
HAL Id: hal-03027824
https://univ-angers.hal.science/hal-03027824

Submitted on 24 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidence for an isotropic signature in double vibrational
collision-induced Raman scattering: A point-polarizable

molecule model
Michel Chrysos, I.-A. Verzhbitskiy

To cite this version:
Michel Chrysos, I.-A. Verzhbitskiy. Evidence for an isotropic signature in double vibrational collision-
induced Raman scattering: A point-polarizable molecule model. Physical Review A, 2010, 81 (4),
pp.042705. �10.1103/PhysRevA.81.042705�. �hal-03027824�

https://univ-angers.hal.science/hal-03027824
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 81, 042705 (2010)

Evidence for an isotropic signature in double vibrational collision-induced Raman scattering:

A point-polarizable molecule model

M. Chrysos* and I. A. Verzhbitskiy
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The particularly weak isotropic spectrum of the recently reported [Verzhbitskiy et al., Phys. Rev. A 81, 012702

(2010)] nearly depolarized collision-induced Raman scattering band SF6(ν1) + N2(ν1) at room temperature was

obtained and is presented here. The spectrum was extracted from high-quality measurements of two independent

incident-field polarization scattering components. Its zero-order moment was found to be about 200 times smaller

than that of its anisotropic counterpart. Agreement, both in spectral shape and in intensity, was found with

predictions based on the dipole-induced dipole polarization model once corrected for the very substantial back-

induction, dispersion, and dipole-induced quadrupole-induced dipole interaction mechanisms, all of which were

considered within the model framework of two point-polarizable molecules. Quantum-mechanical calculations

revealed a large contribution from bound and predissociating dimers that amounts to more than one-third of the

total isotropic scattering intensity.
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I. INTRODUCTION

Collision-induced Raman scattering (CIS) has been the

subject of intensive research for almost three decades [1].

Among the various possible manifestations of CIS, double

vibrational Raman scattering (DRS) is an exotic process. Its

essentials can be summarized in a few words. Gas molecules

in collision scatter the incident photons. While most of the

incident energy escapes, part of it is trapped in the gas and con-

verted to kinetic energy of the colliding molecules or invested

to simultaneously promote them to excited vibrational states.

DRS is nothing but CIS by pairs of molecules, both of which

undergo Raman-allowed vibrational transitions. To study it,

one has to record and process light-scattering gas spectra,

pinpointing those frequencies that correspond to the sum of

the two vibrational transitions. DRS events are extremely

unlikely to occur in practice because their observation implies

that several conditions are met. Not only must the incident

photon and the two gas molecules be involved in a triple

encounter, but the two molecules must also spontaneously

intercept exactly the amount of energy needed to undergo

a transition, and the transitions must occur simultaneously.

Whenever gas mixtures are involved, DRS transitions can

appear at frequency regions that are essentially free from

overtone or combination bands of the single molecules. As

a result, DRS spectra by mixtures are expected to be more

readily discernible than pure gas DRS spectra because the sum

of two vibrational modes involving unlike molecules can only

coincide with the frequency of an allowed molecular band by

accident.

Over the past 15 years, our group has widely studied CIS via

a variety of gases and mixtures and has reported spectra that

are extremely weak [2]. But DRS pertains to those collision-

induced processes that are notorious for the low intensities

they generate, which can often be much lower than the ones

in typical collisional spectra. The first observation of DRS in
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gases was reported a few years ago by Le Duff [3], seven

years after the experimental confirmation by Zoppi and his

colleagues of DRS in liquids [4]. Le Duff’s study, among other

findings, revealed that DRS is almost fully depolarized, giving

rise solely to anisotropic spectra [3]. Recently, we provided

evidence for DRS in the gas mixture SF6-N2, where we stressed

the almost fully depolarized nature of the band and we reported

its anisotropic spectrum [5].

Here we report an observation of isotropic DRS in the

same mixture. Such a spectrum, whose existence has been

predicted theoretically, is expected to be more than one order

of magnitude weaker than its anisotropic counterpart, the latter

having been shown in the recent past to be sufficiently strong

to whet the interest as a potentially discernible nonstandard

collision-induced process [3,5]. The importance of and reason

for detecting isotropic CIS spectra can be outlined in a single

sentence. These spectra stand as a forbidding challenge to

the spectroscopist, but they also propose themselves as a

particularly sensitive predictive tool for intramolecular and

intermolecular properties. This is even more true with their

extremely weak DRS signature, evidence of the existence

of which is provided below. The difficulty with isotropic

CIS, aside from the weak signal it produces, is that stray

light from allowed polarized components (such as the intense

Rayleigh line) can partially or totally mask the spectrum.

