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Abstract

We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two
spatial dimensions. Taking the divergence of the momentum equation leads, as usual, to a
Poisson equation for the pressure: in this paper we study this equation using Monge-Ampère
structures. In two dimensional flows where the laplacian of the pressure is positive, a Kähler
geometry is described on the phase space of the fluid; in regions where the laplacian of the
pressure is negative, a product structure is described. These structures can be related to the
ellipticity and hyperbolicity (respectively) of a Monge-Ampère equation. We then show how
this structure can be extended to a class of canonical vortex structures in three dimensions.

1 Introduction

A considerable literature exists on the dynamics of vortex tubes, particularly on the topic of
the Burgers’ vortex (Burgers 1948). In an influential paper that contains substantial references,
Moffatt, et al. (1994) coined the simile Burgers’ vortices are the sinews of turbulence and thus
identified the heart of the problem; that is, these filament-like vortices stitch together the large-
scale anatomy of vortical dynamics. Despite the twisting, bending and tangling they undergo,
they appear to be the preferred states of Navier-Stokes turbulent flows. The purpose of this paper
is to investigate the enduring subject of turbulence in the light of the recent advances made in
the geometry of Kähler manifolds. We believe that evidence exists that suggests that turbulent
vortical dynamics may be governed by geometric principles.

The incompressible Navier-Stokes equations, in two dimensions, are

∂u

∂t
+ u · ∇u +

1

ρ
∇P = ν∇2u , (1)

∂ρ

∂t
+ ∇ · (ρu) = 0 . (2)

Here, u(x, t) is the fluid velocity, the pressure and density of the fluid are denoted by P (x, t) and
ρ(x, t) respectively, ∇ is the gradient operator and ν is the viscosity; in the inviscid case when
ν = 0 we have the Euler equations. The constraint imposed by the incompressibility condition

∇ · u = 0, (3)

is very severe. It means that the convective derivative of the density vanishes. In turn this means
that an initially homogeneous (constant density) fluid remains constant for all time; ρ(x, 0) =
ρ(x, t) = constant. Hereafter this density is taken as unity. Moreover, when (3) is applied across
(1) it demands that velocity derivatives and the pressure are related by a Poisson equation

−∇2P = ui,juj,i , (4)
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where ∇2 is the Laplace operator (and the summation convention is used with i, j = 1, 2).
Burgers’ vortices are examples of a two-and-a-half-dimensional flow, which can be defined by

the class of velocity fields written as (Gibbon et al. (1999))

u(x, y, z, t) = {u1(x, y, t), u2(x, y, t), zγ(x, y, t)} . (5)

This flow is linear in z in the k̂-direction; thus it is stretching (or compressing) in that direction
but is linked dynamically to its cross-sectional part. The nomenclature refers to the fact that it is
neither fully two- nor three-dimensional but lies somewhere in-between1 Its components must also
satisfy the divergence-free condition

u1,x(x, y, t) + u2,y(x, y, t) + γ(x, y, t) = 0 . (6)

The class of velocity fields in equation (5), first used in Ohkitani & Gibbon (2000), is a more
general classification of Burgers-type solutions and contains the specific form of the Burgers vortex
solutions used in Moffatt et al. (1994). Included in (5) are the Euler solutions of Stuart (1987,
1991), in which u1 and u2 are also linear in x (say) leaving the dependent variables to be functions
of y and t. Then stretching can occur in two directions thereby producing sheet-like vortical
solutions.

The differences between the three-dimensional and two-dimensional Navier-Stokes equations
are fundamental because the vortex stretching term ω · ∇u in the equation for vorticity is present
in the former but absent in the latter. Nevertheless, Lundgren (1982) has shown that for two-and-
a-half-dimensional flows of the type

u1 = − 1

2
xγ(t) + ψy u2 = − 1

2
yγ(t) − ψx u3 = zγ(t) (7)

can be mapped into solutions of the two-dimensional Navier-Stokes equations with ψ(x, y, t) as a
stream function.

