewed as formal power series in tangent
coordinates yi. We regard SM as the sheaf of algebras over OM . In particular, C�ðSMÞ
is the sheaf of normalized Hochschild cochains of SM over OM . Namely, the sections of
C kðSMÞ over an open subset U HM are OM-linear polydi¤erential operators with respect
to the tangent coordinates yi

P : GðU ;SMÞnðkþ1Þ ! GðU ;SMÞ

satisfying the normalization condition

Pð. . . ; f ; . . .Þ ¼ 0; Ef A OMðUÞ:

Similarly, C�ðSMÞ is the sheaf of normalized Hochschild chains1) of SM over OM . As in
[17] the tensor product in

CkðSMÞ ¼SM n̂nOM
ðSM=OMÞ n̂nOM

� � � n̂nOM
ðSM=OMÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kþ1

is completed in the adic topology in fiber coordinates yi on the tangent bundle TM.

The cohomology of the complex of sheaves C�ðSMÞ is the sheaf T�
poly of fiberwise

polyvector fields (see [17], p. 60). The cohomology of the complex of sheaves C�ðSMÞ is
the sheaf E� of fiberwise di¤erential forms (see [17], p. 62). These are dx-forms with values
in SM.

In [17], Theorem 4, p. 68, it is shown that the algebra W�ðSMÞ can be equipped with
a di¤erential of the following form

D ¼ ‘� dþ A;ð2:5Þ

where

‘ ¼ dyi q

qxi
� dyiGk

ij ðxÞy j q

qyk
;ð2:6Þ

1) In [17] the sheaf C �ðSMÞ is denoted by D�poly and the sheaf C�ðSMÞ is denoted by Cpoly
� .
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is a torsion free connection with Christo¤el symbols Gk
ij ðxÞ,

d ¼ dyi q

qyi
;ð2:7Þ

and

A ¼
Py
p¼2

dykA
j
ki1...ip
ðxÞyi1 . . . yip

q

qy j
A W1ðT0

polyÞ:ð2:8Þ

We refer to (2.5) as the Fedosov di¤erential.

Notice that d in (2.7) is also a di¤erential on W�ðSMÞ and (2.5) can be viewed as a
deformation of d via the connection ‘.

Let us recall from [17] the following operator on2) W�ðSMÞ:

d�1ðaÞ ¼ yk
~qq

qðdykÞ
Ð1
0

aðx; ty; t dyÞ dt

t
; if a A W>0ðSMÞ;

0; otherwise:

8><
>:ð2:9Þ

This operator satisfies the following properties:

d�1 � d�1 ¼ 0;ð2:10Þ

a ¼ wðaÞ þ dd�1aþ d�1da; Ea A W�ðSMÞð2:11Þ

where

wðaÞ ¼ ajyi¼dyi¼0:ð2:12Þ

These properties are used in the proof of the acyclicity of d and D in positive dimension.

According to [17], Proposition 10, p. 64, the sheaves T�
poly, C�ðSMÞ, E�, and

C�ðSMÞ are equipped with the canonical action of the sheaf of Lie algebras T0
poly and

this action is compatible with the corresponding (DG) algebraic structures. Using this
action in [17], chapter 4, we extend the Fedosov di¤erential (2.5) to a di¤erential on the
DGLAs (resp. DGLA modules) W�ðT�

polyÞ, W�ðE�Þ, W�
�
C�ðSMÞ

�
, and W�

�
C�ðSMÞ

�
.

Using acyclicity of the Fedosov di¤erential (2.5) in positive dimension one constructs
in [17] embeddings of DGLAs and DGLA modules3)

2) The arrow over q in (2.9) means that we use the left derivative with respect to the ‘‘anti-commuting’’

variable dyk .

3) See [17], Eq. (5.1), p. 81.
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T �poly ���!lT
�
W�ðT�

polyÞ;D; ½ ; �SN

�???yL
mod

???yL
mod

A� ���!lA �
W�ðE�Þ;D

�
;

ð2:13Þ

�
W�

�
C�ðSMÞ

�
;Dþ q; ½ ; �G

�
 ���lD

C�ðOMÞ???yR
mod

???yR
mod�

W�
�
C�ðSMÞ

�
;Dþ b

�
 ���lC

C�ðOMÞ;

ð2:14Þ

and shows that these are quasi-isomorphisms of the corresponding complexes.

Furthermore, using Kontsevich’s and Shoikhet’s formality theorems for Rd [25], [41]
in [17] one constructs the following diagram:

�
W�ðT�

polyÞ;D; ½ ; �SN

�
�!
K �

W�
�
C�ðSMÞ

�
;Dþ q; ½ ; �G

�???yL
mod

???yR
mod�

W�ðE�Þ;D
�

 		
S �

W�
�
C�ðSMÞ

�
;Dþ b

�
ð2:15Þ

where K is an Ly quasi-isomorphism of DGLAs, S is a quasi-isomorphism of Ly-
modules over the DGLA

�
W�ðT�

polyÞ;D; ½ ; �SN

�
, and the Ly-module structure on

W�
�
C�ðSMÞ

�
is obtained by composing the Ly quasi-isomorphism K with the DGLA

modules structure R (see [17], Eq. (3.5), p. 46, for the definition of R).

Diagrams (2.13), (2.14) and (2.15) show that the DGLA module C�ðOMÞ of Hoch-
schild chains of OM is quasi-isomorphic to the graded Lie algebra module A� of its
cohomology.

Remark 1. As in [17] we use adapted versions of Hochschild (co)chains for the alge-
bras OM and EndðEÞ of functions and of endomorphisms of a vector bundle E, respectively.
Thus, C�ðOMÞ is the complex of polydi¤erential operators (see [17], p. 48) satisfying the
corresponding normalization condition. C�

�
EndðEÞ

�
is the complex of (normalized) poly-

di¤erential operators acting on EndðEÞ with coe‰cients in EndðEÞ. Furthermore, C�ðOMÞ
is the complex of (normalized) polyjets

CkðOMÞ ¼ HomOM

�
C k�1ðOMÞ;OM

�
;

and

Ck

�
EndðEÞ

�
¼ HomEndðEÞ

�
C k�1

�
EndðEÞ

�
;EndðEÞ

�
:

We have to warn the reader that the complex C�ðOMÞ (resp. C�
�
EndðEÞ

�
) does not co-

incide with the complex of Hochschild cochains of the algebra OM of functions (resp. the

85Dolgushev and Rubtsov, An algebraic index theorem for Poisson manifolds

Brought to you by | Université d'Angers
Authenticated

Download Date | 7/17/15 12:16 PM



algebra EndðEÞ of endomorphisms of E). Similar expectation is wrong for Hochschild
chains. Instead we have the following inclusions:

C�ðOMÞHC�genuineðOMÞ; C�
�
EndðEÞ

�
HC�genuine

�
EndðEÞ

�
;

C genuine
� ðOMÞHC�ðOMÞ; C genuine

�
�
EndðEÞ

�
HC�

�
EndðEÞ

�
;

where C genuine
� and C�genuine refer to the original definitions (2.1), (2.2) of Hochschild chains

and cochains, respectively.

Remark 2. Unlike in [17] we use only normalized Hochschild (co)chains. It is not
hard to check that the results we need from [17], [25], and [41] also hold when this normal-
ization condition is imposed.

Let us now recall the construction of paper [16], in which the formality of the DGLA
module

�
C�

�
EndðEÞ

�
;C�

�
EndðEÞ

��
is proved.

The construction of [16] is based on the use of the following auxiliary sheaf of
algebras:

ES ¼ EndðEÞnOM
SMð2:16Þ

considered as a sheaf of algebras over OM .

It is shown in [16] that the Fedosov di¤erential (2.5) can be extended to the following
di¤erential on W�ðESÞ:

DE ¼ Dþ ½gE ; �; gE ¼ GE þ ~ggE ;ð2:17Þ

where GE is a connection form of E and ~ggE is an element in W1ðESÞ defined by iterating
the equation

gE ¼ GE þ d�1 ‘gE þ AðgEÞ þ 1

2
½gE ; gE �

� �
ð2:18Þ

in degrees in fiber coordinates yi of the tangent bundle TM.