This can in part explain why isotropic CIS has thus far not

received much attention compared to anisotropic CIS. But

vibrational CIS spectra are free from the bothersome Rayleigh

component, so the aforementioned difficulty does not arise

in DRS, even though polarization effects owing to the finite

volume of the two molecules (unaccounted for in this article)

are also expected to participate. Thus, once carefully measured,

isotropic spectra can be useful devices for assessing values

of dispersion force constants or molecular polarizabilities,

such as for instance the Hamaker C6 coefficient of SF6-N2

or the quadrupole-quadrupole polarizability C of N2 and SF6,

which both have a great role in the studied process, as shown

below.
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II. MEASUREMENTS

Handmade or industrially prepared mixtures of highly

purified sulfur hexafluoride and nitrogen gases were used at

room temperature (T = 294.5 K) and at moderate working

conditions of pressure and density, which for N2 attained

values as high as 92 bars but never exceeded 21 bars for

SF6. The DRS SF6(ν1) + N2(ν1) band was recorded at the

sum νa + νb (νa = 775 cm−1, νb = 2330 cm−1) of the two

fundamental vibrational stretching frequencies for the two

molecules, according to a strict protocol developed in detail

in the preceding paper [5]. Two independent scattering signal

components, I‖ and I⊥, were measured as a function of Raman

frequency shift ν, depending on whether the electric field of

the incident beam was polarized in the direction parallel or

perpendicular to the scattering plane [6]. To avoid bias in the

polarization of the output electromagnetic field caused by any

possible preference of the holographic gratings for one polar-

ization over another, due care was taken to ensure a completely

unpolarized signal before the scattered radiation entered the

detection chain. A regime strictly quadratic in density was

ensured, in which integrated signals scaled as ρaρb products

(with ρa and ρb as the densities of the two gases) for both

the parallel and the perpendicular polarization configurations.

This property offered an unambiguous guarantee of binary

SF6-N2 scattering. The DRS band was found to be nearly

fully depolarized, with a near constant depolarization ratio

η(ν) = 0.83 ± 0.02 over the rather narrow frequency domain

3080–3120 cm−1, out of which extraction of an isotropic

signal was possible. This property proved to be particularly

useful for the meaningful determination of the weak isotropic

spectrum. To this end, the least-squares fitting method was used

to fit the function I0 exp(A4ν
4 + · · · + A1ν) to the two sets of

recorded data for the calibrated Stokes intensities I⊥ and I‖,

with parameter values for A1, . . . , A4 common to both spectral

components (thereby taking account of the fact that the ratio

η = I‖/I⊥ was constant over the aforementioned frequency

range), but with a parameter value I0 that was different in each

of them.

Figure 1 illustrates, in absolute units (cm6), the recorded

components I⊥ and I‖ in the Stokes side of the spectrum as a

function of frequency shift (in cm−1) with respect to the center

of the band.1

The two sets of converged parameters I0, A1, . . . , A4

ensured an excellent fit to both I⊥ and I‖ data and so, too,

was the case with the anisotropic and isotropic spectra, Iani

and Iiso, which are given as the linear combinations

Iani = 1.01I‖ − 0.01009I⊥,
(1)

Iiso = 1.017I⊥ − 1.184I‖.

1We take this opportunity to point out an inadvertent error in our

previous related work [5]. Figure 4, therein, underrates by a factor

of 1.11 and 1.15 the signals I‖ and I⊥, respectively. This error

escaped notice in Fig. 4 even though it was corrected elsewhere

before publication [5]. This graphical error has now been rectified in

Fig. 1 of the present article, where I‖ and I⊥ are shown in the same

scale as in our preceding article.

FIG. 1. Absolute components I⊥ (•) and I‖ (◦) recorded in the

Stokes side of the spectrum, in units of cm6, as a function of frequency

shift (in cm−1) with respect to the center of the band. Semilogarithmic

scale is used. The function I0 exp(A4ν
4 + · · · + A1ν) for either of the

two components is represented by solid lines.

The coefficients in these two expressions account properly for

the finite aperture of the scattered beam, as a replacement of the

traditional expressions Iani = I‖ and Iiso = I⊥ − 7
6
I‖, which

are valid only in the strictly ideal case of a zero aperture. In

this way a high-quality analytic function was obtained for Iani,

which reads

Iani = I0 exp(A1ν + A2ν
2 + A3ν

3 + A4ν
4) (2)

with parameters A1 = −0.04639, A2 = −0.01116, A3 =
3.66674 × 10−6, and A4 = 2.03481 × 10−5 and with

amplitude I0 = 1.6329 × 10−58. For the isotropic spectrum,

Iiso, the best value for the amplitude is I ′
0 = 6.1301 × 10−60.

This value corresponds to a depolarization ratio of 0.83,

which was nevertheless subject to variations within the interval

0.81–0.85. This interval was established by taking into account

any error in the measured signals I‖ and I⊥. The small

dispersion of the data points (◦ and •) around the plotted curves

of Fig. 1 bears witness to the quality of the data for those two

signals.