To investigate the geometric structure behind these solutions requires certain technical tools;
these are outlined in §2 of this paper. The constraint in equation (4) is the basis of our geometric
arguments, and because it is true for both the Navier-Stokes and Euler equations, the conclusions
reached in this paper are valid for both cases. It is, of course, to be expected that any geometric
structure should be independent of viscosity. From now on when we refer to the Navier-Stokes
equations it should be implicitly understood that the Euler equations are also included. The Kähler
structure for the two-dimensional Navier-Stokes equations is described in §3 and then formulated
for two-and-a-half-dimensional Navier-Stokes flows in §4. Our results show that the necessary
condition on the pressure for a Kähler structure to exist in two spatial dimensions (with time
entering only as a parameter) for the two-dimensional Navier-Stokes equations is ∇2P > 0. This
constraint is highly restrictive: by no means all two-dimensional Navier-Stokes flows would conform
to it. More promising is the equivalent condition for two-and-a-half dimensional solutions of type
(7). Theorem 1 in §4 shows that these two-and-a-half-dimensional solutions have an underlying
Kähler structure if ∇2P has a very large negative lower bound, thus associating a wide set of
‘thin’ solutions with the Kähler property. While the existence of a negative finite lower bound
suggests some work still needs to be done, this result implies that preferred vortical thin sets have
a connection with a Kähler geometric structure that deserves further study.

The solutions considered in this paper represent the ideal cases of straight tubes or flat sheets; in
reality, as indicated in the first paragraph of this section, these vortical objects constantly undergo
processes of bending and tangling. Speculatively, it is possible that once this process is underway,
solutions move from living on a Kähler manifold in two complex dimensions to other complex
manifolds of a higher dimension, although this is a much more difficult mathematical problem to
address and further results are presented by Roulstone et al. (2008).

The work of Roubtsov & Roulstone (1997, 2001) showed how Kähler structures arise in atmo-
sphere and ocean dynamics. The dynamics of cyclones and anti-cyclones is strongly constrained

1In the case of the three-dimensional Euler equations data can become rough very quickly; our manipulations
in this paper are therefore purely formal. In fact it has been shown numerically in Ohkitani & Gibbon (2000) and
analytically in Constantin (2000) that solutions of the type in (5) can become singular in a finite time, which is
consistent with observations that vortex tubes have finite life-times; the singularity is not real in the full three-
dimensional Euler sense as it has infinite energy but indicates that the flow will not sustain the structure (5) for
more than a finite time. For the possibility of a real Euler singularity see Kerr (1993) and Kerr (2005).
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by the rotation of the Earth, and this feature is key to the existence of almost-complex structures
on the phase space of so-called balanced models (see McIntyre & Roulstone (2002)). Central to this
work is the ubiquity of equations of Monge-Ampère type that govern the balance between the wind
and pressure distributions. A different line of enquiry by Gibbon (2002) has shown that the three-
dimensional Euler equations has a quaternionic structure in the dependent variables. This present
work emerged from the observation that (4), when used in the context of atmospheric dynamics
and modified by a term representing the rotation of the Earth, is often studied as part of a system
of balance conditions for the fluid velocity u when the pressure field is given (and thus it is often
considered a generalisation of the notion of geostrophic balance). In the case of incompressible
flows, this leads to a Monge-Ampère equation for a stream function (Charney 1955), and this was
the trigger for our current investigation.

2 Differential Forms and Monge–Ampère Equations

In this section we prepare some tools that enable us to study certain partial differential equations
arising in incompressible Navier-Stokes flows from the point-of-view of differential geometry. An
introduction to the application of some basic elements of exterior calculus to the study of partial
differential equations, with application to fluid dynamics, can be found in McIntyre & Roulstone
(2002). Here, we shall draw largely on Lychagin et al. (1993) and Banos (2002).