The di¤erential (2.17) naturally extends to the DGLA W�
�
C�ðESÞ

�
and to the

DGLA module W�
�
C�ðESÞ

�
. Namely, on W�

�
C�ðESÞ

�
the di¤erential DE is defined by

the formula

DE ¼ Dþ ½qgE ; �G;ð2:19Þ

and on W�
�
C�ðESÞ

�
it is defined by the equation

DE ¼ Dþ RqgE :ð2:20Þ

Here, q is the Hochschild coboundary operator and R denotes the actions of cochains on
chains.
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Then, generalizing the construction of the maps lD and lC in (2.14) one gets the fol-
lowing embeddings of DGLAs and their modules:

�
W�

�
C�ðESÞ

�
;DE þ q; ½ ; �GÞ  ���lE

D
C�

�
EndðEÞ

�???yR
mod

???yR
mod

�
W�

�
C�ðESÞ

�
;DE þ b

�
 ���lE

C
C�

�
EndðEÞ

�
:

ð2:21Þ

Similarly to [17], Propositions 7, 13, 15, one can easily show that lE
D and lE

C are quasi-
isomorphisms of the corresponding complexes.

Finally, the DGLA modules

�
W�

�
C�ðESÞ

�
;W�

�
C�ðESÞ

��
and

�
W�

�
C�ðSMÞ

�
;W�

�
C�ðSMÞ

��
are connected in [16] by the following commutative diagram of quasi-isomorphisms of
DGLAs and their modules:

�
W�

�
C�ðSMÞ

�
;Dþ q; ½ ; �G

� ���!cotr tw �
W�

�
C�ðESÞ

�
;DE þ q; ½ ; �G

�???ymod

???ymod

�
W�

�
C�ðSMÞ

�
;Dþ b

�
 ���tr tw �

W�
�
C�ðESÞ

�
;DE þ b

�
;

ð2:22Þ

where

cotr tw ¼ expð�½gE ; �GÞ � cotr; tr tw ¼ tr � expðRgE Þ;ð2:23Þ

and tr, cotr are the maps

tr : C�ðESÞ ! C�ðSMÞ; cotr : C�ðSMÞ ! C�ðESÞð2:24Þ

defined as in (2.3) and (2.4).

It should be remarked that the element gE in (2.23) comprises the connection form of
E (2.17) and hence can be viewed as a section of the sheaf W1

�
C�1ðESÞ

�
only locally. The

compositions tr tw and cotr tw are still well defined due to the fact that we consider normal-
ized Hochschild (co)chains.

Diagrams (2.13), (2.15), (2.21), and (2.22) give us the desired chain of formality quasi-
isomorphisms for the DGLA module

�
C�

�
EndðEÞ

�
;C�

�
EndðEÞ

��
.

3. The twisting procedure revisited

In this section we will prove some general facts about the twisting by a Maurer-
Cartan element. See [17], Section 2.4, in which this procedure is discussed in more details.
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Let ðL; dL; ½ ; �LÞ ð ~LL; d ~LL; ½ ; � ~LLÞ and be two DGLAs over R. Since we deal with de-
formation theory questions it is convenient for our purposes to extend the field R to the ring
R½½�h�� from the very beginning and consider R½½�h��-modules L½½�h�� and ~LL½½�h�� with DGLA
structures extended from L and ~LL in the obvious way.

By definition a is a Maurer-Cartan element of the DGLA L½½�h�� if a A �hL½½�h��, it has
degree 1 and satisfies the equation

dLaþ 1

2
½a; a�L ¼ 0:ð3:1Þ

The first two conditions can be written concisely as a A �hL1½½�h��.

Notice that, gðLÞ ¼ �hL0½½�h�� forms an ordinary (not graded) Lie algebra over R½½�h��.
Furthermore, gðLÞ is obviously pronilpotent and hence can be exponentiated to the group

GðLÞ ¼ expð�hL0½½�h��Þ:ð3:2Þ

The natural action of this group on L½½�h�� can be introduced by exponentiating the adjoint
action of gðLÞ.

The action of GðLÞ on the Maurer-Cartan elements of the DGLA L½½�h�� is given by
the formula

expðxÞ½a� ¼ aþ f ð½ ; x�LÞðdLxþ ½a; x�LÞ;ð3:3Þ

where a is a Maurer-Cartan element of L½½�h��, x A �hL0½½�h��, f ðxÞ is the function

f ðxÞ ¼ ex � 1

x

and the expression f ð½ ; x�LÞ is defined via the Taylor expansion of f ðxÞ around the point
x ¼ 0.

We call Maurer-Cartan elements equivalent if they lie on the same orbit of the action
(3.3). The set of these orbits is called the moduli space of the Maurer-Cartan elements.

We have the following proposition:

Proposition 2 (W. Goldman and J. Millson, [23]). If f is a quasi-isomorphism from

the DGLA L to the DGLA ~LL then the induced map between the moduli spaces of Maurer-

Cartan elements of L½½�h�� and ~LL½½�h�� is an isomorphism of sets.

Every Maurer-Cartan element a of L½½�h�� can be used to modify the DGLA structure
on L½½�h��. This modified structure is called [36] the DGLA structure twisted by the Maurer-
Cartan a. The Lie bracket of the twisted DGLA structure is the same and the di¤erential is
given by the formula

d a
L ¼ dL þ ½a; �L:ð3:4Þ

We will denote the DGLA L½½�h�� with the bracket ½ ; �L and the di¤erential d a
L by La.
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Two DGLAs are called quasi-isomorphic if there is a chain of quasi-isomorphisms
f ; f1; f2; . . . ; fn connecting L with ~LL:

L �!f L1  �
f1

L2 �!
f2 � � � �!fn�1

Ln  �
fn ~LL:ð3:5Þ

This chain naturally extends to the chain of quasi-isomorphisms of DGLAs over
R½½�h��

L½½�h�� �!f L1½½�h��  �
f1

L2½½�h�� �!
f2 � � � �!fn�1

Ln½½�h��  �
fn ~LL½½�h��:ð3:6Þ

We would like to prove that

Proposition 3. For every Maurer-Cartan element a of L½½�h�� the chain of quasi-

isomorphisms (3.6) can be upgraded to the chain

La �!f La1

1  �
~ff1

La2

2 �!
~ff2 � � � �!

~ffn�1
Lan

n  �
~ffn ~LL ~aa;ð3:7Þ

where ai (resp. ~aa) are Maurer-Cartan elements of Li½½�h�� (resp. ~LL½½�h��) and the quasi-

isomorphisms ~ffi are obtained from fi by composing with the action of an element in the group

GðLiÞ.

Proof runs by induction on n. We, first, prove the base of the induction ðn ¼ 1Þ and
then the step follows easily from the statement of the proposition for n ¼ 1.

We set a1 to be

a1 ¼ f ðaÞ:

Since f1 is a quasi-isomorphism from ~LL to L1, by Proposition 2, there exists a Maurer-
Cartan element ~aa A ~LL such that f1ð~aaÞ is equivalent to a1.

Let T1 be an element of the group GðL1Þ which transforms f1ð~aaÞ to a1. Thus by
setting

~ff1 ¼ T1 � f1ð3:8Þ

we get the desired chain for n ¼ 1

La !f La1

1  
~ff1 ~LL ~aað3:9Þ

and the proposition follows. r

Chain (3.7) gives us an isomorphism

I~aa : H �ð ~LL ~aaÞ !@ H �ðLaÞð3:10Þ

from the cohomology of the DGLA ~LL ~aa to the cohomology of the DGLA La. This iso-
morphism depends on choices of Maurer-Cartan elements in the intermediate terms Li½½�h��
and the choices of elements from the groups GðLiÞ.