The variations in η, albeit small, had a huge effect on

the isotropic spectrum, whose integrated intensity suffered

variations by more than a factor of 5. The mean value of

the zero-order isotropic moment was found to be M0 =
2.92 × 10−4 a9

0 (where a0 is the Bohr radius) with lowest and

highest acceptable bounds 0.88 × 10−4 and 5.07 × 10−4 a9
0 ,

respectively. The latter values determine an area, shown in gray

in Fig. 2, which according to our measurements should delimit

the uncertainty of the physical isotropic spectrum. The lower

bound corresponds to the upper limit of the depolarization ratio

(i.e., 0.85), whereas the upper bound refers to the lower limit

of 0.81. In Fig. 2, the mean isotropic spectrum is indicated

by a dashed line. To assess the relative magnitude of the

experimental uncertainty in extracting the isotropic spectrum,

the dispersion of the symbols used to depict the data points

in Fig. 2 (◦) is again a good device. For comparison, the

data points for the anisotropic spectrum are also illustrated

(•), along with the corresponding I0 exp(A1ν + · · · + A4ν
4)
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FIG. 2. (Color online) Isotropic spectrum (◦) extracted from the

recorded absolute components I⊥ and I‖ (in cm6) as a function of

frequency shift (in cm−1) with respect to the center of the band.

Semilogarithmic scale is used. The area marked in gray defines

the uncertainty boundaries of the physical isotropic spectrum. The

mean spectrum is indicated by a dashed line. For comparison, data

points for the anisotropic spectrum are also shown (•), along with

mean intensities (thin solid line). Thick solid lines are used to

depict quantum-mechanical isotropic spectra, computed within the

point-polarizable molecule interaction model and with inclusion of

DID polarization terms through orders R−6 and R−9, dispersion

polarization through order R−6, and DIQ(2) polarization through order

R−8, for different C6 entry values and types of function for pressure

effects. These are (from bottom to top at ν = 0): C6 = 247 a.u.,

Lorentzian with a full width at half-maximum equal to 10 cm−1

[blue (bottom) line]; C6 = 247 a.u., Gaussian with a full width at

half-maximum equal to 10 cm−1 [green (middle) line ]; and C6 =
768 a.u., Gaussian with a full width at half-maximum equal to 10 cm−1

[red (upper) line].

function (thin solid line). Particularly gratifying was the fact

that theory, within the point-polarizable molecule interaction

model and upon inclusion of dipole-induced dipole (DID)

polarization and back-induction, through orders R−6 and

R−9, as well as dispersion polarization (through order R−6)

and dipole-induced quadrupole-induced dipole interaction

(DIQ(2)) contributions (through order R−8), predicts, on the

basis of quantum mechanics, a spectrum that lies in the deep

interior of the gray zone of Fig. 2. This spectrum is illustrated

by three thick solid lines, depending on the choice of the entry

value for Hamaker constant C6 and on whether a Lorentzian

or a Gaussian function was taken to semiempirically simulate

part of the effects of the gas pressure (see below). Such an

agreement shown in Fig. 2 between theory and experiment

lends credence to both the employed polarization model

and the adopted procedure for the extraction of particularly

weak spectra in nearly depolarized systems. According to

our calculations, the effect of dispersion polarization on the

isotropic intensity is about one-third that of the total effect of

the R−6-order polarizability terms; DIQ(2) is responsible for

more than 40% of the total translational isotropic spectrum.

A detailed description of the calculations of the incremental

polarizability trace and of the isotropic spectrum and its

moment is made in the next section.

III. CALCULATIONS

A. Trace and moments

Unlike the case of the recently reported anisotropic spec-

trum [5], for which DID was the sole mechanism responsible

for the leading order, here dispersion terms need to be

considered from the outset as these terms now participate along

with DID terms through the leading order. To this purpose,

a rigorous derivation of DID and dispersion effects through

order R−6, supplemented with DIQ(2) and back-induction

corrections through orders R−8 and R−9, is given below. Mean

and first stretching-derivative values for dipole polarizability

αc (c = a, b), quadrupole polarizability Cc, and second dipole

hyperpolarizability γc were necessary as well as structural

properties for a and b. Henceforth, notations a and b are used

to denote molecules SF6 and N2, respectively. To calculate

DID, back-induction, and dispersion polarization effects, use

is made hereafter of an appendix and of mathematical steps

that go beyond the formulas reported in [7].

The incremental trace of the SF6-N2 polarizability reads

�α = 1
3
(αZZ + 2αXX). According to [7], there are only three

terms (0�L) contributing to �α, namely the terms (000),

(022), and (044); � and L designate angular momentum

quantum numbers that enter spherical harmonics Ym
� (�b)

and Y−m
L (�), where �b specifies the orientation of b, and

� the orientation of the pair. While the term (044) scales

as R−5, as compared to the shorter-range term (000), the

property �α044 introduces components EX,XXX and EZ,ZZZ

of the dipole-octopole polarizability tensor, which vanishes for

spherically symmetric systems. The first of the remaining two

terms reads [7]

�α000 = 2αaαb(αa + αb)R−6

+ h̄

π

∫ ∞

0

dω{αa(iω)[3γ1b(iω,0,0) + 2γ2b(iω,0,0)]

+ [3γ1a(iω,0,0) + 2γ2a(iω,0,0)]αb(iω)}R−6.