A Monge–Ampère equation is a second order partial differential equation, which, for instance
in two variables, can be written as follows:

Aφxx + 2Bφxy + Cφyy +D(φxxφyy − φ2

xy) + E = 0, (8)

where A,B,C and D are smooth functions of (x, y, φ, φx, φy). This equation is elliptic if

AC − 4B2 −DE > 0. (9)

In dimension n, a Monge–Ampère equation is a linear combination of the minors of the hessian
matrix2 of φ. We shall refer to such equations as symplectic Monge–Ampère equations when the
coefficients A,B,C and D are smooth functions of (x, y, φx, φy) ∈ T ∗

R
2; i.e. they are smooth

functions on the quotient bundle J1
R

2/J0
R

2, where J1
R

2 denotes the manifold of 1-jets on R
2.

2.1 Monge–Ampère operators

Lychagin (1979) has proposed a geometric approach to these equations, using differential forms on
the cotangent space (i.e. the phase space). The idea is to associate with a form3 ω ∈ ∧n

(T ∗
R

n),
where

∧n
denotes the space of differential n-forms on T ∗

R
n, the Monge–Ampère equation △ω = 0,

where △ω : C∞(Rn) → Ωn(Rn) ∼= C∞(Rn) is the differential operator defined by

△ω(φ) = (dφ)∗ω ,

and (dφ)∗ω denotes the restriction of ω to the graph of dφ (dφ : R
n → T ∗

R
n is the differential

of φ). A form ω ∈ ∧n(T ∗
R

n) is said to be effective if ω ∧ Ω = 0, where Ω is the canonical
symplectic form on T ∗

R
n. Then the so called Hodge-Lepage-Lychagin theorem tells us that this

correspondence between Monge–Ampère equations and effective forms is one to one. For instance,
the Monge–Ampère equation (8) is associated with the effective form

ω = Adp ∧ dy +B(dx ∧ dp− dy ∧ dq) + Cdx ∧ dq +Ddp ∧ dq + Edx ∧ dy,

where (x, y, p, q) is the symplectic system of coordinates of T ∗
R

2, and on the graph of dφ, p =
φx and q = φy. So, for example, if we pull-back the one-form dp to the base space, we have
dp = φxxdx + φxydy, and then dp ∧ dq = hess(φ)dx ∧ dy, where we have also used the skew
symmetry of the wedge product.

2We denote by hess(φ) the determinant of the hessian matrix of φ. For example, in two variables, hess(φ) =
φxxφyy − φ2

xy.
3The use of the Greek letters ω and Ω is common in differential geometry; these symbols should not be confused

with the fluid vorticity vector ω.
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2.2 Monge–Ampère structures

The geometry of Monge–Ampère equations in n variables can be described by a pair (Ω, ω) ∈
∧2(T ∗

R
n) ×∧n(T ∗

R
n) such that

1. Ω is symplectic; that is, nondegenerate (Ω ∧ Ω 6= 0) and closed (dΩ = 0)

2. ω is effective; that is, ω ∧ Ω = 0.

Such a pair is called a Monge–Ampère structure. In four dimensions (that is n = 2), this geometry
can be either complex or real and this distinction coincides with the usual distinction between
elliptic and hyperbolic, respectively, for differential equations in two variables. Indeed, when
ω ∈ ∧2(T ∗

R
2) is a non-degenerate 2-form (ω ∧ ω 6= 0), one can associate with the Monge–Ampère

structure (Ω, ω) ∈
∧2

(T ∗
R

2) ×
∧2

(T ∗
R

2) the tensor Iω defined by

1
√

|pf(ω)|
ω(·, ·) = Ω(Iω ·, ·)

where pf(ω) is the pfaffian of ω: ω ∧ ω = pf(ω)(Ω ∧ Ω). Thus, for the effective form ω associated
with the Monge–Ampère equation (8), the pf(ω) coincides with (9). This tensor is either an almost
complex structure or an almost product structure:

1. △ω is elliptic ⇔ pf(ω) > 0 ⇔ I2
ω = −Id

2. △ω is hyperbolic ⇔ pf(ω) < 0 ⇔ I2
ω = Id

and it is integrable if and only if

d

(

1
√

|pf(ω)|
ω

)