89Dolgushev and Rubtsov, An algebraic index theorem for Poisson manifolds

Brought to you by | Université d'Angers
Authenticated

Download Date | 7/17/15 12:16 PM



We claim that

Proposition 4. If L and ~LL are DGLAs connected by the chain of quasi-isomorphisms

(3.5), a is a Maurer-Cartan element in �hL½½�h�� and

La �!f L
a 0

1

1  �
~ff 0
1

L
a 0

2

2 �!
~ff 0
2 � � � �!

~ff 0
n�1

La 0n
n  �

~ff 0n ~LL ~aa 0 ;ð3:11Þ

is another chain of quasi-isomorphism obtained according to Proposition 3 then there exists

and element T ~LL of the group Gð ~LLÞ such that

T ~LLð~aaÞ ¼ ~aa 0;ð3:12Þ

and

I~aa ¼ I~aa 0 � T ~LL:ð3:13Þ

Before proving the proposition let us consider the case n ¼ 0 with a slight modifica-
tion. More precisely, we consider a quasi-isomorphism g ¼ f0 from the DGLA ~LL to the
DGLA L

L g ~LLð3:14Þ

and suppose that a and a 0 are two equivalent Maurer-Cartan elements of L½½�h��.

Due to Proposition 2 there exist Maurer-Cartan elements ~aa and ~aa 0 in ~LL½½�h�� and ele-
ments T and T 0 of the group GðLÞ such that

T
�
gð~aaÞ

�
¼ a; T 0

�
gð~aa 0Þ

�
¼ a 0:

Hence, by setting

~gg ¼ T � g; ~gg 0 ¼ T 0 � gð3:15Þ

we get the following pair of quasi-isomorphisms of twisted DGLAs:

La  ~gg ~LL ~aa;ð3:16Þ

La 0  ~gg
0

~LL ~aa 0 :ð3:17Þ

Let us prove the following auxiliary statement:

Lemma 1. If a and a 0 are Maurer-Cartan elements of L½½�h�� connected by the action

of an element TL A GðLÞ

TLðaÞ ¼ a 0;

then there exists an element T ~LL of the group Gð ~LLÞ such that

T ~LLð~aaÞ ¼ ~aa 0
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and the diagram of DGLAs

La  ���~gg ~LL ~aa???yTL

???yT ~LL

La 0  ���~gg 0 ~LL ~aa 0

ð3:18Þ

commutes up to homotopy.

Proof. Since the Maurer-Cartan element gð~aaÞ and gð~aa 0Þ are equivalent, then so are
the Maurer-Cartan elements ~aa and ~aa 0. Hence, there exists an element T0 A Gð ~LLÞ such that

T0ð~aaÞ ¼ ~aa 0:

The following diagram shows the relations between various Maurer-Cartan elements
in question:

a  ���T
gð~aaÞ  ���g

~aa???yTL

???ygðT0Þ

???yT0

a 0  ���T 0
gð~aa 0Þ  ���g

~aa 0:

ð3:19Þ

From this diagram we see that

TLT ½gð~aaÞ� ¼ T 0gðT0Þ½gð~aaÞ�;

or equivalently

gðT0Þ�1ðT 0Þ�1
TLT ½gð~aaÞ� ¼ ½gð~aaÞ�:ð3:20Þ

Therefore the element gðT0Þ�1ðT 0Þ�1
TLT belongs to the subgroup G

�
L; gð~aaÞ

�
HGðLÞ of

elements preserving gð~aaÞ.

It is not hard to show that the subgroup G
�
L; gð~aaÞ

�
is

G
�
L; gð~aaÞ

�
¼ exp

�
�hL0½½�h��X ker

�
dL þ ½gð~aaÞ; �L

��
:ð3:21Þ

In other words, there exists a dL þ ½gð~aaÞ; �L-closed element x A �hL0½½�h�� such that

gðT0Þ�1ðT 0Þ�1
TLT ¼ expðxÞ:

Since the map g from ~LL ~aa to Lgð~aaÞ is a quasi-isomorphism, there exists an element
c A �h ~LL0½½�h�� such that

d ~LLcþ ½~aa;c� ~LL ¼ 0;

and the di¤erence x� gðcÞ is dL þ ½gð~aaÞ; �L-exact. Therefore the elements

TLT
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and

T 0g
�
T0 expðcÞ

�
induce homotopic maps from the DGLA Lgð~aaÞ to the DGLA La 0 .

Thus, T ~LL ¼ T0 expðcÞ is the desired element of the group Gð ~LLÞ which makes Dia-
gram (3.18) commutative up to homotopy.

The lemma is proved. r

Proof of Proposition 4. The proof runs by induction on n and the base of the induc-
tion n ¼ 0 follows immediately from Lemma 1.

If the statement is proved for n ¼ 2k then the statement for n ¼ 2k þ 1 also follows
from Lemma 1.

Since the source of the map f2k is L2k the case n ¼ 2k follows immediately from the
case n ¼ 2k � 1 and this concludes the proof of the proposition. r

For a DGLA module M over a DGLA L the direct sum LlM carries the natural
structure of a DGLA. Namely, this DGLA is the semi-direct product of L and M where
M is viewed as a DGLA with the zero bracket. Morphisms between two such semi-direct
products LlM and ~LLl ~MM correspond to morphisms between the DGLA modules
ðL;MÞ and ð ~LL; ~MMÞ. Furthermore, twisting the DGLA structure on L½½�h��lM½½�h�� by a
Maurer-Cartan element a A �hL½½�h�� gives us the semi-direct product LalMa correspond-
ing to the DGLA module Ma with the di¤erential twisted by the action of the Maurer-
Cartan element a.

This observation allows us to generalize Propositions 3 and 4 to a chain of quasi-
isomorphisms of DGLA modules:

ðL;MÞ �!h ðL1;M1Þ  �
h1 ðL2;M2Þ �!

h2 � � � �!hn�1 ðLn;MnÞ  �
hn ð ~LL; ~MMÞ:ð3:22Þ

Namely,

Proposition 5. For every Maurer-Cartan element a of L½½�h�� the chain of quasi-

isomorphisms (3.22) can be upgraded to the chain

ðLa;MaÞ �!h ðLa1

1 ;Ma1

1 Þ  �
~hh1 ðLa2

2 ;Ma2

2 Þð3:23Þ

�!
~hh2 � � � �!

~hhn�1 ðLan
n ;Man

n Þ  �
~hhn ð ~LL ~aa; ~MM ~aaÞ;

where ai (resp. ~aa) are Maurer-Cartan elements of Li½½�h�� (resp. ~LL½½�h��) and the quasi-

isomorphisms ~hhi are obtained from hi by composing with the action of an element in the group

GðLiÞ. r
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Chain (3.23) gives us an isomorphism

J~aa : H �ð ~MM ~aaÞ !@ H �ðMaÞð3:24Þ

from the cohomology of the DGLA module ~MM ~aa to the cohomology of the DGLA module
Ma. This isomorphism depends on choices of Maurer-Cartan elements in the DGLAs
Li½½�h�� and the choices of elements from the groups GðLiÞ.

We claim that

Proposition 6. If ðL;MÞ and ð ~LL; ~MMÞ are DGLA modules connected by the chain of

quasi-isomorphisms (3.22), a is a Maurer-Cartan element in �hL½½�h�� and

ðLa;MaÞ �!h ðLa 0
1

1 ;M
a 0

1

1 Þ  �
~hh 0

1 ðLa 0
2

2 ;M
a 0

2

2 Þð3:25Þ

�!
~hh 0

2 � � � �!
~hh 0

n�1 ðLa 0n
n ;Ma 0n

n Þ  �
~hh 0n ð ~LL ~aa 0 ; ~MM ~aa 0 Þ;

is another chain of quasi-isomorphism obtained according to Proposition 5 then there exists

an element T ~LL of the group Gð ~LLÞ such that

T ~LLð~aaÞ ¼ ~aa 0;ð3:26Þ

and

J~aa ¼ J~aa 0 � T ~LL: rð3:27Þ

4. Trace density, quantum and classical index densities

In this section we recall the construction of the trace density map (1.4) which gives the
quantum index density (1.5). We also construct the classical index density (1.10) using the
chain (2.13), (2.15), (2.21), (2.22) of formality quasi-isomorphisms for C�

�
EndðEÞ

�
.