(3)

The second term, �α022, involves the anisotropy of b, which

in the point-polarizable molecule model is set equal to zero,

as well as quantities γ3b and γ5b [7], which vanish too. Specif-

ically, in the model adopted here, the γ̂ -tensor elements are

reduced to γZZXX = γXZXZ = γXXZZ = γXXYY = 1
3
γZZZZ =

1
3
γXXXX for either particle. The four quantities γ1c, γ2c, γ3c,

and γ5c, shown above for particle c (= a,b), are then reduced

to 1
3
γZZZZ , 1

3
γZZZZ , 0, and 0, respectively. As a result, �α000

is the sole nonzero element, which then reads

�α000 = 2αaαb(αa + αb)R−6

+ 5h̄

3π

∫ ∞

0

dω[αa(iω)γb(iω,0,0)

+ γa(iω,0,0)αb(iω)]R−6, (4)

where γa (γb) now denotes the sole independent nonzero

element γZZZZ for particle a (b) [8].
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Equation (4) can be written as

�α000 = 2αaαb(αa + αb)R−6

+ 5

9
C6

[

∫ ∞
0

αa(iω)γb(iω,0,0)dω
∫ ∞

0
αa(iω)αb(iω)dω

+
∫ ∞

0
γa(iω,0,0)αb(iω)dω

∫ ∞
0

αa(iω)αb(iω)dω

]

R−6, (5)

where

C6 = 3h̄

π

∫ ∞

0

αa(iω)αb(iω)dω. (6)

By applying Unsöld’s approximation [9], the property �α000

is further reduced to

�α000 ≈ 2αaαb(αa + αb)R−6 + 5

18
C6

(

γa

αa

+ γb

αb

)

R−6,

(7)

where αa and γa (αb and γb) now denote static properties for

particle a (b). Note that the latter expression coincides with

the one suggested (though without demonstration) by Hohm

for two unlike interacting atoms [10].

In the present case, however, matrix elements

〈1a1b|�α000|0a0b〉 between vibrational states are to be

considered rather than the mean value of �α000. As a result,

Eq. (7) must further be processed in order to clear away

denominators and to account properly for the coupling

between the vibrational degrees of freedom in the two

molecules on which C6 depends intrinsically. Equation (7) is

thus replaced by the expression

�α000 ≈ 2αaαb(αa + αb)R−6 + 5
12

h̄ω̄ (αaγb + γaαb) R−6.

(8)

The latter expression is valid under the well-known London

approximation [11]
∫ ∞

0

αa(iω)αb(iω)dω ≈ π

2
ω̄αaαb, (9)

where ω̄ denotes the reduced frequency ω̄a ω̄b

ω̄a+ω̄b
and ω̄a

(ω̄b) is some effective characteristic frequency for molecule

a (b) [12].

Upon application of the kets and bras, which are associated

with the vibrational transitions in the two particles, the

following matrix element is obtained:

〈1a1b|�α000|0a0b〉 = AR−6 (10)

with

A ≈ h̄

2
(µaµbωaωb)−1/2

{

4(α′
a)ra

e
(α′

b)rb
e

[

(αa)ra
e
+ (αb)rb

e

]

+ 5

12
h̄ω̄

[

(α′
a)ra

e
(γ ′

b)rb
e
+ (γ ′

a)ra
e
(α′

b)rb
e

]}

. (11)

The next correction scales as R−8. It arises because the

gradient of the field of the dipole induced in molecule a (b) by

the external field acts through the quadrupole polarizability

Ca (Cb) to induce a quadrupole in molecule b (a) whose

field in turn contributes to the induction of a dipole in a (b).

This mechanism is often referred to as the dipole-induced

quadrupole-induced dipole interaction, or, in an abbreviated

terminology, the second-order dipole-induced quadrupole

interaction (DIQ(2)) [13]. Although this is a short-range term

as compared to the leading-order ones, its contribution to

isotropic DRS was found to be great, owing principally to

interferences with the leading-order mechanisms. In light of

our findings, we expect this term to play a substantial role

in general in the polarized component of induced spectra,

whether the process is DRS or not. The importance of this term

to the polarized component of CIS has already been stressed

in prior studies with inert gas atoms [13].

Correction to account for DIQ(2) effects gives

〈1a1b|10(α2
aCb + Caα

2
b)|0a0b〉R−8 = BR−8, where

B ≈ 10h̄(µaµbωaωb)−1/2
[

(αa)ra
e
(α′

a)ra
e
(C ′

b)rb
e

+ (C ′
a)ra

e
(αb)rb

e
(α′

b)rb
e

]

. (12)

Note that for two identical molecules the DIQ(2) term reduces

to the familiar 20α2
0CR−8 expression.

Back-induction through order R−9 gives [see

Eq. (A8) of the appendix] the supplementary term

〈1a1b|4α2
aα

2
b |0a0b〉R−9 = CR−9, where

C ≈ 8h̄(µaµbωaωb)−1/2(αa)ra
e
(αb)rb

e
(α′

a)ra
e
(α′

b)rb
e
. (13)

To obtain the latter three expressions, quantities αa , γa , and Ca

(αb, γb, and Cb) had to be expanded in a Taylor series about the

equilibrium position as a function of the stretching coordinate

qa
1 (qb

1 ) for molecule a (b) and then truncated to the linear term

according to the expression

Xa ≈ (Xa)e +
(

∂Xa

∂qa
1

)

e

qa
1 , (14)

where Xa stands for αa , γa , and Ca; analogous expressions

apply to molecule b. Equations (11)–(13) were then ob-

tained by taking the matrix element of the resulting terms

between ground and excited vibrational states for the two

particles.