= 0. (10)

Given a pair of two-forms (Ω, ω) on T ∗
R

n, such that ω ∧Ω = 0, then by fixing the volume form in
terms of Ω, we can define a pseudo-riemannian metric gω in terms of the quadratic form

gω(X,Y ) =
ιXΩ ∧ ιY ω + ιY Ω ∧ ιXω

Ω ∧ Ω
∧ π∗(vol), X, Y ∈ TR

n, (11)

where vol is the volume form on R
n and π : T ∗

R
n 7→ R

n. We can now identify our Monge–Ampère
equation given by ω with an almost Kähler structure given by the triple (Rn, gω, Iω) via

ω(X,Y ) ≡ gω(IωX,Y ). (12)

One can go further and in particular, in R
4, one can show how a natural hyper-Kähler struc-

ture emerges by identifying points in R
4 with quaternions ℓ ∈ H. This structure was utilised by

Roubtsov & Roulstone (1997, 2001) in their description of nearly geostrophic models of meteoro-
logical flows.

3 Two-dimensional Navier-Stokes flows

If the flow described by (1) is two-dimensional, and if the fluid is incompressible, then we can
represent the velocity by

u = k ×∇ψ, (13)

where ψ(x, y, t) is a stream function and k is the local unit vector in the vertical. If we substitute
this for the velocity in (4), we get

∇2P = −2(ψ2

xy − ψxxψyy) . (14)

This is an equation of Monge–Ampère type (cf. (8)) for ψ, given ∇2P , and it is an elliptic equation
if

∇2P > 0 (15)
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(cf. (8) and (9) with E = ∇2P,D = −2, A = B = C = 0; see also Larchevêque 1990, 1993). We
use, once again, the usual notation for coordinates on T ∗

R
2, p = ψx, q = ψy, and then we can

express (14) geometrically on the graph of dψ via

ω2d ≡ ∇2P dx ∧ dy − 2dp ∧ dq; △ω2d
= 0. (16)

In these coordinates Ω ≡ dx ∧ dp+ dy ∧ dq, and on the graph of dψ

△Ω = 0, (17)

which says simply that ψxy = ψyx. Equations (16) and (17) define an almost complex structure,
Iω2d

, on T ∗
R

2, given in coordinates by

Iik =
1√

2∇2P
Ωijωjk.

That is

Iω2d
=









0 0 0 − 1

α
0 0 1

α 0
0 −α 0 0
α 0 0 0









with ∇2P = 2α2. This almost complex structure is integrable (cf. (10)) in the special case

∇2P = constant . (18)

Recall that time is merely a parameter here. When P satisfies (18), we can introduce the coordi-
nates X ,Y , and a two-form ωXY

X = x− iα−1q, Y = y + iα−1p, ωXY = dX ∧ dY, (19)

then (14) together with (17) are equivalent to

△ωXY
= 0. (20)

To summarize, the graph of ψ is a complex curve in (T ∗
R

2, Iω2d
). This is the basis for a Kähler

description of the incompressible two-dimensional Navier-Stokes equations. The condition (15)
will certainly not be satisfied by all two-dimensional Navier-Stokes flows. However, with the aid
of Lundgren’s transformation (Lundgren 1982), we find that the Kähler structure can be extended
to a class of two-and-a-half-dimensional flows, as designated in §1, for which this condition is less
restrictive.

4 A result for two-and-a-half dimensional flows

At this point it is appropriate to work with the two-and-a-half-dimensional Burgers solutions
introduced in §1 in equations (5), (6) and (7). Based on the results of the last section, we shall
prove a more realistic result for two-and-a-half-dimensional flows in Theorem 1.