Let, as above, O�h
M ¼ ðOM ½½�h��; �Þ be a deformation quantization algebra of the Pois-

son manifold ðM; p1Þ and p (1.1) be a representative of Kontsevich’s class of O�h
M .

It can be shown that every star-product � is equivalent to the so-called natural star-
product [24]. These are the star-products

a � b ¼ abþ
Py
k¼1

�hkBkða; bÞ

for which the bidi¤erential operators Bk satisfy the following condition:

Condition 1. For all k f 1 the bidi¤erential operator Bk has the order at most k in

each argument.
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In this paper we tacitly assume that the above condition holds for the star-product �.

Using the map lT from (2.13) we lift p to the Maurer-Cartan element lTðpÞ in
the DGLA W�ðT�

polyÞ½½�h��. This element allows us to extend the di¤erential D (2.5) on
W�ðT�

polyÞ½½�h�� to

Dþ ½lTðpÞ; �SN : W�ðT�
polyÞ½½�h�� !

�
W�ðT�

polyÞ½½�h��
�
½1�;ð4:1Þ

where [1] denotes the shift of the total degree by 1.

Similarly, we extend the di¤erential D (2.5) on W�ðE�Þ½½�h�� to

Dþ LlT ðpÞ : W
�ðE�Þ½½�h�� !

�
W�ðE�Þ½½�h��

�
½1�:ð4:2Þ

Notice that, the star-product � in O�h
M can be rewritten in the form

a � b ¼ abþPða; bÞ; a; b A OM ½½�h��;ð4:3Þ

where P A �hC1ðOMÞ½½�h�� can be viewed as a Maurer-Cartan element of C�ðOMÞ½½�h��.

Applying the map lD (2.14) to P we get a D-flat Maurer-Cartan element in
�hG

�
M;C�ðSMÞ

�
½½�h�� and hence a new product in SM½½�h��:

a 
 b ¼ abþ lDðPÞða; bÞ; a; b A GðM;SMÞ½½�h��:ð4:4Þ

Condition 1 implies that the product 
 is compatible with the following filtration on
SM½½�h��:

� � �HF kSM½½�h��HF k�1SM½½�h��H � � �HF 0SM½½�h�� ¼SM½½�h��;ð4:5Þ

where the local sections of F kSM½�h� are the following formal power series:

GðF kSM½½�h��Þ ¼
	 P

2pþmf k

ap; i1...imðxÞ�hpyi1 . . . yim



:ð4:6Þ

Using the product 
 we extend the original di¤erentials Dþ q and Dþ b on
W�

�
C�ðSMÞ

�
½½�h�� and W�

�
C�ðSMÞ

�
½½�h�� to

Dþ q
 : W
��C�ðSMÞ

�
½½�h�� !

�
W�

�
C�ðSMÞ

�
½½�h��

�
½1�;ð4:7Þ

and

Dþ b
 : W
��C�ðSMÞ

�
½½�h�� !

�
W�

�
C�ðSMÞ

�
½½�h��

�
½1�;ð4:8Þ

respectively.

Here q
 (resp. b
) is the Hochschild coboundary (resp. boundary) operator corre-
sponding to (4.4), and [1] as above denotes the shift of the total degree by 1.
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Next, following the lines of [17], section 5.3, we can construct the following chain of
(Ly) quasi-isomorphisms of DGLA modules:

T �poly½½�h�� ���!lT
W�ðT�

polyÞ½½�h�� �!
~KK

W�
�
C�ðSMÞ

�
½½�h��  ���lD

C�ðO�h
MÞ???yL

mod

???yL
mod

???yR
mod

???yR
mod

A�½½�h�� ���!lA W�ðE�Þ½½�h��  		
~SS

W�
�
C�ðSMÞ

�
½½�h��  ���lC

C�ðO�h
MÞ;

ð4:9Þ

where T �poly½½�h�� carries the Lichnerowicz di¤erential ½p; �SN, A�½½�h�� carries the di¤erential
Lp, while W�ðT�

polyÞ½½�h��, W�ðE�Þ½½�h��, W�
�
C�ðSMÞ

�
½½�h��, W�

�
C�ðSMÞ

�
½½�h�� carry the di¤er-

entials (4.1), (4.2), (4.7), (4.8), respectively.

The maps lT and lD, lA, lC are genuine morphisms of DGLAs and their modules as
in Equations (2.13) and (2.14). ~KK is an Ly-quasi-isomorphism of the DGLAs and ~SS is a
quasi-isomorphism of the corresponding Ly-modules. ~KK and ~SS are obtained from K and
S in (2.15), respectively, in two steps. First, we twist4) K and S by the Maurer-Cartan
element lTðpÞ. Second, we adjust them by the action of an element T of the prounipotent
group

G
�
W�

�
C�ðSMÞ

��
¼ exp

�
g
�
W�

�
C�ðSMÞ

���
ð4:10Þ

corresponding to the Lie algebra

g
�
W�

�
C�ðSMÞ

��
¼ �hG

�
M;C0ðSMÞ

�
½½�h��l �hW1

�
C�1ðSMÞ

�
½½�h��:

The element T A G
�
W�

�
C�ðSMÞ

��
is defined as an element which transforms the Maurer-

Cartan element

Py
m¼1

1

m!
Km

�
lTðpÞ; . . . ; lTðpÞ

�
ð4:11Þ

to the Maurer-Cartan element lDðPÞ.

The desired trace density map (1.4) is defined as the composition

trd ¼ ½H �ðlAÞ��1 �H �ð ~SS0Þ �H �ðlCÞjHH0ðO�h
MÞ
;ð4:12Þ

where H � denotes the cohomology functor, and ~SS0 is the structure map of the zeroth level
of the morphism ~SS in (4.9).

We have to mention that the construction of the map (4.12) depends on the choice
of the element T in the group (4.10) which transforms the Maurer-Cartan element (4.11)
to lDðPÞ, where P is defined in (4.3). Proposition 6 implies that altering the element T

changes the trace density by the action of an automorphism of O�h
M which is trivial modulo

4) See [17], section 2.4 about the twisting procedure.
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�h. In the symplectic case all such automorphisms are inner, while for a general Poisson
manifold there may be non-trivial outer automorphisms. Fortunately, we have the follow-
ing proposition:

Proposition 7. The composition (1.5) of the trace density (4.12) and the map (1.3) is

independent of the choice of T in the construction of the trace density map.

Proof. Let ind and findind be two quantum index densities corresponding to di¤erent
choices of the element T from the group G

�
W�

�
C�ðSMÞ

��
(4.10).

Due to Proposition 6 there is an automorphism t of O�h
M such that

t ¼ 1 mod �h;ð4:13Þ

and for every X A K0ðO�h
MÞ

findindðXÞ ¼ ind
�
t̂tðXÞ

�
;ð4:14Þ

where t̂t denotes the action of t on K0ðO�h
MÞ.

But due to Proposition 1 the image indðXÞ depends only on the principal symbol

sðXÞ. Therefore, since t does not change the principal symbol, findindðXÞ ¼ indðXÞ. r

Let us now define the classical index density indc (1.10) which is a map from the
K-theory of OM to the zeroth Poisson homology of p (1.1).

The well known construction of R. G. Swan [42] gives us the injection5)

s : K0ðOMÞ ,! K 0ðMÞð4:15Þ

from the K-theory of OM to the K-theory of the manifold M. Thus, it su‰ces to define the
map indc on smooth real vector bundles.

For this, we introduce a smooth real vector bundle E over M and denote by EndðEÞ
the algebra of endomorphisms of E.