The value of ω̄ for SF6-N2 is an unknown quantity but

its appearance in the final formulas can be avoided by again

using Eq. (9) along with the definition of C6 [Eq. (6)]: h̄ω̄ ≈
2C6/(3αaαb) ≈ 2C6/[3(αa)ra

e
(αb)rb

e
]. Note that, in the latter

expression, the product αaαb was simplified by the product

of the mean polarizabilities, (αa)ra
e
(αb)rb

e
. Equation (11) then

reads

A ≈ h̄

2
(µaµbωaωb)−1/2

{

4(α′
a)ra

e
(α′

b)rb
e

[

(αa)ra
e
+ (αb)rb

e

]

+ 5

18
C6

(α′
a)ra

e
(γ ′

b)rb
e
+ (γ ′

a)ra
e
(α′

b)rb
e

(αa)ra
e
(αb)rb

e

}

. (15)

Interestingly enough, the vibrational coupling between parti-

cles a and b has now been shifted, as suggested by Eq. (15),

to the products (α′
a)ra

e
(γ ′

b)rb
e

and (γ ′
a)ra

e
(α′

b)rb
e
, whereas initially

the coupling between the two particles was ensured through

Eq. (6). The constant C6 in Eq. (15) has now become a

static property. For our calculations, the experimental value

C6 = 247 Eha
6
0 [14] was used. For comparison, the far greater

Lennard-Jones value C6 = 768 Eha
6
0 was also taken (see

Ref. [17] in our preceding paper [5]) to calculate frequency-

resolved spectra, which compares even more favorably with

our measurements.
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TABLE I. Input parameters for molecule c (= a, b) and for the

pair a-b. All values are in atomic units (a.u.). The best values, used as

input for our calculations, are denoted by bold entries. The entry for

(αa)ra
e

is very close to the experimental value of 30.35 a.u. reported

in [15].

c (αc)rc
e

(α′
c)rc

e
(γ ′

c)rc
e

(C ′
c)rc

e

√

h̄

2µcωc
C6

a 26.54a 813a 0.0261

30.29b 25.38b 915b 257.8b

26.35c

642d

698e

b 11.85f 6.176f 994f 23.31f 0.0607

a-b 247g

205.8h

768i

aSCF values for molecule a [16].
bMP2 values for molecule a [16].
cExperimental value from [18].
dMaroulis’s SCF value [16] but with use of the invariant reported

in [7] for SF6 (see [8]).
eMaroulis’s MP2 value [16] but with use of the invariant reported

in [7] for SF6.
fCCSD(T) values for molecule b [17].
gExperimental value from [14].
hMost recent theoretical study [19], which is 20% below the measured

C6 value of SF6-N2.
iC6 value for a Lennard-Jones potential with ε = 138.8 K and σ =
8.71 a0.

Input parameters relative to molecules a and b and to the

pair a-b are given in Table I. For the mean static polarizability

of SF6, Maroulis’s second-order Møller-Plesset (MP2) value

was used [16] (bold entry), which is very close to the

experimental value 30.35 a.u. reported elsewhere [15]. For

N2, Maroulis’s CCSD(T) (coupled cluster with single, double,

and partially triple excitations) values were used for both

the mean and the first derivative of the dipole polarizability

as well as for the first derivatives of the second dipole

hyperpolarizability and of the quadrupole polarizability of

this molecule [17]. While the expression for the isotropic

invariant of the second dipole hyperpolarizability of N2 given

by Maroulis agrees with that reported in [7], in the case of

SF6 the two authors have reported two different expressions;

however, both expressions lead to the same formal result when

the molecules are treated as point-polarizable particles, which

is the model used throughout this paper (see [8]). For the first

polarizability derivative of SF6, the experimental value was

taken [18], even though ab initio results for self-consistent field

(SCF) or MP2 level are also available [16]. For the quadrupole

polarizability derivative, the MP2 value of [16] was used. For

the Hamaker constant C6 that enters dispersion terms, the

experimental value was used [14]. Although more recent C6

values do exist, they are theoretically obtained [19]. Note that

the experimental value used in our calculations is 20% above

the most recent theoretical value. The highest value of C6 was

the one associated with the Lennard-Jones potential model

(Ref. [17] in [5]). Values for the reduced masses µa and µb are

114 and 7 amu, respectively. Angular frequency ωc is defined

TABLE II. Values (in a.u.) of coefficients A [Eq. (15)], B

[Eq. (12)], and C [Eq. (13)]. For A, the case of DID alone and

that of DID supplemented with dispersion effects were separately

considered.