Lundgren (1982) made a significant advance when he showed that the class of three-dimensional
Navier-Stokes solutions

u1(x, y, t) = − 1

2
γ(t)x+ ψy ; u2(x, y, t) = − 1

2
γ(t)y − ψx (21)

u3(x, y, t) = zγ(t) + φ(x, y, t) (22)

under the limited conditions of a constant strain γ(t) = γ0, can be mapped back to the two-
dimensional Navier-Stokes equations under a stretched co-ordinate transformation; see also Majda
(1986), Majda & Bertozzi (2002), Saffman (1993), and Pullin & Saffman (1998). In (21), ψ =
ψ(x, y, t) is a two-dimensional stream function. This idea was extended by Gibbon et al. (1999)
to a time-dependent strain field γ = γ(t) with the inclusion of a scalar φ(x, y, t) in (22). The class
of solutions in (21), which are said to be of Burgers-type, is generally thought to represent the
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observed tube-sheet class of solutions in Navier-Stokes turbulent flows (Moffatt et al. (1994) and
Vincent & Meneguzzi (1994)).

Depending upon the sign of γ(t) the vortex represented by (21) either stretches in the z-direction
and contracts in the horizontal plane, which is the classic Burgers vortex tube, or vice-versa, which
produces a Burgers’ vortex shear layer or sheet. Thus γ, which can be interpreted as the aggregate
effect of other vortices in the flow, acts an externally imposed strain function or ‘puppet master’,
and can switch a vortex between the two extremes of these two topologies as we discussed in §1.

This class of solutions is connected to the results of §§2 and 3 through the following theorem,
which is the main result of this section, and of the paper4:

Theorem 1 If a two-and-a-half-dimensional Burgers-type class of solutions has a Laplacian of
the pressure that is bounded by ∇2

3P > − 3

2
γ2 then any associated underlying two-dimensional

Navier-Stokes flow is of Kähler type.

Proof: To prove this theorem we first need two Lemmas. Firstly let u = (u1, u2, u3) be a candidate
velocity field solution of the three-dimensional Navier-Stokes equations taken in the form

u1 = u1(x, y, t) u2 = u2(x, y, t) u3 = zγ(x, y, t) + φ(x, y, t). (23)

with z appearing only in u3. With this velocity field the total derivative is now

D

Dt
=
∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y
+ (zγ + φ)

∂

∂z
(24)

and the vorticity vector ω must satisfy

Dω
Dt = Sω + ν∇2ω , (25)

where S is the strain matrix whose elements are Sij = 1

2
(ui,j + uj,i). In the following Lemma

v(x, y, t) = (u1, u2), and P(x, y, t) is a two-dimensional pressure variable which is related to the
full pressure P in (31). The material derivative is now

D
Dt =

∂

∂t
+ v · ∇ (26)

Lemma 1 (see Gibbon et al. 1999) Consider the velocity field u = (v, zγ+φ); then v, ω3, φ and
γ satisfy

Dv

Dt + ∇P = ν∇2v
Dω3

Dt = γω3 + ν∇2ω3 , (27)

Dφ
Dt = −γφ+ ν∇2φ , (28)

Dγ
Dt + γ2 + Pzz(t) = ν∇2γ . (29)

The velocity field v satisfies the continuity condition div v = −γ and the second partial z-derivative
of the pressure Pzz is constrained to be spatially uniform.

Remark: While (27) looks like a two-dimensional Navier-Stokes flow, the continuity condition
implies that the two-dimensional divergence divv 6= 0; thus an element of three-dimensionality
remains.

Proof: The evolution of the third velocity component u3 = γz + φ is given by

−Pz =
Du3

Dt
− ν∇2u3 = z

(Dγ
Dt + γ2 − ν∇2γ

)

+

(Dφ
Dt + γφ− ν∇2φ

)

(30)

4The notation used in this section is: ∇ is the two-dimensional gradient and ∇3 is the three-dimensional gradient.
∇2 and ∇2

3
are the two- and three-dimensional Laplacians respectively (to avoid confusion with the symbol △ in

§2).
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which, on integration with respect to z, gives

−P (x, y, z, t) = 1

2
z2

(Dγ
Dt + γ2 − ν∇2γ

)