Due to Proposition 2 and the formality of the DGLA C�
�
EndðEÞ

�
[4], [16] a

Maurer-Cartan element p (1.1) produces a Maurer-Cartan element PE of the DGLA
�hC�

�
EndðEÞ

�
½½�h��. This element PE gives us the new associative product

a �E b ¼ abþPEða; bÞ;ð4:16Þ

a; b A EndðEÞ½½�h��

on the algebra EndðEÞ½½�h��.

5) For a compact manifold M this map is a bijection.
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Due to Proposition 5 the chain of quasi-isomorphisms (2.13), (2.15), (2.21), and (2.22)
for the DGLA module

�
C�

�
EndðEÞ

�
;C�

�
EndðEÞ

��
can be upgraded6) to the chain of

quasi-isomorphisms connecting the DGLA module
�
C�

�
EndðEÞ

�PE ;C�
�
EndðEÞ

�PE
�

to
the DGLA module ðT �poly½½�h��;A�½½�h��Þ where T �poly½½�h�� carries the di¤erential ½p; �SN and
A�½½�h�� carries the di¤erential Lp.

This chain of quasi-isomorphisms gives us the isomorphism

JE : H�
�
C�

�
EndðEÞ

�PE
�
! H�ðA�½½�h��;LpÞ

from the homology of the DGLA module C�
�
EndðEÞ

�PE to the homology of the chain
complex ðA�;LpÞ.

Since the complex C�
�
EndðEÞ

�PE is nothing but the Hochschild chain complex for
the algebra EndðEÞ½½�h�� with the product (4.16), specifying the map JE for � ¼ 0 we get
the isomorphism

trdE : HH0

�
EndðEÞ½½�h��; �E

�
! HP0ðM; pÞ;ð4:17Þ

from the zeroth Hochschild homology of the algebra
�
EndðEÞ½½�h��; �E

�
to the zeroth Pois-

son homology of p.

Using the map (4.17) we define the index density map by the equation

indcð½E�Þ ¼ trdEð½1E �Þ;ð4:18Þ

where ½1E � is the class in HH0

�
EndðEÞ½½�h��; �E

�
represented by the identity endomorphism

of E.

Since C�
�
EndðEÞ

�
is the normalized Hochschild complex, the group G

�
C�

�
EndðEÞ

��
acts trivially on the 1E . Thus, Proposition 6 implies that the map indc does not depend on
the choices involved in the construction of the isomorphism trdE .

The construction of the chain of the formality quasi-isomorphisms (2.13), (2.15),
(2.21), and (2.22) for the DGLA module

�
C�

�
EndðEÞ

�
;C�

�
EndðEÞ

��
involves the choices

of the connections on the tangent bundle TM and on the bundle E over M. To show that
the map indc (4.18) is indeed well defined we need to show that

Proposition 8. The image indcð½E�Þ does not depend on the choice of the connections ‘
and ‘E on bundles TM and E.

Proof. By changing the connections on TM and E we change the Fedosov di¤eren-
tials D (2.5) and DE (2.17). This means that we twist the DGLAs W�ðT�

polyÞ, W�
�
C�ðSMÞ

�
,

and W�
�
C�ðESÞ

�
by Maurer-Cartan elements. Thus, if we show that these Maurer-Cartan

6) Here we also use the fact that every Ly-quasi-isomorphism can be replaced by a pair of genuine (not

Ly) quasi-isomorphisms.
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elements are trivial (equivalent to zero), the question of independence on the connections
could be easily reduced to the application of Proposition 6.

Since the di¤erential (2.5) can be viewed as a particular case of the di¤erential (2.17)
it su‰ces to analyze the di¤erential DE (2.17).

Changing the Fedosov di¤erential (2.17) on the DGLA
�
W�

�
C�ðESÞ

�
;DE þ q; ½ ; �G

�
and the DGLA module

�
W�

�
C�ðESÞ

�
;DE þ b

�
corresponds to twisting the DGLA struc-

tures by the Maurer-Cartan element

BE A W1
�
C0ðESÞ

�
ð4:19Þ

satisfying the condition

qBE ¼ 0:ð4:20Þ

Condition (4.20) implies that BE is a Maurer-Cartan element of the DGLA

W0
�
C�ðESÞ

�
X ker q �!D

E

W1
�
C�ðESÞ

�
X ker qð4:21Þ

�!D
E

W2
�
C�ðESÞ

�
X ker q �!D

E

� � � :

Thus, in virtue of Proposition 2, it su‰ces to show that the DGLA (4.21) is acyclic in
positive exterior degree.

Let P A Wf1
�
C�ðESÞ

�
X ker q and

DEP ¼ 0:ð4:22Þ

Let us show that an element S A W�
�
C�ðESÞ

�
satisfying the equations

DES ¼ P;ð4:23Þ

qS ¼ 0;ð4:24Þ

can be constructed by iterating the following equation

S ¼ �d�1Pþ d�1
�
‘S þ AðSÞ þ ½qgE ;S �G

�
ð4:25Þ

in degrees in the fiber coordinates yi.

Unfolding the definition of DE (2.5), (2.17) we rewrite the di¤erence

L ¼ DES � Pð4:26Þ

in the form

L ¼ ‘S � dS þ AðSÞ þ ½qgE ;S �G � P:ð4:27Þ
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Equation (4.25) implies that d�1S ¼ 0 and wðSÞ ¼ 0, where w is defined in Equation
(2.12).

Therefore, applying Equation (2.11) to S we get

S ¼ d�1dS:

Hence,

d�1L ¼ 0:ð4:28Þ

On the other hand, Equation (4.22) implies that

DEL ¼ 0;

which is equivalent to

dL ¼ ‘Lþ AðLÞ þ ½qgE ;L�G:ð4:29Þ

Thus applying (2.11) to L, using Equation (4.28) and the fact that L A Wf1
�
C�ðESÞ

�
we get

L ¼ d�1
�
‘Lþ AðLÞ þ ½qgE ;L�G

�
:ð4:30Þ

The latter equation has the unique vanishing solution since d�1 raises the degree in the fiber
coordinates yi.

The operators d�1 (2.9) and ‘ (2.6) anticommute with q. Furthermore qA ¼ 0 by
definition of the form A (2.8). Hence, Equation (4.24) follows from the definition of S

(4.25).

This concludes the proof of the proposition. r

5. The algebraic index theorem

Let us now formulate and prove the main result of this paper:

Theorem 1. Let O�h
M be a deformation quantization algebra of the Poisson manifold

ðM; p1Þ and let p (1.1) be a representative of Kontsevich’s class of O�h
M. If ind is the quantum

index density (1.5), indc is the classical index density (4.18) and s is principal symbol map

(1.6) then the diagram

K0ðO�h
MÞ �����������!ind

HP0ðM; �hpÞ½½�h��
s indc

K0ðOMÞ
ð5:1Þ �����! �����!

commutes.
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The rest of the section is devoted to the proof of the theorem.

Let N be an arbitrary natural number and P be an arbitrary idempotent in the alge-
bra MatNðO�h

MÞ of N �N matrices over O�h
M . Let q be the principal symbol of P

q ¼ Pj�h¼0:

Our purpose is to show that the index indð½P�Þ of the class ½P� represented by P coincides
with the image indcð½E�Þ, where E is the vector bundle defined by q.

Notice that MatNðSMÞ is SM nEndðINÞ, where IN denotes the trivial bundle of
rank N. As in [11] we would like to modify the connection (2.6) which is used in the con-
struction of the Fedosov di¤erential (2.5). More precisely, we replace ‘ (2.6) by

‘q ¼ ‘þ ½Gq; � : SM nEndðINÞ ! W1
�
SM nEndðINÞ

�
;ð5:2Þ

where

Gq ¼ qðdqÞ � ðdqÞq:

This connection is distinguished by the following property:

‘qðqÞ ¼ 0:ð5:3Þ

In general the connection ‘q � dþ A is no longer flat. To cure this problem we try to find
the flat connection within the framework of the following ansatz:

Dq ¼ Dþ ½Bq; �
 : SM nEndðINÞ½½�h�� ! W1
�
SM nEndðINÞ

�
½½�h��;ð5:4Þ

where Bq A W1
�
SM nEndðINÞ

�
½½�h��,

Bqjy¼0 ¼ Gq;

and ½ ; �
 is the commutator of sections of MatNðSMÞ½½�h��, where the algebra SM½½�h�� is
considered with the product (4.4).

