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Abstract

We correct two errors of omission in our paper, [2] .
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We would like to correct two errors of omission in our paper, [2]. The first occurs in equation
(2.4), where we overlooked the possibility that the downgoing ladder time process has a positive
drift. This happens if and only if 0 is not regular for (0,∞). If this drift is denoted by η, the
correct version of (2.4) is

Px(τ(−∞,0) > e/ε) = P(X
e/ε ≥ −x)

= E

(

∫

[0,∞)
e−ǫt1I{X

t
≥−x} dLt

)

[ηε + n(e/ε < ζ)] , (1)

and the correct version of (2.5) is:

h(x) = lim
ε→0

Px(τ(−∞,0) > e/ε)

ηε + n(e/ε < ζ)
. (2)

However this makes no essential difference to the proof of the following Lemma 1: we just need
to replace n(eε < ζ) by ηε+n(eε < ζ) four times, and n(ζ) by η +n(ζ) in (2.6). The details can
be seen in section 8.2 of [3]. We should also mention that (1) can be found in [1]: see equation
(8), p 174.

The second omission is that we failed to give any proof of

Corollary 1. Assume that 0 is regular upwards. For any t > 0 and for any Ft -measurable,

continuous and bounded functional F ,

n(F, t < ζ) = k lim
x→0

E
↑
x(h(Xt)

−1F ).

The clear implication from our paper is that this follows immediately from our main result,
Theorem 2, but this overlooks the singularity at zero of the function 1/h(x). Since this Corollary
has been cited in a number of recent papers, we give here a full proof of it.

Proof. From (3.2) and Theorem 2 of [2] we see that, for any fixed δ > 0, t > 0,

n(F, t < ζ, Xt > δ) = k lim
x→0

E
↑
x(h(Xt)

−1F, Xt > δ),

and in particular, taking F ≡ 1,

n(t < ζ, Xt > δ) = k lim
x→0

E
↑
x(h(Xt)

−1, Xt > δ)

= k lim
x→0

Px(Xt > δ, τ(−∞,0) > t)/h(x).

Suppose we can show that

n(t < ζ) = k lim
x→0

Px(τ(−∞,0) > t)/h(x). (3)

Then, by subtraction,

n(t < ζ, Xt ≤ δ) = k lim
x→0

Px(Xt ≤ δ, τ(−∞,0) > t)/h(x)

= k lim
x→0

E
↑
x(h(Xt)

−1, Xt ≤ δ).
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Since n(t < ζ, Xt = 0) = 0, if K is an upper bound for F, we also have

lim
δ→0

n(F, t < ζ, Xt ≤ δ) ≤ K lim
δ→0

n(t < ζ, Xt ≤ δ) = 0,

and the required conclusion follows.

To prove (3) we start with (1), and, since we are assuming that 0 is regular upwards, the drift
η in the downwards ladder time process is zero, so we can write it as

∞
∫

0

e−εt
Px(τ(−∞,0) > t)dt = h(ε)(x)

∞
∫

0

e−εtn(ζ > t)dt,

where h(ε)(x) = E

(

∞
∫

0

e−εt1IX
t
≥−xdLt

)

. We know 0 ≤ h(ε)(x) ≤ h(x), so

∞
∫

0

e−εt
Px(τ(−∞,0) > t)dt ≤ h(x)

∞
∫

0

e−εtn(ζ > t)dt.

But we also have

lim inf
x↓0

Px(τ(−∞,0) > t)

h(x)
≥ lim

δ↓0
lim
x↓0

Px(τ(−∞,0) > t, Xt > δ)

h(x)

= lim
δ↓0

n(ζ > t, Xt > δ) = n(ζ > t).

Together, these prove that

lim
x↓0

∞
∫

0

e−εt Px(τ(−∞,0) > t)dt

h(x)
=

∞
∫

0

e−εtn(ζ > t)dt.

Thus the measure with density Px(τ(−∞,0) > t)/h(x) converges weakly to the measure with the
continuous density n(ζ > t). But if 0 < c < t are fixed we have

lim
x→0

Px(τ(−∞,0) > t)/h(x) ≥ c−1 lim
x→0

∫ t+c

t
Px(τ(−∞,0) > s)ds/h(x)

= c−1

∫ t+c

t
n(ζ > s)ds ≥ n(ζ > t + c),

lim
x→0

Px(τ(−∞,0) > t)/h(x) ≤ c−1 lim
x→0

∫ t

t−c
Px(τ(−∞,0) > s)ds/h(x)

= c−1

∫ t

t−c
n(ζ > s)ds ≤ n(ζ > t − c),

and letting c ↓ 0 we conclude that (3) holds, and hence the Corollary.
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