A (DID) A (DID + disp) B (DIQ(2)) C (DID)

43.5 53.1 1188 1482

as ωc = 2πcνc, with νa = 775 cm−1 (νb = 2330 cm−1) as

the characteristic wavenumber of the vibrational transition in

molecule a (b). Finally, as the SF6-N2 potential, the most

updated interaction energy model was used throughout [20],

which has been clearly proven to be superior to any other prior

model for SF6-N2 [5], even if still insufficient for accurate

quantitative predictions.

The values for A, B, and C are given in Table II, with and

without inclusion of the dispersion polarization mechanism.

When passing to moments, M0 was the only quantity to

provide a converged value in the restricted range that was

covered experimentally. This quantity was obtained by using

the general expression

M0 = 4π

∫ ∞

0

(�α)2G(R)R2dR, (16)

where G(R) is the binary distribution function e−V (R)/kBT , and

V (R) and kB are the isotropic effective interaction potential

and the Boltzmann constant, respectively. After some simple

algebra, we obtain

M0 = A
2
I10 + 2ABI12 + 2ACI13 + B

2
I14

+ 2BCI15 + C
2
I16, (17)

where Ip (p = 10, 12, . . . , 16) is the integral

Ip = 4π

∫ ∞

0

e−V (R)/kBT R−pdR. (18)

Values of M0, which according to Eqs. (12), (13), and (15)

account for all or part of the contributions to the integrated

intensity, were calculated by means of Eq. (17). The six partial

contributions of this equation amount (in the order of their

appearance in the equation) to 0.953 × 10−4, 0.620 × 10−4,

0.941 × 10−5, 0.103 × 10−4, 0.317 × 10−5, and 0.244 × 10−6

a9
0 . The values were compared to the moment obtained

experimentally through the expression

M
expt

0 =
(

λ

2π

)4 ∫ ∞

−∞
Iiso(ν) dν, (19)

where λ = (νL − νa+b)−1, and νL and νa+b denote the

wavenumbers of the laser beam and of the DRS signal at

the peak intensity, respectively.

Table III gathers values for M0 in 10−4 a9
0 units. The

second column shows the value due to DID plus dispersion

through the leading order. The third column gives the M0

value after inclusion of DIQ(2) corrections. The fourth column

shows the converged moment value after second-order DID

corrections were added. Interestingly enough, the corrections

are responsible for an increase in the integrated intensity by a
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TABLE III. Values for the zero-order isotropic moment M0 in

10−4 a9
0 units. The first four columns refer to theory (this work).

“expt.” gives the range of the tolerated moment values obtained

experimentally (this work). The mean (best) experimental value is

indicated in parentheses.

DID (R−6) +disp (R−6) +DIQ(2)(R−8) +DID (R−9) expt.

0.64 0.95 1.68 1.80 0.9–5.7

(2.9)

factor of 3 with most of this increase coming from dispersion

and DIQ(2) terms.

B. The spectrum

Spectra were calculated quantum-mechanically by means

of the Fermi golden rule for the scattering cross sections.

The wave functions of the supermolecule were built step

by step on a 7600-point grid nearly 300 bohrs long, by

means of the propagative Fox-Goodwin method previously

developed by one of us [21]. Matrix elements between states

of the continuum were computed and their convergence was

ensured to within 1%. Rotational levels as high as J = 300

were populated in order to ensure that cross sections were

properly converged over the running angular momentum

quantum number. Owing to internal symmetry considerations,

only �J = 0 transitions were allowed for isotropic spectra,

providing line shapes reputed to decrease exponentially in the

wing. As a consequence of the absence of geometric symmetry

in SF6-N2, even and odd values of J contributed on an equal

footing to the calculation. A total number of 300 equally spaced

energy values were considered in steps of 15 cm−1, allowing

us to span the energy domain above the dissociation threshold

up to 4500 cm−1 in the deep continuum.

Bound states as well as shape resonances were computed

and their spectra were superposed to the unstructured contin-

uum. To this end, an efficient method was used, which was

developed by one of us and reported in a previous paper [22].

This method makes use of a discrete variable representation

(DVR) and allows one to generate, for each value of J ,

all vibrational bound-state and predissociating-state energies,

lifetimes, and wave functions in a single shot. According to our

calculations, the Sevast’yanov-Zykov potential energy model

of SF6-N2 [20] supports, in the absence of a centrifugal term,

11 bound states, whose energy levels read (in ascending order)

−166.787, −125.426, −91.278, −63.746, −42.211, −26.024,

−14.505, −6.934, −2.550, −0.537, and −0.0114 cm−1.

Resonances with asymptotic wave function amplitude smaller

than 1/20 of the wave function’s absolute maximum were

considered long-lived. Although their presence was scarce,

they started appearing at J = 14 and persisted up to rotational

levels as high as J ≈ 100. The contribution of the bound and

predissociating SF6-N2 dimers was found to be equal to 30%

for the former and 10% for the latter relative to the total

integrated cross section. To the best of our knowledge, such

a great contribution due to bound or quasibound dimers has

never been reported before.