The following proposition shows that the desired section Bq does exist:

Proposition 9. Iterating the equation

Bq ¼ Gq þ d�1 ‘Bq þ AðBqÞ þ 1

2
½Bq;Bq�


� �
ð5:5Þ

one gets an element Bq A W1
�
MatNðSMÞ

�
½½�h�� satisfying the equation

DBq þ 1

2
½Bq;Bq�
 ¼ 0:ð5:6Þ
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Proof. First, we mention that the process of the recursion in (5.5) converges because

d�1
�
F kW�

�
MatNðSM½½�h��Þ

��
HF kþ1W�

�
MatNðSM½½�h��Þ

�
;ð5:7Þ

where d�1 is defined in (2.9) and F � is the filtration on SM½½�h�� defined in (4.6).

Second, since Gq does not depend on fiber coordinates yi,

dGq ¼ 0:

Hence, applying (2.11) to Gq we get

Gq ¼ dd�1Gq:ð5:8Þ

Next, we denote by m A W2
�
MatNðSMÞ

�
½½�h�� the left-hand side of (5.6)

m ¼ DBq þ 1

2
½Bq;Bq�
:ð5:9Þ

Applying d�1 to m we get

d�1m ¼ d�1 ‘Bq þ AðBqÞ þ 1

2
½Bq;Bq�


� �
� d�1dBq:ð5:10Þ

On the other hand, due to (2.10), d�1Bq ¼ d�1Gq. Hence, applying (2.11) to Bq and using
(5.8) we get

d�1dBq ¼ Bq � Gq:

Thus, in virtue of (5.5) and (5.10)

d�1m ¼ 0:ð5:11Þ

Using the equation D2 ¼ 0 it is not hard to derive that

Dmþ ½Bq; m�
 ¼ 0:

In other words

dm ¼ ‘mþ AðmÞ þ ½Bq; m�
:

Therefore, applying (2.11) to m and using (5.11) we get

m ¼ d�1
�
‘mþ AðmÞ þ ½Bq; m�


�
:

The latter equation has the unique vanishing solution due to (5.7). This argument concludes
the proof of the proposition and gives us a flat connection of the form (5.4). r

101Dolgushev and Rubtsov, An algebraic index theorem for Poisson manifolds

Brought to you by | Université d'Angers
Authenticated

Download Date | 7/17/15 12:16 PM



The di¤erential Dq (5.4) naturally extends to the DGLA W�
�
C�

�
MatNðSM½½�h��Þ

��
and to the DGLA module W�

�
C�

�
MatNðSM½½�h��Þ

��
. Namely, on

W�
�
C�

�
MatNðSM½½�h��Þ

��
the di¤erential Dq is defined by the formula

Dq ¼ Dþ ½q
Bq; �G;ð5:12Þ

and on W�
�
C�

�
MatNðSM½½�h��Þ

��
it is defined by the equation

Dq ¼ Dþ Rq
Bq :ð5:13Þ

Here, q
 is the Hochschild coboundary operator on C�
�
MatNðSM½½�h��Þ

�
where SM½½�h�� is

considered with the product 
 (4.4).

Let us prove an obvious analogue of [11], Lemma 1, p. 10:

Lemma 2. If Bq is obtained by iterating Equation (5.5) then

Dqþ ½Bq; q�
 ¼ 0:ð5:14Þ

Proof. Since q does not depend on fiber coordinates yi Equation (5.14) boils down
to

dqþ ½Bq; q� ¼ 0;ð5:15Þ

where ½ ; � stands for the ordinary matrix commutator.

On the other hand Equation (5.3) tells us that dq ¼ �½Gq; q�. Thus it su‰ces to prove
that

½Bq; q� � ½Gq; q� ¼ 0:ð5:16Þ

Let us denote the right-hand side of (5.16) by C

C ¼ ½Bq; q� � ½Gq; q�:

Using Equations (5.3) and (5.6) it is not hard to show that

DCþ ½Bq;C� ¼ 0:ð5:17Þ

On the other hand, Equations (2.10) and (5.5) imply that d�1Bq ¼ d�1Gq, and hence,

d�1C ¼ ½d�1Bq; q� � ½d�1Gq; q� ¼ 0:
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Therefore, applying (2.11) to C and using (5.17) we get that

C ¼ d�1
�
‘Cþ AðCÞ þ ½Bq;C�


�
:

This equation has the unique vanishing solution due to (5.7).

The lemma is proved. r

We will need the following proposition:

Proposition 10. There exists an element

U A MatNðSM½½�h��Þð5:18Þ

such that7)

U ¼ I mod MatNðF 1SM½½�h��Þ;ð5:19Þ

and

Dq ¼ Dþ ½U�1 
DU ; �
;ð5:20Þ

where 
 is the obvious extension of the product (4.4) to MatNðSM½½�h��Þ.

Proof. To prove the proposition it su‰ces to construct an element
U A MatNðSM½½�h��Þ satisfying the following equation:

U�1 
DU ¼ Bq;

or equivalently

DU �U 
 Bq ¼ 0:ð5:21Þ

We claim that a solution of (5.21) can be found by iterating the equation

U ¼ 1þ d�1
�
‘U þ AðUÞ �U 
 Bq

�
:ð5:22Þ

Indeed, let us denote by F the right-hand side of (5.21):

F ¼ DU �U 
 Bq:

Due to (5.6)

DFþF 
 Bq ¼ 0:ð5:23Þ

On the other hand Equations (5.22), (2.10) and (2.11) for a ¼ U imply that

d�1F ¼ 0:ð5:24Þ

7) Equation (5.19) implies that U is invertible in the algebra MatNðSM½½�h��Þ with the product 
.
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Hence, applying identity (2.11) to a ¼ F and using (5.23) we get

F ¼ d�1
�
‘Fþ AðFÞ þF 
 Bq

�
:

Due to (5.7) the latter equation has the unique vanishing solution and the desired element
U (5.18) is constructed. r

Due to Equation (5.14), Proposition 10 implies that the element

Q ¼ U 
 q 
U�1

is flat with respect to the initial Fedosov di¤erential (2.5). Therefore, by definition of the
map lC (see [17], Eq. (5.1), chapter 5)

Q ¼ lCðQ0Þ;ð5:25Þ

where

Q0 ¼ Qjyi¼0:

Since Q is an idempotent in the algebra MatNðSM½½�h��Þ with the product 
 (4.4) the ele-
ment Q0 is an idempotent of the algebra MatNðO�h

MÞ.

Furthermore, due to (5.19)

Q0j�h¼0 ¼ q

and hence, by Proposition 1, indð½Q0�Þ ¼ indð½P�Þ.

By definition of the trace density map trd (4.12) the class indð½Q0�Þ is represented by
the cycle

c ¼ ~SS0

�
lCðtr Q0Þ

�
;ð5:26Þ

of the complex W�ðE�Þ½½�h�� with the di¤erential (4.2). Here ~SS0 is the structure map of the
zeroth level of the quasi-isomorphism ~SS in (4.9).

Due to (5.25)

c ¼ ~SS0ðtr QÞ;ð5:27Þ

where Q ¼ U 
 q 
U�1.

Let us prove that

Proposition 11. The cycles

Q ¼ U 
 q 
U�1ð5:28Þ
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and

~QQ ¼
P

kf0

ð�1Þk½qn ðBqÞnð2kÞ þ qn ðBqÞnð2kþ1Þ�ð5:29Þ

are homologous in the complex W�
�
C�

�
MatNðSM½½�h��Þ

��
with the di¤erential Dþ b
.