+ z

(Dφ
Dt + γφ− ν∇2φ

)

− P(x, y, t). (31)

It is in this way that P(x, y, t) is related to P (x, y, z, t). However, from the first two components
of the Navier-Stokes equations, we know that ∇P must be independent of z. For this to be true
the coefficients of z and z2 in (31) must necessarily satisfy

Dφ
Dt + γφ− ν∇2φ = c1(t)

Dγ
Dt + γ2 − ν∇2γ = c2(t). (32)

c1(t) is an acceleration of the co-ordinate frame which can be taken as zero without loss of generality.
Equation (31) shows that c2(t) = −Pzz(t) which restricts Pzz to being spatially uniform. To find
the evolution of ω3 we consider the strain matrix S = {Sij}

S =





u1,x
1

2
(u1,y + u2,x) 1

2
(zγx + φx)

1

2
(u1,y + u2,x) u2,y

1

2
(zγy + φy)

1

2
(zγx + φx) 1

2
(zγy + φy) γ



 . (33)

Working out the vorticity field ω from (23) it is easily seen that (Sω)3 = γω3. Thus (25) shows
that ω3 decouples from φ to give the equation for ω3 in (27). �

Now let us consider the class of Burgers’ velocity fields given in (21) with a stream function
ψ(x, y, t). The strain rate variable γ is taken as a function of time only. The continuity condition
is now automatically satisfied. The material derivative is given by

D
Dt =

∂

∂t
− 1

2
γ(t)

(

x
∂

∂x
+ y

∂

∂y

)

+ Jx,y(ψ, ·). (34)

New co-ordinates can be taken (Lundgren’s transformation (Lundgren (1982)))

s(t) = exp

(∫ t

0

γ(t′) dt′
)

(35)

x̃ = s1/2x ỹ = s1/2y t̃ =

∫ t

0

s(t′) dt′, (36)

which re-scale ω3 and φ into new variables

ω̃3(x̃, ỹ, t̃) = s−1ω3(x, y, t) φ̃(x̃, ỹ, t̃) = s φ(x, y, t). (37)

The material derivative is
D
Dt̃ =

∂

∂t̃
+ ṽ · ∇̃ (38)

where ψ(x, y, t) = ψ̃(x̃, ỹ, t̃); ṽ =
(

ψ̃ỹ ,−ψ̃x̃

)

and ∇̃ = î ∂x̃ + ĵ ∂ỹ. The relation between v =

(u1, u2) and ṽ is given by

u1 = − 1

2
γ(t)x+ s1/2ṽ1 ; u2 = − 1

2
γ(t)y + s1/2ṽ2 (39)

and the relation between the two material derivatives in combination with the respective Laplacians
is

D
Dt − ν∇2 = s

(D
Dt̃ − ν∇̃2

)

. (40)

Introducing a new pressure variable P̃ as

P̃ = s−1
[

P − 1

4
(x2 + y2)

(

γ̇ − 1

2
γ2
)]

(41)

our results can be summarized in our second Lemma:
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Lemma 2 The re-scaled velocity field ṽ satisfies the two-dimensional re-scaled Navier-Stokes equa-
tions (div ṽ = 0)

Dṽ

Dt̃ + ∇̃P̃ = ν∇̃2ṽ . (42)

The vorticity ω̃3(x̃, ỹ, t̃) = −∇̃2 ψ̃ and the passive scalar φ̃(x̃, ỹ, t̃) satisfy

Dω̃3

Dt̃ = ν∇̃2ω3 ,
Dφ̃
Dt̃ = ν∇̃2φ . (43)

Proof: From (35) we note the useful result that Ds/Dt = γs. Using (39) we write

Du1

Dt
− ν∇2u1 = − 1

2
x
(

γ̇ − 1

2
γ2
)

+ s3/2

(Dṽ1
Dt̃ − ν∇2ṽ1

)

, (44)