A triangular function of 1.5 cm−1 width at half-maximum

was used to imitate the apparatus function used in the

experiment, which is the width expected at wavenumbers

about as far away from the laser frequency as the position

of the DRS band. In addition, a bell-shaped function of

10 cm−1 width was considered to account for the near-

complete coalescence of the structure in which pressure effects

have resulted at the low-frequency region of the spectrum. This

point deserves some more attention. In fact, in our experiment

the buffer gas (N2) had to be compressed to many tens of

atmospheres (whatever the Raman frequency was) in order to

compensate for the weak DRS signal. Although spectra that

are strictly binary were recorded by pinpointing integrated

signals scaling rigorously as ρaρb, pressure effects induced

by the environment of the pairs a-b could not be removed,

since to do so would require the use of truly low gas pressures.

The range of variations in the working pressure conditions

was too short to allow us to reveal any meaningful trend in

the bandwidth (see our preceding paper [5]), but pressure

effects were strong enough to destroy any structure in the

spectrum that would otherwise be observed at low frequencies

at the zero-density limit [23]. According to [24], the simple

collisional model leads to a Lorentzian profile with a damping

constant of about 0.04 cm−1 and, therefore, a full width at

half-maximum of approximately 0.1 cm−1 (see [25]). Given

that total gas pressures of order 100 atm were used in our

experiment, a full width of about 10 cm−1 at half-maximum

seems like a realistic value for the bell-shaped function

we used to convolve the full theoretical rototranslational

spectrum.

Particularly gratifying was the fact that, once all afore-

mentioned effects were included, the computed spectrum

was found to exhibit a shape overall similar to the one

found experimentally, with intensities lying entirely within

the area of uncertainty. In Fig. 2 this area is indicated in

gray. Theoretical spectra are shown in Fig. 3 (solid line),

where the continuum-continuum contributions due to free pairs

FIG. 3. Absolute isotropic spectrum (cm6) computed with quan-

tum mechanics as a function of frequency shift (cm−1). A triangular

apparatus function with full width at half maximum 1.5 cm−1 has

been used but no function has yet been considered to account for the

effects of pressure. Contributions by free pairs alone (dashed line); all

contributions by free pairs and by bound and predissociating dimers

(solid line). As entry parameter, the experimental value C6 = 247 a.u.

was used.
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(a)

(b)

FIG. 4. (Color online) Absolute isotropic spectrum (cm6) by

bound and predissociating dimers, computed with quantum mechan-

ics in the range −40-40 cm−1 as a function of frequency shift (cm−1).

(a) A triangular apparatus function with full width at half-maximum

of 1.5 cm−1 was considered (lines). (b) No apparatus function was

considered (symbols). Bound dimers are shown in the respective

panels by a blue (dark gray) line and by blue (filled) circles; predisso-

ciating dimers are shown by a red (light gray) line and by red (open)

circles. The detailed balance principle manifests itself by the slight

asymmetry seen between the Stokes side and the anti-Stokes side.

The sharp peak around ν = 0 is shown separately (inset). Bound and

predissociating dimers are responsible for more than one-third of the

DRS intensity and their contribution comes predominantly from this

peak.

(dashed line) have been superposed to the discrete contribu-

tions due to the bound and predissociating SF6N2 dimers.

Figure 4 separately illustrates, in the range −40–40 cm−1, the

rich bound and quasibound dimer structure with [Fig. 4(a)]

and without [Fig. 4(b)] slit function. The slight asymmetry

seen on this spectrum shows the expected effect of the

detailed balance principle, which stems automatically from the

computation.

According to our calculations, the large contribution of

the bound and predissociating dimers, which as mentioned

above were responsible for more than one-third of the total

integrated intensity, comes predominantly from the sharp

peak at ν = 0. However, what we see in reality as a

result of pressure is a redistribution of this intensity over

the unstructured continuum, which as illustrated in Fig. 2

makes intensities increase by almost a factor of 2 in the

rather restricted frequency range covered by the experiment.

Note that, if pressure effects were to be modeled explicitly,

some pressure-narrowing effect unaccounted for in this paper

would occur at the working conditions of gas density and

pressure, and some additional intensity would move from

the wings of the band to its center. The extent to which

pressure narrowing affects the DRS bandshape remains to be

seen [26].

It also remains to be seen to what extent relaxation

of the point-polarizable molecule model affects the main

characteristics of the isotropic spectrum. In this respect, it

is worthwhile to note that, within a more realistic model going

beyond the isotropic molecule approximation, the rotation of a

D∞h-symmetry molecule is expected to add to the calculated

intensity. However, within the narrow spectral range, |ν| <∼
20 cm−1, where the isotropic signal was discernible against

the noise background, only a minor part of the neglected effect

is expected to be noticeable; for N2, the M , O, S, and U

rotational branches lie entirely outside that range. The issue

raised above will be fully investigated, for both isotropic

and anisotropic DRS, and is the subject of a forthcoming

study [27].

IV. CONCLUSION

In this paper we reported the weak isotropic collision-

induced Raman scattering component of the simultaneous

vibrational transition SF6(ν1) + N2(ν1) at room temperature.