Proof. A direct computation shows that

Q� ~QQ ¼ Dcþ b
c

where

c ¼
P

kf0

ð�1Þk½U n ðBqÞnð2kÞn q 
U�1 þU n ðBqÞnð2kþ1Þn q 
U�1�: r

It is not hard to show that

~QQ ¼ expðRBqÞðqÞ:

Therefore, the class indð½P�Þ is represented by the cycle

c 0 ¼ ~SS0 � tr � expðRBqÞðqÞ:ð5:30Þ

Let us consider the following diagram of quasi-isomorphisms of DGLA modules:

W�ðT�
polyÞ½½�h�� �!

~KK
W�

�
C�ðSMÞ

�
½½�h�� ���!cotr 0

W�
�
C�

�
MatNðSM½½�h��Þ

��???yL
mod

???yR
mod

???yR
mod

W�ðE�Þ½½�h��  		
~SS

W�
�
C�ðSMÞ

�
½½�h��  ���tr 0

W�
�
C�

�
MatNðSM½½�h��Þ

��
;

ð5:31Þ

where W�
�
C�

�
MatNðSM½½�h��Þ

��
and W�

�
C�

�
MatNðSM½½�h��Þ

��
carry respectively the di¤er-

entials (5.12) and (5.13), the rest DGLAs and DGLA modules carry the same di¤erentials
as in (4.9), and

cotr 0 ¼ expð�½Bq; �GÞ � cotr; tr 0 ¼ tr � expðRBqÞ:ð5:32Þ

Recall that E is the vector bundle corresponding to the idempotent q of the algebra
MatNðOMÞ. In other words the rank N trivial bundle is the direct sum

IN ¼ E lE;ð5:33Þ

where E is the bundle corresponding to 1� q.

In a trivialization compatible with the decomposition (5.33), the endomorphism q is
represented by the constant matrix

~qq ¼ Im 0

0 0

� �
;ð5:34Þ

where m is the rank of the bundle E.
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If we choose di¤erent trivializations on IN the element Bq in (5.4) may no longer be
regarded as a one-form with values in SM nEndðINÞ½½�h��. Instead Bq is the sum

Bq ¼ Gq þ ~BBq

of the connection form Gq (5.2) and an element ~BBq A W1
�
SM nEndðINÞ

�
½½�h�� such that

~BBqjy¼0 ¼ 0:

However the maps cotr 0 and tr 0 (5.32) in Diagram (5.31) are still well defined. The latter
follows from the fact that we deal with normalized Hochschild (co)chains.

Lemma 2 implies that, in a trivialization compatible with the decomposition (5.33),
the form Bq is represented by the block diagonal matrix

Bq ¼ AE 0

0 AE

� �
;ð5:35Þ

where AE

AE ¼ GE þ ~AAE ;

AE ¼ GE þ ~AAE ;

GE (resp. GE) is a connection form of E (resp. E) and ~AAE A W1
�
SM nEndðEÞ

�
½½�h��,

~AAE A W1
�
SM nEndðEÞ

�
½½�h��.

The latter implies that the cycle c 0 (5.30)

c 0 ¼ ~SS0 � tr � expðRAE Þð1EÞ:

Hence c 0 represents the class H�ðlAÞ
�
trdEð½1E �Þ

�
in the cohomology of the complex

W�ðE�Þ½½�h�� with the di¤erential Dþ LlT ðpÞ. Here lA is the embedding of A�½½�h�� into
W�ðE�Þ½½�h�� (2.13) and H� denotes the cohomology functor.

Since c 0 is cohomologous to c (5.26) the statement of Theorem 1 follows. r

Remark. Theorem 1 can be easily generalized to the deformation quantization of the
algebra OC

M of smooth complex valued functions. In this setting we should use the corre-
sponding analogue of the formality theorem from [16] for smooth complex vector bundles.

6. Concluding remarks

6.1. The relation to the cyclic version of the algebraic index theorem. In [43] D. Tam-
arkin and B. Tsygan, inspired by the Connes-Moscovici higher index formulas [14], sug-
gested the first version of the algebraic index theorem for a Poisson manifold. This version
is based on the cyclic formality conjecture [44].
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The statement of this conjecture [44] (see Conjecture 3.3.2) would provide us with the
cyclic version of the trace density map which is a map

trdcyc
� : HC per

� ðO�h
MÞ ! H�

�
W�ðMÞððuÞÞ½½�h��; u d

�
ð6:1Þ

from the periodic cyclic homology HC per
� ðO�h

MÞ of the deformation quantization algebra O�h
M

to the homology of the complex

�
W�ðMÞððuÞÞ½½�h��; u d

�
ð6:2Þ

where u is an auxiliary variable of degree �2 and d is the De Rham di¤erential.

The algebraic index theorem [43] of D. Tamarkin and B. Tsygan describes the map
(6.1) in terms of the principal symbol map

scyc : HC per
� ðO�h

MÞ ! HC per
� ðOMÞð6:3Þ

and characteristic classes of M.

In order to show how our quantum index density (1.5) fits into the picture of D. Tamar-
kin and B. Tsygan let us recall that the map (6.1) is the composition of two isomorphisms:

trdcyc
� ¼ b � ftrdtrdcyc

� :

The first isomorphism is the map8)

ftrdtrdcyc
� : HC per

� ðO�h
MÞ ! H�

�
W�ðMÞððuÞÞ½½�h��;Lp þ u d

�
ð6:4Þ

from the periodic cyclic homology of O�h
M to the homology of the complex

�
W�ðMÞððuÞÞ½½�h��;Lp þ u d

�
;ð6:5Þ

where Lp denotes the Lie derivative along the bivector p (1.1).

The second isomorphism

b : H�
�
W�ðMÞððuÞÞ½½�h��;Lp þ u d

�
! H�

�
W�ðMÞððuÞÞ½½�h��; u d

�
ð6:6Þ

is induced by the map between complexes (6.2) and (6.5)

c! expðu�1ipÞc;

where ip denotes the contraction with the bivector p.

8) It is the cyclic formality conjecture which would imply the existence of the isomorphism (6.4).
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The quantum index density (1.5) fits into the following commutative diagram:

K0ðO�h
MÞ ���!ch�0

HC�0 ðO�h
MÞ ¼ HC

per
0 ðO�h

MÞ???yind

???yetrdcyc
0

HP0ðM; pÞ  ���u¼0
H0

�
W�ðMÞ½½u��½½�h��;Lp þ u d

�???y¼
H0

�
W�ðMÞððuÞÞ½½�h��;Lp þ u d

�???yb

H0

�
W�ðMÞððuÞÞ½½�h��; u d

�
;

ð6:7Þ

where ch�0 denotes the Chern character map (see [30], Proposition 8.3.8, Section 8.3).

We would like to mention recent paper [10] by A. S. Cattaneo and G. Felder. In this
paper the authors consider a manifold M equipped with a volume form and construct an
Ly morphism from the DG Lie algebra module CC�� ðOMÞ of negative cyclic chains of
OM to a DG Lie algebra module modeled on polyvector fields using the volume form. Al-
though this Ly morphism is not a quasi-isomorphism one can still use it to construct a spe-
cific trace on the deformation quantization algebra of a unimodular Poisson manifold. It
would be interesting to find a formula for the index map corresponding to this trace.

6.2. Lie algebroids and the algebraic index theorem. There are two ways when the
Lie algebroid theory comes in the game. The first one, more direct, is based on the
formality theorem for Lie algebroids (see [8] and [9] applied to deformation quantiza-
tion of the so-called Poisson-Lie algebroid F 7!M with a bracket ½ ; � and anchor
a : GðM;FÞ 7! GðM;TMÞ. Such algebroid carries on its fibers a ‘‘Poisson bivector’’
pF A G

�
M;L2ðFÞ

�
satisfying the Jacobi identity: ½pF ; pF � ¼ 0: The corresponding version

of the algebraic index theorem in this setting could be considered as a generalization of
the results of R. Nest and B. Tsygan from [34].