Du2

Dt
− ν∇2u2 = − 1

2
y
(

γ̇ − 1

2
γ2
)

− s3/2

(Dṽ2
Dt̃ − ν∇2ṽ2

)

. (45)

Next we appeal to the definition of the pressure P̃ in (41) to give the velocity pressure relation in
(42). The results for φ̃ and ω̃3 follow immediately. �

The proof of Theorem 1 is now ready to be completed. To obtain the full three-dimensional
Laplacian of the pressure ∇2

3P we use (41) and (29) and write

−∇2

3P = 3

2
γ2 + s2

[

∂

∂x̃

(Dṽ1
Dt̃ − ν∇2ṽ1

)

+
∂

∂ỹ

(Dṽ2
Dt̃ − ν∇2ṽ2

)]

= 3

2
γ2 − s2∇̃2P̃ . (46)

Thus if ∇2
3P satisfies the condition in Theorem 1 then the corresponding Kähler positivity condition

(15) on the Laplacian for two-dimensional flow is satisfied. �

Lundgren’s mapping breaks down under one condition: while the strain γ(t) can take either
sign, if it is forever negative or for long intervals, the domain t ∈ [0, ∞] maps on to a finite section of
the t̃-axis. For example, if γ = −γ0 = const < 0 then s = exp(−γ0t) and t̃ = γ−1

0
[1 − exp(−γ0t)].

Hence t ∈ [0, ∞] maps onto t̃ ∈ [0, γ−1

0
].

5 Summary

We have shown how Kähler geometry arises in the Navier-Stokes equations of incompressible
hydrodynamics, via a Monge–Ampère equation associated with (4). Although it is certainly not
the case that all two-dimensional flows will satisfy the condition for the Kähler structure to exist,
the situation looks much more promising for two-and-a-half-dimensional flows, of which Burgers
vortex is one example.

Issues relating to the existence and interpretation of Kähler structures, the integrability condi-
tions, and related matters involving contact and symplectic structures, were discussed by McIntyre
& Roulstone (2002) in connection with various Monge–Ampère equations arising in geophysical
fluid dynamics. The semi-geostrophic equations of meteorology, which are a particularly useful
model for studying the formation of fronts, were the starting point in McIntyre & Roulstone op.
cit. for an investigation into the role of novel coordinate systems, similar to those we have found
here in (19) and (49). In semi-geostrophic theories, such coordinates facilitate significant sim-
plifications of difficult nonlinear problems, and they are associated with canonical Hamiltonian
formulations of these systems. Issues relating to contact and symplectic geometry may also be
relevant to the results presented in this paper, and this suggests one direction for further study.

A further variation on this theme revolves around the addition of rotation to the system, which,
as we pointed out in the Introduction, has important meteorological applications. Euler’s equations
of motion are

∂v

∂t
+ v · ∇v + f(k × v) + ∇P = 0 , (47)
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where 1

2
f is the angular frequency of the rotation. If we examine these equations in two dimensions,

with constant rotation, then taking the divergence of (47) gives

∇2P = −2(ψ2

xy − ψxxψyy) + f∇2ψ. (48)

This equation, which is commonly referred to as the Charney balance condition in the geophysical
fluid dynamics literature, is an elliptic Monge–Ampère equation for ψ if ∇2P + f2/2 > 0 . The
associated complex structure is integrable when ∇2P is a constant (cf. (10)), and in this case we
can introduce new complex coordinates

X̃ = ax+ i(fy + 2q), Ỹ = ay − i(fx+ 2p), (49)

with a = (2∇2P + f2)1/2. Once again, (48) together with (17) are equivalent to

ωX̃Ỹ ≡ dX̃ ∧ dỸ , △ω
X̃Ỹ

= 0.

If the pressure is zero, or harmonic, then (48) is suggestive of a special Lagrangian structure. A
special Lagrangian structure has also been noted in the work of Roubtsov & Roulstone (2001), but
its role in that context is obscure (see McIntyre & Roulstone (2002) equation (13.27) et seq.).
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