In spite of the noisy environment in which isotropic intensities

were embedded, extraction of a meaningful line shape from

the sparse data was possible. To this end, the property of

the near-constant depolarization ratio (0.83 ± 0.02), which we

observed over the narrow frequency range 3080–3120 cm−1,

was used as a constraint. Agreement with predictions for inte-

grated spectra was found on the basis of the point-polarizable

molecule interaction model, provided that the DID and back-

induction polarization mechanisms were supplemented with

polarization dispersion and DIQ(2) mechanisms, which for

polarizability trace are of comparable significance to DID. The

discrepancy from the experiment should mainly be attributed

to the shortcomings of the point-polarizable molecule model,

which in the case of the weak isotropic spectrum are expected

to be more noticeable than in the case of the much stronger

anisotropic spectrum. It might also be attributed to the SF6-N2

potential energy model, whose accuracy is still believed to

be insufficient [28]. This discrepancy also showed strong

dependence on certain employed parameters, especially on

the rather sensitive Hamaker constant, with which intensity

should scale quadratically. Quantum mechanics was used for

frequency-resolved spectra, in agreement with the experiment.

Finally, note that Unsöld-like approximations, such as the one

made in passing from Eq. (5) to Eq. (7), are known [7] to

underestimate dispersion effects in �α000 by ∼20% or less.

This suggests that Eq. (7) (and thus expressions resulting
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therefrom) provides a useful first approximation for dispersion

effects but still would allow for an increase of up to ∼5%

of the total isotropic intensity. Bound and predissociating

dimers were found to contribute almost as much as the

unstructured continuum, which at room temperature is, to

the best of our knowledge, an unprecedented feature in the

area of collision-induced spectroscopy. Through this paper,

the issue of how to treat isotropic DRS comes within

the scope of the general treatments of the reputed weak

isotropic CIS spectra by gases and mixtures, which have

repeatedly been the subject of attention by our group [2].

The results demonstrate that extremely unlikely events such

as the ones reported here can indeed be seen by a Raman

scattering experiment if given sufficient time to record the

signal.
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APPENDIX

This appendix, addressed to wide audiences, is intended to

give a brief and sharp demonstration of the DID expansion

of the incremental trace �α for an unlike atomic pair. To

this end, electric fields are treated rather than the formalism

of irreducible spherical tensors, which though powerful are

friendly only to specialists.

Either of the two atoms i (=a, b) is subject to external

field 
E and to the field 
Eij generated by the dipole moment

of the neighboring atom j (=b, a). The dipole moment in

each atom reads 
µi = αi

Ei = αi( 
E + 
Eij ). The sum 
µ =


µa + 
µb = 
µext + 
µint is identified as the dipole moment of

the pair a-b, where 
µext = (αa + αb) 
E is the dipole moment

associated with the external field and 
µint = aa

Eab + αb


Eba is

the dipole moment owing to atom-atom interactions. Classical

electromagnetism says that the field 
Eij , which is induced by

atom j at the position of atom i, reads


Eij = 3n̂ji( 
µj · n̂ji) − 
µj

R3
, (A1)

where n̂ji designates the unit vector along the interatomic axis.

By taking the two orthogonal orientations of the interatomic

vector parallel (n̂ji ‖ 
µj ) and perpendicular (n̂ji ⊥ 
µj ) to the

dipole moment 
µj , respectively, the latter formula can be

written as two independent expressions:


Eij‖ = 2 
µj‖R
−3 = 2αj ( 
E + 
Eji‖)R−3,

(A2)
Eij⊥ = −
µj⊥R−3 = −αj ( 
E + 
Eji⊥)R−3.

By interchanging indices i and j , one likewise has


Eji‖ = 2 
µi‖R
−3 = 2αi( 
E + 
Eij‖)R−3,

(A3)
Eji⊥ = −
µi⊥R−3 = −αi( 
E + 
Eij⊥)R−3.

Solving for 
Eij‖ and 
Eij⊥, we deduce


Eij‖ = 1 + 2αi

R3

1 − 4αiαj

R6

2αj

R3

E, (A4)


Eij⊥ = − 1 − αi

R3

1 − αiαj

R6

αj

R3

E, (A5)

and likewise for 
Eji‖ and 
Eji⊥ upon interchange of i and j .

On account of the expression 
µint = αa

Eab + αb


Eba for the

interaction part of the dipole moment, and of the definitions


µint‖ = α‖ 
E and 
µint⊥ = α⊥ 
E in terms of the orientations ‖
and ⊥ that we defined above, one obtains

α‖ = 1 + αa+αb

R3

1 − 4αaαb

R6

4αaαb

R3
, (A6)

α⊥ = −2 − αa+αb

R3

1 − αaαb

R6

αaαb

R3
. (A7)

By expanding �α = 1
3
(α‖ + 2α⊥) in a Taylor series, the

following approximate expression of the incremental trace �α

is obtained to the R−9 DID order:

�α = 1
3
(α‖ + 2α⊥) ≈ 2αaαb(αa + αb)R−6 + 4α2

aα
2
bR

−9.

(A8)

This expression coincides up to the factor
√

3, as it should,

with the one obtained [29] with irreducible spherical tensor

formalism for the amplitude of the �α(r) tensor invariant of

rank r = 0.
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