The second way concerns the natural Poisson bracket on the dual vector bundle
F � 7!M of a Lie algebroid F 7!M.

More concretely, we will be interested in the case when the Lie algebroid comes as the
Lie algebroid FðGÞ 7! G0 associated to a Lie groupoid GxG0. The dual bundle F �ðGÞ
carries a natural Poisson structure which is a direct generalization of the canonical symplec-
tic structure on T �M and Lie-Poisson structure on the dual space g� of a Lie algebra g.
(We should remark that the simplest Lie algebroid TM 7! TM, a ¼ id is associated with
the pair groupoid G ¼M �M.)

Following standard definitions of [35] we will associate to a Lie algebroid F 7!M the
adiabatic Lie algebroid F�h 7!M � I whose total space is the pull-back of F and the bracket
½ ; ��h :¼ �h½ ; �. It is interesting and important result that this Lie algebroid comes as a Lie
algebroid of Connes’s tangent groupoid GT (see [12]).
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There are two C �-algebras that can be considered in this situation. The first one is
Connes’s C �-algebra C �ðGÞ of a Lie groupoid and the second one is its ‘‘classical’’ counter-
part—the Poisson algebra C0

�
F �ðGÞ

�
of continuous functions on F �ðGÞ. An appropriate

type of a deformation quantization in the C �-algebra context was proposed by M. Rie¤el
[37]. Let us remind it here omitting some technical details.

Definition 1. A C �-algebraic deformation quantization (or the ‘‘strict’’ Rie¤el’s

quantization) of a Poisson manifold M is a continuous family of C �-algebras
ðA;A�h; �h A I ¼ ½0; 1�Þ such that A0 ¼ C0ðMÞ and the Poisson algebra ~AA0 is dense in
C0ðMÞ. There is a family of sections

F : I 7!
F
�h A I

A�h; fFð�hÞ jF A Ag ¼ A�h

and the function �h! kFð�hÞk continuous. Each algebra A�h is equipped with ��h-product, a
norm k:k�h and ��h-involution. The map

qhð f Þ ¼ f : ~AA0 7! A�h

satisfies the following axiom (the ‘‘correspondence principle’’):

lim
�h!0

i

�h
½q�hð f Þ; q�hðgÞ��h � q�hðf f ; ggÞ

����
����
�h

¼ 0:

The proper C � analog of the algebra A½½�h�� is a C½I �C �-algebra (see [27]) and we will
identify A�h with A=C½I ; �h�A where C½I ; �h� :¼ fF A C½I � jFð�hÞ ¼ 0g.

We will denote by pr�h : A 7! A�h the canonical projection and we will not distinguish
between a A A and the section a : �h! pr�hðaÞ. Now there is a section map q : ~AA0 7! A such
that q�h ¼ pr�h � q.

In concrete situation which we are interested in, the C �-deformation quantization was
studied by N. Landsman [28]. Taking �h A I ¼ ½0; 1�, for any Lie groupoid G the field

A0 :¼ C0

�
F �ðGÞ

�
; A�h ¼ C �ðGÞ; A ¼ C �ðGTÞ

(where GT is the tangent groupoid of G), we obtain a C � algebraic deformation quantiza-
tion of the Lie algebroid F �ðGÞ:

In this context, the arrow of ‘‘symbol map’’ s in Diagram (1.11) (which in fact pro-
vides an isomorphism of the K-groups) admits an ‘‘inversion’’:

inda :¼ s�1 : K0

�
F �ðGÞ

�
! K0

�
C �ðGÞ

�
;ð6:8Þ

which is called the analytic index map (see [40], [31] and [32]). This map plays a key role
in Connes’s generalization of the Atiyah-Singer index theorem in the non-commutative
geometry. Proposition 1 (or more generally, Rosenberg’s theorem [39]) gives us an isomor-
phism of K-groups K0ð ~AA½½�h��ÞGK0ð ~AAÞ.

In this setting we propose a plausible
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Conjecure 1. The maps ind and indc from Diagram (5.1) in Theorem 1 are well de-

fined in the setting of the strict quantization. Furthermore, the diagram

K0

�
C �ðGÞ

� �����������!ind
HP0

�
F �ðGÞ; p

�
inda indc

K0

�
F �ðGÞ

�ð6:9Þ �����! �����!

is commutative.

Let us discuss this statement in two important cases (see [12] and [28]):

(1) When G is Connes’s tangent groupoid

GT ¼ G1 t G2 ¼
�
M �M � ð0; 1�

�
t TM;

the corresponding Lie algebroid F ¼ TM and F � ¼ T �M. We suppose that the manifold
has a Riemannian metric and denote by K

�
L2ðMÞ

�
the algebra of compact operators on

the Hilbert space L2ðMÞ of square-integrable functions on M.

The strict quantization in this case coincides with the Moyal deformation.

The associated C �-algebras in this case are: A0 ¼ C �ðTMÞ and A�h ¼ C �ðM �MÞ,
E�h A ð0; 1�. The first algebra is identified (via the Fourier transform) with C0ðT �MÞ and
the second one is identified with the algebra K

�
L2ðMÞ

�
. Due to [12], II.5, Prop. 5.1, we

have the exact sequence of C �-algebras:

0! C �ðG1Þ ! C �ðGTÞ !~ss C �ðG2Þ ! 0

or in other terms

0! C0

�
ð0; 1�

�
nK

�
L2ðMÞ

�
! C �ðGTÞ !~ss C �

�
C0ðT �MÞ

�
! 0

and from the long exact sequence in K-theory we can obtain the map

~ss� : K0ðGTÞFK0

�
C0ðT �MÞ

�
¼ K 0ðT �MÞ:

The map inda is nothing but the Atiyah-Singer analytic index

inda ¼ tr � {� � ð~ss�Þ�1 : K 0ðT �MÞ ! Z

with

{ : M �M ! GT; {ðx; yÞ ¼ ðx; y; 1Þ; x; y A M

and

C �ðGTÞ 7!{� C �ðM �MÞ ¼K
�
L2ðMÞ

�
1
tr

Z:
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Conjecture 1 transforms in the following commutative diagram:

Z
tr

Ð

K0

�
K

�
L2ðMÞ

�� �������������!ind
H 2n

c ðT �MÞ:
{��ðs�Þ�1 indc

K 0ðT �MÞ

ð6:10Þ
���������

! ���������
!

�����! �����!

Here we use the fact that the canonical Poisson structure p on T �M is symplectic and hence

HP0

�
C0ðT �MÞ; p

�
FH 2n

c ðT �MÞ

where the De Rham cohomology with compact support is used and the map from
H 2n

c ðT �MÞ to Z is given by the usual integral of top degree forms over M.

(2) If G0 is a point and G ¼ G is a Lie group then the associated Lie algebroid is
nothing but the Lie algebra g ¼ LieðGÞ and the dual F � ¼ g�. In this case the associated
C �-algebras are A0 ¼ C �ðgÞFC0ðg�Þ (again, via the Fourier transform) and A�h ¼ C �ðGÞ,
E�h A ð0; 1� is the usual convolution algebra of G defined by a Haar measure.

The map s�1 is the composition

K0

�
C0ðg�Þ

�
�!F
�

K0

�
C �ðgÞ

�
�!exp�

K0

�
C �ðGÞ

�
;

where exp : g 7! G is the usual exponential map and the strict deformation quantization of
the Poisson-Lie structure in g� was proposed by Rie¤el in [38].

Diagram (6.9) takes the following form:

K0

�
C �ðGÞ

� ��������!ind
HP0ðg�; pÞ:

s�1 indc

K0

�
C0ðg�Þ

�ð6:11Þ �����! �����!
We would like to stress that our index theorem (1.11) and the conjectural ‘‘3-ind’’-

theorem (6.9) have, in fact, the same flavor of ‘‘index-without-index’’ theorems like the
index theorems in the theory related to Baum-Connes conjecture. A deformation aspect of
the Baum-Connes is discussed in [28].
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